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We propose an experimental technique for determining the distance to the Moon. Our technique

is based on measuring the change in angular size of the lunar disk due to the variation of the

observer-Moon distance, as caused by the rotation of the Earth over several hours. Using this

method we obtained a value of 3.46� 105 km with a precision of 7%. Additionally, our technique

allows for the determination of the Moon radius (1678 km 6 7%), and the instantaneous

radial velocity with respect to the Earth (26.4 m/s 6 26%). A unique advantage of this method is

that it is performed from a single location with a single observer, unlike the traditional

parallax-based measurements that require at least two observers with a large separation distance.
VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4856566]

I. INTRODUCTION

The Moon, which is our only natural satellite, is located at
a mean distance of 3.84� 105 km—about 60 Earth radii—
from the Earth.1 It is the cause of many natural phenomena,
the most common of which are solar eclipses and ocean tides.
Knowledge of the distance to the Moon is important for sev-
eral reasons, and it can be used to test theories of gravitation,
study the motion of the Moon, and investigate geophysical
phenomena such as continental drift.2,3 As with any astronom-
ical object, the measurement of the distance to the Moon is a
difficult task. The first precise measurements were made in
the 18th century, using the parallax method, which was
refined in the following centuries to attain a precision of a few
kilometers.4 The primary drawback of parallax-based
approaches is that it requires time-coordinated observations
from two different Earth-bound locations, separated by a max-
imal distance. The next major measurement advance was
attained by the use of radar pulses, whose round-trip travel
time was measured to determine the distance to the Moon
with an uncertainty of about 1 km.5 At present, lunar
laser-ranging techniques determine the distance to within a
few centimeters, thanks to the retroreflectors left on the Moon
surface by Apollo astronauts.2,6

The measurement of the distance to the Moon offers an
interesting opportunity to train undergraduate students in
observational techniques and give them some insight into the
particular problem of determining distances in astronomy.
As with any observation in which the experimental condi-
tions cannot be completely controlled, it requires both care-
ful planning and the flexibility to adapt the plan to changing
external conditions. At the same time, because the Moon is a
bright object that is observable almost everyday (from most
places in the world), the experiment is easy to fit into most
course schedules. Past work required the use of lunar and so-
lar eclipses to perform low-precision measurements of the
distance to the Moon.7–10 Lough11 determined this distance
by measuring the horizontal coordinates of the Moon at two

points on the Earth’s surface using theodolites, while
Cenadelli12 set up an international campaign to image the
Moon from Italy and South Africa and derive its parallax.
Their results agree with those of more precise methods to
within a few percent. The experiments of Lough11 and
Cenadelli12 have the advantage of a simple theoretical
framework, but their drawback is that a large effort must be
exerted to coordinate observations at two locations on Earth.

In this paper, we propose an experiment to obtain a rela-
tively high-precision measurement of the instantaneous dis-
tance to the Moon, using only a small telescope and a digital
camera. Our experiment has the advantage that it can be per-
formed from a single location on the Earth and needs only a
single set of measurements taken over several hours. Due to
the rotation of the Earth, the Moon first approaches and then
recedes from a particular location on Earth and this results in
a change in its angular size. The experiment is based on the
determination of this diurnal change. Roughly speaking, the
fractional amount of this change depends on the ratio of the
Earth’s radius to the Earth-Moon distance. As this change is
on the order of a few percent, very careful planning, setup,
and execution of the experiment is critical for obtaining the
desired result. Hence, the experiment poses an interesting
challenge for students.

The organization of this paper is as follows: Sec. II gives
the theoretical framework, Sec. III shows our experimental
setup and procedure, and Sec. IV discusses our data analysis.
Finally, Sec. V presents our conclusions.

II. THEORY

Let us consider the Earth-Moon system from a reference
frame located at the center of the Earth, as shown in Fig. 1.
The position of the Moon at time t is ~r , while that of an ob-
server at the surface of the Earth is ~robs. The distance
between the centers of the Earth and the Moon is then
r ¼ j~rj, while the radius of the Earth (assumed to be
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spherical) is RE ¼ j~robsj. The distance between the observer
and the Moon is r0 ¼ j~r �~robsj, hence

r02 ¼ r2 þ R2
E � 2r RE cos z; (1)

where z is the geocentric zenith angle of the Moon. As z is
not an observable, we aim to replace it by some function of
the topocentric zenith angle of the Moon z0. Trigonometric
identities lead us to

r0 ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2x cos z0 cos cþ sin z0 sin cð Þ

q
; (2)

where c ¼ z0 � z, and x¼RE/r. As x� 1, we approximate
Eq. (2) to first order in x in two steps. First, recalling thatffiffiffiffiffiffiffiffiffiffiffi

1þ �
p

� 1þ �=2 and neglecting terms of order x2 or higher,
we arrive at

r0 � r 1� x cos z0cos cþ sin z0sin cð Þ½ �: (3)

Second, we take into account that c is on the order of x (see
Fig. 1); this implies that sinc is at most of that same order,
making the second term in parentheses in Eq. (3) of order x2.
Moreover, we can put cosc � 1, disregarding terms of order
x2 or greater. Hence, to first order in RE/r, we have

r0 � r 1� RE

r
cos z0

� �
: (4)

Because of the orbital motion of the Moon, the distance r
(and hence r0) depends on time with a time scale of a month;
in addition, the distance r0 varies due to the rotation of the
Earth with a time scale of a day. As we aim to measure the
effect of the Earth’s rotation our experiment will last only a
few hours; hence, we can approximate the variation of r by a
linear function

r0ðtÞ � r0 þ vrðt� t0Þ � RE cos z0ðtÞ; (5)

where r0 is the Earth-Moon distance at (an arbitrary) time t0,
and vr the radial velocity of the Moon at t0.

At any time t, the angular radius a of the visible disk of
the Moon measured by the observer is

a ’ sina ¼ RM

r0
; (6)

where RM is the radius of the Moon (the linear approxima-
tion of the sine function is justified by the fact that a� 0.5�).
Thus Eq. (5) can be expressed in terms of the observables a
and z0 as

a�1 � r0

RM

þ vr

RM

ðt� t0Þ �
RE

RM

cos z0ðtÞ; (7)

which gives the time variation of the angular radius of the
Moon measured by the observer. This variation has a compo-
nent produced by the orbital motion of the Moon (the second
term) and a component that depends on the Earth’s rotation
(the third term). The former has already been approximated
as linear for a time scale of a few hours, but the latter is non-
linear on this time scale. The idea behind our experiment is
to measure the dependence of a on z0, from which we deduce
r0. This would be straightforward if we could drop the sec-
ond term in Eq. (7), which we can if the experiment is per-
formed when the Moon is near its perigee or apogee (when
vr¼ 0). In the general case, however, vr 6¼ 0 and we must
resort to a slightly different method.

Although the orbital motion term in Eq. (7) cannot be
neglected, it can be estimated in the following way. Assume
we measure the angular size of the Moon at a pair of times
with the same zenith angle z0, the first (ta) when the Moon is
ascending in the sky and the last (td) when it is descending.
As the zenith angle is the same at both times, the term
describing the Earth’s rotation in Eq. (7) has the same value
and, within our approximations, we get

a�1ðtdÞ � a�1ðtaÞ �
vr

RM

ðtd � taÞ: (8)

Hence, two observations with the same zenith angle will
allow us to estimate the value of vr/RM. Given this value, the
individual values of a can be corrected for the Moon’s orbital
motion to obtain the angular size b that the Moon would
have if it were static at the distance r0:

b�1ðtÞ ¼ a�1ðtÞ � vr

RM

ðt� t0Þ: (9)

Substituting into Eq. (7), we find that

b�1 � r0

RM

� RE

RM

cos z0: (10)

We can now use our observations of a and z0 to derive the de-
pendence of b�1 on cos z0. A linear fit to this relation would
allow us to obtain the value of r0/RE as the ratio between the
intercept and the slope. Two important characteristics of this
method must be noted. First, it is not necessary to measure the
angular radius of the Moon. In fact, the angular size of any
feature in the Moon’s surface can be used instead, as long as it
does not change its projected physical size during the experi-
ment. Second, as the method relies in the ratio of the first and
second terms in the right-hand-side of Eq. (10), the measured
angles can be replaced by any other proportional observables,
such as the linear size of the image of the Moon on the focal
plane of a telescope. The use of actual angles however, allows
for the determination of the radius of the Moon and its instan-
taneous radial velocity as a by-product.

To assess the experimental requirements, it is interesting
to compute the order of magnitude of the effect we want to

Fig. 1. Schematic of the geometry used to determine the Earth-Moon distance.
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measure. The values of three observables must be deter-
mined, the time, the zenith angle, and the angular size of the
Moon. Times are easy to measure, and standard stopwatches
have precisions well below a second for short periods of
times, hence the measurement of times poses no problem in
this experiment. A similar argument applies to the zenith
angle of the Moon, as modern instruments allow us to mea-
sure it with a precision of less than a degree, which is good
enough for our purposes. The measurement of the angular
size of the Moon is then the major source of uncertainties in
the present experiment. Not only it is a small angle, about
0.5�, but what we want to measure is its variation, which is
much smaller. The mean distance between the Moon and the
observer is � 3.84� 105 km, and we want to measure its di-
urnal variation due to the Earth’s rotation, which amounts, at
most, to the Earth’s radius of 6.37� 103 km. Hence, the max-
imum variation of the Moon’s angular size we expect is just
1.5% of this size, or about 0.5 arc min. As we want to track
this variation from near the horizon up to the Moon’s maxi-
mum altitude, we need a resolution at least one order of mag-
nitude better, or about a few arcseconds. Moreover,
differential refraction in the turbulent atmosphere of the
Earth produces random changes in the apparent position of
celestial objects (the so-called “seeing”), which in the case
of the Moon, translates into a random distortion of its disk.
This effect amounts also to a few arcseconds, so it must be
taken into account to obtain meaningful results. These are
the real challenges of the present experiment and the reason
behind the choice of our experimental setup.

III. EXPERIMENTAL SETUP

The goal of the present experiment is to accurately mea-
sure the Moon’s angular size as a function of time and zenith
angle, from its rise to its set. The best choice is to perform
the experiment at full Moon phase, because the Moon is visi-
ble all night long, and its entire disk is illuminated, ensuring
an easy measurement of its radius. The experiment was per-
formed in Buenos Aires, Argentina, on April 6, 2012. The
Moon rose that day at 18h 26m local time (21h 26m UT), and
set the next day at 8h 04m (11h 04m UT), reaching a maxi-
mum altitude of approximately 65�.

The critical constraint of this experiment is to obtain a pre-
cision on the order of 10�3 in the angular size. This con-
straint limited our options, given that we wanted to use a
small telescope and a high-resolution digital camera to image
the Moon and measure its size. We decided to perform the
experiment at the Galileo Galilei Observatory of the
Cristoforo Colombo Italian School of Buenos Aires. The ob-
servatory is equipped with a 203-mm aperture, f/6.3-focal-ra-
tio Meade LX200 Schmidt-Cassegrain telescope, and a
2048� 3072-pixel Canon EOS Digital Rebel XT reflex cam-
era was used to image the Moon. The image of the Moon in
the focal plane of the telescope is about 11 mm in size, which
corresponds to about 1700 pixels of the camera chip and
allows us to almost exploit the full resolution of the camera.
This will result a nominal precision on the order of 0.001 in
the measurement of the Moon’s angular radius, if a 1 pixel
uncertainty is assumed.

The telescope has a motor-driven alt-azimuth mount, and
an on-board computer that performs the tracking of celestial
objects in both axes as they move across the sky. The mount
has a setting circle fixed to its horizontal axis, which allows
a direct measurement of the altitude (the complement of the

zenith angle) of the celestial object at which the telescope is
pointing, up to one-eighth of a degree, a precision high
enough for our purposes. An indirect measurement of the
altitude is given by the computer, determined using the geo-
graphic coordinates of the observatory, the time, and the
coordinates of the object being observed. However, we pre-
ferred the direct measurement as its precision is high enough
for our purposes. A crucial step to obtain a reliable measure-
ment from the setting circles is a careful leveling of the tele-
scope mount, which was accomplished using the bubble
level integrated into the unit.

Given the method described in Sec. II, we used the tele-
scope to image the Moon at a set of different zenith angles
ranging from 16 to 65�, in 5� increments. For each zenith
angle, two sets of images were obtained, one while the Moon
was ascending in the sky and the other, while it was descend-
ing. Each set comprises a sequence of four images, taken one
immediately after another to avoid zenith angle variations.
Taking more than one image allows us to repeat the meas-
urements and average the results to decrease the effect of
image distortions due to atmospheric seeing, thus improving
the precision of the experiment. Although more than four
images per set would have been desirable, this limit was
imposed both by the motion of the Moon and by the size of
the storage memory of the camera. The mean time that the
images were taken was recorded using a standard stopwatch
synchronized to the local time. Before the experiment, the
camera was focused on the Moon (a straightforward task for
a reflex camera and such a bright object), and a set of test
images were taken to determine the best exposure time. A
value of 1/3200-sec exposure at ISO-800 was chosen
because it provided a good contrast of the images and
avoided overexposing the Moon.

The raw outcome of the experiment was therefore 22 sets
of four images of the full Moon at 11 different zenith angles,
and the mean times when the images were taken. We also
took an image of a known stellar field with exactly the same
telescope plus camera configuration so that we could deter-
mine the angular scale of the images and hence be able to
transform linear sizes on the images into angular sizes in the
sky.

IV. DATA ANALYSIS AND RESULTS

Many features of the lunar landscape, such as craters and
mountain chains, are clearly visible in our images. As
pointed out in Sec. II, the angular size corresponding to any
fixed length on the surface of the Moon can be used to mea-
sure its distance. The obvious choice is the Moon radius, but
the distance between two fixed points on the surface, such as
the centers of a pair of craters, can be used as well. Each
choice has its advantages and disadvantages, hence we
decided to use both and then compare the results.

A. Measurement of Moon radius

The measurement of the Moon radius is somewhat tricky
because the limb is not precisely defined in the image. A ra-
dial intensity profile of the Moon disk (Fig. 2) shows a
smooth decline of the intensity at the limb, instead of a sharp
cutoff. This is due to different factors, among them the angu-
lar dependence of the scattering of solar light by the Moon
surface, and atmospheric refraction and extinction. Given
these factors, a physically motivated working hypothesis for
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determining the location of the limb is to use the radius at
which the intensity profile attains its maximum slope, as
shown in Fig. 2. Despite this conceptual problem, the detec-
tion of the position of the limb in the image, defined in this
way, is made easy by digital filtering techniques. Edge-
detection filters that, when convolved with the image, give
the positions where large intensity changes occur, have been
known for many years. Figure 2 shows an example of a
filtered image, computed by applying a standard edge-
detection filter to the original image, using the GNU Image
Manipulation Program (GIMP).13 The abrupt changes from
black to white in the image show the position of the Moon
limb, which can be determined by eye with a precision of
less that 2 pixels due to this extreme contrast. Using the
Smithsonian Astrophysical Observatory DS9 software,
which allows us to draw circles on any image and measure
their centers and radii, we determined by eye the circle pass-
ing as close as possible to the limb position and took its ra-
dius as the Moon radius.

The advantages of this technique are twofold. First, it is
straightforward to understand and apply. And second, com-
pared to any method that relies on the measurement of a sin-
gle radius, this technique reduces the experimental error—
fitting a circle to the limb is equivalent to measuring and
averaging several thousand radii at once, and therefore it is
expected to minimize statistical uncertainties associated with
the measurement of a single radius. The two main sources of

random errors that this technique minimizes are the presence
of mountains and valleys on the limb, and the atmospheric
seeing that randomly distorts the limb shape. These errors
would produce uncertainties on the order of 3–5 arc sec in
the observed Moon radius, large enough to interfere with the
phenomenon we want to measure. The circle-fitting proce-
dure decrease these uncertainties to about 1 arc sec
(see below).

Two sources of systematic errors are also present in our
measurements. The first one is due to the difference between
the equatorial and polar radius of the Moon, which amounts
to �2.6 arc sec. The second source is atmospheric refraction,
which, at low altitudes decreases the vertical radius of the
Moon disk. Using normal refraction formulae,14 we estimate
that the difference between the vertical and horizontal radii
is below 1 arc sec at altitudes greater than 30�, and reaches 3
arc sec at 16� (the lowest Moon altitude of our experiment).
We note here that any of the two sources of systematic errors
could be overcome by fitting ellipses, instead of circles, to
the limb. However, this procedure cannot be used to avoid
both sources together, and it would make the method more
complex without providing a significative improvement in
the results.

To estimate the total uncertainty (random plus systematic)
of our measurements, we began with the best-fit circle and
superimposed additional circles with the same center but
with larger and smaller radii in steps of 0.25 pixels. We then
took the smallest and largest radii that clearly leave the limb
inside or outside the circle, and estimate the error of the
Moon radius as half their difference. The value obtained in
this way was 2 pixels. The average of the radii obtained from
the four images in each set has then a mean uncertainty of 1
pixel. It is important to note that there is no advantage to
using a more powerful fitting technique; the one described
here already gives acceptable precision and it is simple
enough to be easily understood by students.

B. Measurement of crater positions

The second method is based on the measurement of the
positions of two craters in the image. We chose two craters
whose rims are well defined, nearly symmetric (i.e., nearly
circular or elliptical), and as far as possible from each other.
For each crater, a fit of a circle or ellipse was made by eye,
drawing the corresponding curve over the rim using the DS9
software. The center of the two circles was taken as the posi-
tions of the craters, and used to compute their distance. Once
again, with this method, the position of the crater is defined
through several points, hence being less sensitive to random
distortions of the image or variations in the intensity of any
individual point, thus increasing the precision of the mea-
surement. However, it is still affected by the systematic error
due to atmospheric refraction, which in this case is difficult
to estimate. Therefore, given our previous results we
assigned a conservative error of 2 pixels to the values of the
distances between craters. It is important to note that this
method could be affected also by libration of the Moon that
changes the projection of any line in the Moon surface.

C. Results

Either using the craters or the Moon radius, what we are
really measuring is the linear size of an image in the focal
plane of the telescope, in pixels. Although as stated in Sec. II,

Fig. 2. Top: Radial intensity profile of an image of the Moon, showing the

smooth decline in intensity that marks the position of the Moon limb.

Bottom: The same image, processed using an edge-detection filter. The

black ring around the Moon disk shows the position of the maximum slope

of the intensity profile. The high contrast of this ring makes it easy to deter-

mine the position of the limb.
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this is enough for the purpose of determining the Moon dis-
tance, the true measure of the Moon angular radius would give
us the Moon physical radius and radial velocity as by-
products. From elementary optics,15 the image size in pixels
can be translated into an angular size if we know the pixel size
and the focal length of the telescope. However, the Meade
LX200 telescope has a non-standard design that uses a dis-
placement of its primary mirror to focus the image; hence, the
effective focal length is different from its nominal value and
depends on the distance from the camera to the mirror system.
Therefore, we used an empirical method to measure the angu-
lar scale of the images. We took an image of a known, moder-
ately crowded stellar field, and fitted the linear distances (in
pixels) of several pairs of stars in the image to their known
angular distances, determined from their celestial coordinates
taken from the Smithsonian Astrophysical Observatory Star
Catalogue.16 As expected, the relation is consistent with a
straight line. The slope of the best-fit line gives the translation
factor from image sizes in pixels to angular sizes in the sky,
which for our setup is 1.1661 6 0.0004 arc sec/pixel.

The upper panel of Fig. 3 shows the relation between the
inverse of the Moon’s angular radius and the zenith angle,
while the lower panel displays the same relation for the
inverse of the distance between two selected craters. In both
cases, we see that the observed size increases as the zenith
angle decreases, as expected from the effect of the rotation
of the Earth on the observer-Moon distance. Moreover, in
both cases the a-z relation presents two branches, one for the
ascending and the other for the descending Moon. As
explained, this is an effect of the Moon’s radial velocity,
which was not null at the date of our observations. Note also
that the entire variation of the size amounts to only about
1%, as our previous analysis predicted.

As explained in Sec. II, the effect of the Moon’s radial ve-
locity must be removed to be able to determine its distance.
Figure 4 shows the difference between the inverse of the de-
scending and the ascending angular radii of the Moon at the
same zenith angle [Eq. (8)] as a function of the time elapsed
between both observations. Although the errors are large, a

linear trend between these magnitudes is evident, supporting
the approximation we made in Eq. (5). A linear fit of the data,
constrained to have a null intercept, gives the ratio of the ve-
locity of the Moon to its radius, vR=RM ¼ ð1:5760:41Þ
�10�5 s�1. It is important to note that the relative magnitude
of the error is large in part because the Moon happened to be
near perigee on the date of the observation, hence the radial ve-
locity was small. However, the value of the goodness of fit,
v2¼ 1 for 10 degrees of freedom, suggests that the measure-
ment errors might have been overestimated.

The value of vR/RM and its uncertainty is then used to cor-
rect the individual angular radius measurements, as given by
Eq. (9). To do this, we take the time of our first measurement
as t0, hence the resulting Moon distance and radial velocity
correspond to this time. Figure 5 shows the corrected angular
sizes b�1 as a function of the zenith angle of the Moon, both
for the Moon radius and for the distance between craters.
The two branches seen in Fig. 3 have merged in both cases,
indicating that the correction for the orbital motion of the

Fig. 3. Inverse of the angular size of the measured feature as a function of

the zenith angle of the Moon (upper panel: Moon radius; lower panel: dis-

tance between craters). In both cases, the feature size increases as the Moon

approaches the zenith, as expected for the effect of the rotation of the Earth.

The two branches seen in each plot are due to the effect of the Moon’s or-

bital motion.

Fig. 4. Difference in the inverse of the angular radius of the Moon between

the descending and ascending passages by a certain zenith angle, as a func-

tion of the time elapsed between these passages. The dashed line is the best-

fit linear relation with null intercept, while the dotted lines correspond to the

99.7% (3r) confidence region.

Fig. 5. Inverse of the angular size of the measured feature as a function of

the zenith angle of the Moon, corrected for the orbital motion effect (upper

panel: Moon radius; lower panel: distance between craters). The dashed line

is the best linear fit to the data, while the dotted lines represent the 99.7%

(3r) confidence region.
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Moon has been properly applied. The remaining linear trend
is very tight and corresponds to the effect of the Earth’s rota-
tion. A linear fit to the data should then give the distance to
the Moon in terms of the radius of the Earth as the negative
of the ratio of the intercept to the slope. From the Moon
angular radius data, we obtain r0/RE¼ 54.2 6 3.6 or, using
RE¼ 6371 km, r0¼ (3.46 6 0.23)� 105 km. The crater data
result in a lower value of r0/RE¼ 47.6 6 3.6, resulting in
r0¼ (3.04 6 0.23)� 105 km. The meaning of these values
will be discussed in the Sec. V. As the value obtained from
the angular radius measurements is closer to the mean
Earth-Moon distance, we used this one to compute the Moon
radius and radial velocity from the fitted parameters, yielding
RM¼ (1.68 6 0.11)� 103 km and vr¼ (�26.4 6 6.9) m/s.

The results obtained from this experiment have a precision
of within a few percent, which is fairly good for a training
experiment. The Moon distance measured through its angu-
lar radius and the Moon physical radius have a 7% precision,
while the Moon distance measured using the craters has an
8% precision. Only the radial velocity value has a lower pre-
cision of 26%. We attribute this lower precision in part to the
fact that the Moon was near perigee at the date of observa-
tion—having an almost null radial velocity thus requires
extremely precise observations to be measured—and in part
to the measurement method that relies on the difference of
two quantities of similar values, which is prone to cancella-
tion effects with the corresponding loss of significance.

The accuracy of our results is fairly good. The United
States Naval Observatory astronomical data service,17 based
on high-accuracy ephemeris, gives a value of 3.59� 105 km
for the distance to the Moon on April 6, 2012 at 22:50 UT.
Hence, our result from the Moon angular radius is consistent
with the ephemeris value to within 0.6r, or 4%. On the
other hand, the result obtained using the craters,
r0¼ (3.04 6 0.11)� 105 km, has an accuracy of only 15%,
which is poor compared to the former other measurement.
This relative inaccuracy could be attributed to sources of sys-
tematic error not taken into account and which are not pres-
ent in the angular radius measurement. The main candidate
is the Moon libration, which changes the position of the cra-
ters in the disk, and hence the projected size of the line that
joins them. On the other hand, our measurement agrees with
the accepted value of the Moon radius (1737 km)1 to within
0.5r, or 3%.

V. CONCLUSIONS

We present here a simple experiment to measure the in-
stantaneous Earth-Moon distance from a single place on the
surface of the Earth. The experiment, lasting for several
hours, uses a small telescope and a high-resolution digital
camera to track the variations in the Moon’s angular radius
during one night of observations. The raw output of the
experiment is a set of digital images of the Moon, together
with the mean time and zenith angle at which the images
were taken, plus a single image of a stellar field to determine
the angular scale of the images in the sky. The data analysis
is simple, requiring only a personal computer with basic
image processing and data fitting software to determine the
instantaneous distance to the Moon, its physical radius, and
its instantaneous radial velocity. Hence, we believe that this
experiment allows students to gain first-hand insight on the

problem of astronomical distance determination, particularly
on these important astrophysical quantities.

Two crucial features of the present experiment must be
kept in mind to succeed in obtaining useful data. First, the
precision of each measurement must be high (about 0.1%) to
detect the effect of the Earth’s rotation on the distance
between the Moon and the observer. This implies not only a
careful instrumental setup, but also a thorough data analysis,
investigating and quantifying the sources of uncertainties
and taking the necessary steps to minimize their effects.
Second, disentangling the effect of the Moon’s orbital
motion from that of the Earth’s rotation poses a constraint on
the experiment, as the observations must be made in pairs at
the same zenith angle of the Moon. This, together with the
usually varying weather conditions over such a long period
of time, requires a careful planning of the entire experiment,
producing a schedule strict enough to meet the constraint,
but flexible enough to be adapted to the possibly changing
weather. The level of precision and accuracy obtained by us
(7% and 4%, respectively) is a direct consequence of careful
analysis and planning of our experiment. Because of these
features, we believe that the present experiment poses an
interesting challenge to students.
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