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I. INTRODUCTION

Gamma-ray production through pp inelastic collisions
plays an important role in our understanding of both
fundamental physics and high energy astrophysical phe-
nomena. The main source of these γ-rays is the decay of
light mesons, such as π0 → 2γ, η → 2γ, etc. Heavy particles
that are produced through pp inelastic collisions will decay
quickly and produce lots of pions. Therefore, the main
source of γ-rays is the π0 → 2γ decay. In practice, we are
interested in the γ-ray spectrum for a given proton collision
energy. For this we have to know the π0 spectrum for that
specific proton energy and then compute the γ-ray spectrum
using the kinematics of the two-body decay.
The π0 production spectrum is a result of different

hadronic mechanisms that underlie pp inelastic collisions.
Experiments show that for proton kinetic energies Tp <
3 GeV the π0 production is dominated by the baryon
resonance production. At higher energies observations
show that Feynman scaling is violated due to multiple
partonic interactions which lead to an increase of the
particle rapidity distribution plateau. Also at such energies
the diffraction dissociation mechanism becomes important.
This mechanism is responsible for producing large rapidity
gaps in the particle rapidity distribution; it affects the
particle production in the very forward region (i.e. very
high energy secondary particle production) and accounts
for the logarithmic increase of the total cross section.
Different models of pion production were first developed

to explain cosmic ray and low energy accelerator data.
The isobar model, see e.g. Yuan and Lindenbaum [1],
Lindenbaum and Sternheimer [2], was introduced to
describe pion production through a group of baryon
resonances N� and Δ, the most important of which is

the Δð1232Þ baryon. Very close to the kinematic threshold,
pions are produced with very low speeds. As a result, their
spectra are modified due to strong interaction with the final
state particles. This effect of final state interaction (FSI) has
been studied by Watson [3] and Gell-Mann and Watson [4].
Another model that was developed to explain the cosmic

ray data with proton kinetic energies Tp > 5 GeV is the
statistical model or the so-called fireball model, see e.g.
Lewis et al. [5], Fermi [6], Umezawa et al. [7], Heisenberg
[8], Belenkji and Landau [9], Cocconi [10]. This model
considers the formation of an intermediate state, a “hot gas
of pions,” which then decays isotropically by producing
many pions with a quasithermal energy distribution.
For calculations with broader proton energy spectra,

Stecker et al. [11,12] married the isobar and the fireball
models in a single isobar-fireball model. Pion production at
low energies in this model is calculated using the Δð1232Þ
baryon resonance. At higher energies it uses the fireball
model calculations with a smooth connection to the low
energy region.
A different approach was introduced by e.g. Badhwar

et al. [13], Stephens and Badhwar [14] and Tan and Ng
[15]. They did not model pion production, instead, they
fitted the invariant π0 production differential cross section
(Edσ=dp3) using accelerator data. The formula that was
introduced obeyed the scaling hypothesis [16,17]. By
integrating this fit formula one obtains the π0 spectrum
and the γ-ray spectrum. The same approach but in a more
comprehensive way, was later considered by Blattnig et al.
[18]. In the same philosophy Sato et al. [19] introduced a
formula for the γ-ray invariant differential cross section
based on the recent Large Hadron Collider (LHC) data.
Dermer [20] compared the isobar-fireball model and the

scaling formula of Stephens and Badhwar [14], against
accelerator data of π0 production spectra that were available
at that time. It was concluded that the isobar model of*ervin.kafexhiu@mpi‑hd.mpg.de
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Stecker [12] works better at low energies (Tp < 3 GeV),
whereas the scaling model of Stephens and Badhwar [14]
works better at higher energies. Thus, Dermer [20] married
these two models smoothly in an isobar-scaling model.
Nowadays, many phenomenological approaches have

been developed to calculate hadronic interactions in both
perturbative and nonperturbative regimes. Sophisticated
Monte Carlo (MC) codes are developed which handle
complex calculations and predict many quantities that agree
well with experimental data. There are different classes of
MC codes. The general high energy interaction event
generator class, which include both Standard Model and
beyond Standard Model physics, contains codes such as
HERWIG [21], SHERPA [22] and PYTHIA [23,24]. Other
universal codes that include sophisticated high energy
hadronic physics models are e.g. Phojet [25–27],
DPMJET [28] and EPOS [29].
Another class of MC codes are specialized in air shower

simulations. They are concerned about high energy
secondary particle production, reproducing well the
existing accelerator data and extrapolating the results to
the very high energy region. SIBYLL [30–32] and
QGSJET [33–37] are part of this set of codes, which are
used in the CORSIKA extensive air shower simulations
(EAS) code [38].
Calculation of the galactic diffuse γ-ray spectrum using

results of MC codes such as HADRIN [39], FRITIOF [40]
and PYTHIA were done by Mori [41]. Kamae et al. [42]
noticed that previous calculations of the pp → γ-ray
spectrum for an astrophysical environment did not consider
diffractive interaction, Feynman scaling violation and the
logarithmic increase of the inelastic cross section. They
stressed the importance of diffractive dissociation, which is
the source of very high energy γ-rays, and the importance
of the Feynman scaling violation, which increases the γ-ray
yield in the GeV to multi-GeV energy range. Their first
model “Model A” and later the “Readjusted Model A”
[43] included these processes by using PYTHIA 6
event generator for 52.6 GeV ≤ Tp ≤ 512 TeV. For
0.488 GeV ≤ Tp < 52.65 GeV they included calculations
from Blattnig et al. [18] and extended the model to the
resonance region by including two resonances, the
Δð1232Þ and a group of resonances called resð1600Þ,
readjusting their calculations to be accurate below
Tp < 3 GeV. The results of the Readjusted Model A are
given in a parametrized form in Kamae et al. [43].
Kelner et al. [44] used the results of publicly available

codes to find an accurate parametrization of different
secondary particle spectra at high proton energies, with
0.1 TeV ≤ Tp ≤ 105 TeV. With the< 10 GeV component
of astrophysical γ-ray sources becoming probeable by
present and next-generation instruments, the limitations
in energy range of this parametrization are becoming
apparent. Therefore, a parametrization that is both accurate
and that spans from threshold up to very high energies is

needed. Moreover, very hot astrophysical plasma calcu-
lations as well as the increasing sensitivity of the γ-ray
instruments such as Fermi-LAT satellite, which has
recently observed γ-ray spectra that reveal a sub-GeV
bump, require accurate γ-ray production cross sections at
low energies near the pp kinematic threshold.
In the present work, we adopt an approach similar to that

in Kelner et al. [44]. We focus on producing a simple but
accurate parametrization of the γ-ray differential cross
section for a wide range of proton energies. For this, we
combine experimental data of π0 production below Tp ≤
2 GeV and publicly available sophisticated MC codes
which combine theoretical and parametrization driven
models, at higher energies. We thus revise the low energy
π0 production cross section data, and use GEANT 4.10.0
[45,46] parametrization driven models to connect those
experimental data with very high energy models predic-
tions such as PYTHIA, SIBYLL, QGSJET, etc. Since at
very high energies the different models available disagree
with each other, we have picked GEANT 4, PYTHIA 8,
SIBYLL and QGSJET as representatives of their respective
MC model classes.
In this way, we introduce here a simple and accurate

parametrization that spans from the kinematic threshold to
PeV energies and that has the flexibility to switch between
different high energy models. We have applied this para-
metrization to different proton spectra with a wide energy
range and show that the parametrization has a smooth
transition between different energy regions. We have
related the proton and γ-ray spectra parameters and have
fitted these parameters with quite simple functions. We also
discuss the effect of the nuclei on the γ-ray spectrum. We
introduce a practical method to calculate the nuclear
enhancement factor to very high energies and notice that
at low energies this factor loses its meaning. We comment
on the nucleus-nucleus subthreshold π0 production effect
which can produce very efficiently high energy γ-rays for
nuclei with kinetic energy Tp < 0.28 GeV=nucleon.
Although we do not parametrize the spectra of secondary

particles such as muons, electrons, neutrinos and their
antiparticles, their spectra can be derived above a certain
proton energy using the symmetries and ratios that exist
between charged and neutral pion production that are found
experimentally. Hence, one can potentially derive useful
information on other secondary particles using their ratios
with respect to the γ-rays that exist at high energies, as was
shown in Kelner et al. [44].

II. INCLUSIVE π0 PRODUCTION CROSS
SECTION AND MULTIPLICITY

A. Total pp inelastic cross section

The theoretically motivated parametrization of the high
energy pp inelastic cross section has a quadratic functional
form of the logarithm of the proton energy. We take here the
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total and elastic pp cross section data compiled by the
Particle Data Group (PDG) [47]. These data include the
recent measurements at center-of-mass energies

ffiffiffi
s

p ¼ 7
and 8 TeV published by the TOTEM Collaboration at the
LHC [[48,49], see e.g.]. We suggest the following para-
metrization for the pp total inelastic cross section

σinel ¼
�
30.7 − 0.96 log

�
Tp

T th
p

�
þ 0.18log2

�
Tp

T th
p

��

×

�
1 −

�
T th
p

Tp

�
1.9�3

mb: ð1Þ

Here, Tp is the proton kinetic energy in the laboratory
frame, T th

p ¼ 2mπ þm2
π=2mp ≈ 0.2797 GeV is the thresh-

old kinetic energy.mp andmπ are the proton and π0 masses,
respectively. The units that we use throughout are the
natural units (i.e. ℏ ¼ c ¼ kB ¼ 1).
Figure 1 compares the parametrization of the Eq. (1)

against two other parametrizations Kelner et al. [44] and
Kamae et al. [43] often used in astrophysical contexts, as
well as the PDG collection of the observational data [47].

B. Inclusive π0 production cross section
and average multiplicity

To obtain the inclusive π0 production cross section or
average multiplicity, we have used both experimental
data and calculations from MC codes, which are them-
selves tuned to describe experimental data over a given
energy range.
For proton kinetic energies Tp ≤ 2 GeV, π0 production

is dominated by baryon resonance production. The leading
π0 production channels for these energies are pp → ppπ0,
pp → pp2π0 and pp → fpn;Dgπþπ0. Other two-pion

and three-pion channels are negligible. Good quality data
exist for these channels in this energy region, which we
have here compiled. The references to these data are shown
in Tables I–III.
For energies Tp > 2 GeV, we calculated the average π0

production multiplicity using GEANT 4.10.0, PYTHIA
8.18, SIBYLL 2.1 and QGSJET-I. Note that the latest
version of the QGSJET description presently available is
QGSJET-II. We have not run either SIBYLL or QGSJET
codes here, we instead rely on the fits of π0 and η mesons
spectra for both SIBYLL 2.1 and QGSJET-I provided in
Kelner et al. [44], valid for Tp > 100 GeV.
The numerical descriptions we run are those provided in

GEANT 4.10.0 and PYTHIA 8.18. GEANT 4.10.0 is itself
actually a toolkit for the simulation of the passage of
particles through matter. Thus it does not stand in any of the
MC code classes that we described previously. However,
GEANT 4.10.0 contains sophisticate hadronic interaction
models such as FTFP_BERT, that we use here, which
implements Bertini-style cascade at low energies
Tp ≤ 5 GeV. For 4 < Tp ≤ 105 GeV it includes the
FRITIOF string model, see [45,46]. Simulations with
PYTHIA 8.18 are done by using the default PYTHIA
8.18 tune and selecting SoftQCD processes.
In this way, we adopt the GEANT 4.10.0 average π0

production multiplicity to fill in the energy gap between the
experimental data Tp ≤ 2 GeV and the high energy models
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FIG. 1 (color online). The total pp inelastic cross section as a
function of the proton kinetic energy in the laboratory system.
The data points are taken from the PDG [47] cross section data.
The red line is our χ2-fit formula shown in Eq. (1). The dashed
green line is the formula given in Kelner et al. [44] and the dot-
dashed blue line is the formula given in Kamae et al. [43].

TABLE I. References for pp → ppπ0 cross section data for
Tp ∈ ½0.28; 2.2� GeV.
Tp [GeV] σ [mb] Reference

0.28–0.31 ð0.007–5Þ × 10−3 Bondar et al. [50]
0.28–0.33 ð0.3–8Þ × 10−3 Meyer et al. [51]
0.29–0.33 ð0.6–8Þ × 10−3 Meyer et al. [52]
0.31–0.43 0.005–0.155 Bilger et al. [53]
0.33–1.26 0.03–4.87 Shimizu et al. [54]
0.33–1.01 0.08–4.6 Rappenecker et al. [55]
0.397 0.9 El-Samad et al. [56]
0.6–0.86 2.1–4.2 Andreev et al. [57]
0.94 4.48 Ermakov et al. [58]
0.97 3.7 Bugg et al. [59]
1.25, 2.2 3.74, 4.15 Agakishiev et al. [60]

TABLE II. References for pp → pp2π0 cross section data for
Tp ∈ ½0.65; 2.0� GeV.
Tp [GeV] σ [mb] Reference

0.65–0.78 ð0.05–1.68Þ × 10−3 Johanson et al. [61]
0.78–1.36 0.002–0.2 Skorodko et al. [62]
0.99–1.26 0.02–0.12 Shimizu et al. [54]
1.3–1.45 0.16–0.35 Pauly et al. [63]
1.4 0.32 Adlarson et al. [64]
1.48 0.41 Eisner et al. [65]
2.0 0.92 Pickup et al. [66]
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adopted. At high energies, different hadronic models
predictions start to diverge. Thus, at these high energies
we provide the option to adopt the multiplicity from one of
these hadronic models: namely GEANT 4.10.0; PYTHIA
8.18; SIBYLL 2.1 and QGSJET-I.
We have fitted the inclusive π0 production cross sections

and multiplicities from kinematic threshold to very high
energies (Tp ∼ 1 PeV) and parametrized their descriptions.

1. Parametrization of the pp → ppπ0 cross section

An accurate parametrization of the pp → ppπ0 cross
section data from the kinematic threshold to several GeV, is
given by

σ1π ¼ σ0 × η1.95ð1þ ηþ η5Þ × ½fBWð
ffiffiffi
s

p Þ�1.86: ð2Þ

Here, σ0 ¼ 7.66 × 10−3 mb; η ¼ P�
π=mπ , where P�

π is the
maximum pion momentum in the center-of-mass system. η
is given by

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −m2

π − 4m2
pÞ2 − 16m2

πm2
p

q
2mπ

ffiffiffi
s

p : ð3Þ

fBWð
ffiffiffi
s

p Þ is the unitless relativistic Breit-Wigner
distribution,

fBWð
ffiffiffi
s

p Þ ¼ mp × K

ðð ffiffiffi
s

p
−mpÞ2 −M2

resÞ2 þM2
resΓ2

res
;

K ¼
ffiffiffi
8

p
MresΓresγ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

res þ γ
p ;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

resðM2
res þ Γ2

resÞ
q

; ð4Þ

where s ¼ 2mpðTp þ 2mpÞ is the center-of-mass energy
squared. The values of resonance mass and width are
Mres ¼ 1.1883 GeV and Γres ¼ 0.2264 GeV. In Fig. 2 the
parametrization formula of Eq. (2) is compared with the
experimental data in Table I.

It is clear from Fig. 2 that the parametrization given in
Eq. (2) represents better the experimental data especially
near the kinematic threshold. The widely used parametri-
zation given in Dermer [67] around Tp ¼ 0.3 GeV can be
about 70% higher than the data.

2. Inclusive π0 production cross section from
two-pion production channels

As already mentioned above, for Tp ≤ 2 GeV, the
dominant two-pion channels are pp → pp2π0 and
pp → fpn;Dgπþπ0. For our purposes, only the sum of
these two cross section channels is important. Equation (5)
provides a fit formula for the inclusive cross section for the
sum of the two-pion production channels.

σ2π ¼
5.7 mb

1þ exp ð−9.3ðTp − 1.4ÞÞ : ð5Þ

TABLE III. References for pp → fpn;Dgπþπ0 cross section
data for Tp ∈ ½0.73; 2.0� GeV.

pp → pnπþπ0

Tp [GeV] σ [mb] Reference

0.73–0.78 ð0.83–2.29Þ × 10−3 Johanson et al. [61]
1.1 0.284 Skorodko et al. [62]
0.86–1.26 0.02–0.66 Shimizu et al. [54]
1.48 2.37 Eisner et al. [65]
2.0 4.07 Pickup et al. [66]

pp → Dπþπ0
0.86–1.26 0.02–0.33 Shimizu et al. [54]
1.48 0.43 Eisner et al. [65]
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FIG. 2 (color online). Cross section data (see Table I) for the
pp → ppπ0 channel compared with Eq. (2) (top panel). In the
bottom panel we compare data with Eq. (2) and the para-
metrization given in Dermer [67]. Notice that near the kinematic
threshold the parametrization of Dermer [67] can be up to 70%
larger than the data.
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Here, Tp is in GeV and the formula is valid for
0.56 GeV ≤ Tp ≤ 2 GeV. For Tp < 0.56 GeV, σ2π ¼ 0.
Figure 3 compares individual two-pion production

channel data against our parametrizations. The sum of
the two channels against the parametrization in Eq. (5), is
also shown. Tables II and III provide references to the
experimental data for the different two-pion production
channels.

3. Neutral pion production average multiplicity
from GEANT 4.10.0, PYTHIA 8.18,

SIBYLL 2.1 and QGSJET-I

As mentioned, for energies Tp ≥ 2 GeV we use GEANT
4.10.0 to fill the energy gap between the experimental data
and the high energy models. PYTHIA 8.18 is applicable for

Tp > 50 GeV, whereas, SIBYLL 2.1 and QGSJET-I work
for Tp > 100 GeV. Except QGSJET-I which has an aver-
age multiplicity a factor 1.7 times larger at Tp ∼ 100 GeV
compared to other models, the rest of them agree well with
each other for Tp < 1 TeV. We fit here the average π0

multiplicity predicted by all these models.
If Qp ¼ ðTp − T th

p Þ=mp, then the GEANT 4.10.0 aver-
age π0 multiplicity for 1 GeV ≤ Tp < 5 GeV, may be
written as

hnπ0i ¼ −6 × 10−3 þ 0.237Qp − 0.023Q2
p: ð6Þ

Notice that we do not use GEANT 4.10.0 to calculate
multiplicity at energies Tp < 1 GeV. We find that GEANT
4.10.0 over predicts π0 production multiplicity for
Tp < 0.7 GeV.
For energies Tp ≥ 5 GeV, we find that one formula is

sufficient to fit multiplicities with very high accuracy for all
the models. Setting ξp ¼ ðTp − 3 GeVÞ=mp, this formula
takes the form:

hnπ0i ¼ a1ξ
a4
p ½1þ exp ð−a2ξa5p Þ�½1 − exp ð−a3ξ1=4p Þ�: ð7Þ

The coefficients a1–a5 for each model are listed in Table IV.
Figure 4 shows different model multiplicities compared
with the parametrization in Eqs. (6) and (7). The accuracy
of these fits is better than 3% for Tp ≥ 2 GeV.

4. Inclusive π0 production cross section σπ
Our final parametrization for the inclusive π0 production

cross section is a combination of the experimental data
cross sections at low energies, the GEANT 4.10.0 cross
section at intermediate energies and at higher energies one
of the four hadronic models: GEANT 4.10.0, PYTHIA
8.18, SIBYLL 2.1 and QGSJET-I. More specifically, for
proton energies between T th

p ≤ Tp < 2 GeV the π0 pro-
duction cross section is given by σπðTpÞ ¼ σ1π þ σ2π,
where, σ1π and σ2π are given in Eqs. (2) and (5). For
energies between 2 GeV ≤ Tp ≤ T tran

p the cross section is
given by σπðTpÞ ¼ σinelðTpÞ × hnπ0iðTpÞ, where, T tran

p is a
transition energy between GEANT 4.10.0 and other high
energy models, and the average π0 multiplicity is calculated
in Eqs. (6) and (7). If we choose as our high energy model
GEANT 4.10.0, then T tran

p ¼ 105 GeV, which is the highest
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FIG. 3 (color online). The two panels on the top show our fit to
the experimental data given in Tables II and III. Left panel on the
top corresponds to the pp → pp2π0 channel and right panel on
the top to the sum of the pp → pnπþπ0 and pp → Dπþπ0

channels. Experimental data reveal that the pp → pp2π0 cross
section has a dip around Tp ¼ 1 GeV. Our parametrization
of these exclusive channels cross sections is σðTpÞ ¼P

2
i¼1 aið1þ exp ð−biðTp − ciÞÞÞ−1. For the pp → pp2π0 chan-

nel, a1 ¼ 0.88 mb, a2 ¼ 0.023 mb, b1 ¼ b2 ¼ 15 GeV−1 and
c1 ¼ 1.46 GeV, c2 ¼ 0.95 GeV. For the pp → Xπþπ0 channel,
a1 ¼ 3.8 mb, a2 ¼ −0.0075 mb, b1 ¼ 9.6 GeV−1, b2 ¼
2 GeV−1 c1 ¼ 1.35 GeV and c2 ¼ 0.8 GeV. The panel on the
bottom shows the sum of these two-pion production channels
multiplied with their respective multiplicities [i.e. 2 × σðpp →
pp2π0Þ þ σðpp → Xπþπ0Þ]. They are denoted in the figure with
open circles. The full red line is the parametrization given in Eq. (5).
The two-pion channel contributions to the total inclusive π0

production become non-negligible for Tp > 1.2 GeV, thus the
accuracy below this energy is not necessarily important.

TABLE IV. Coefficients a1–a5 of Eq. (7) for GEANT 4.10.0,
PYTHIA 8.18, SIBYLL 2.1 and QGSJET-I. Tp specifies the
proton kinetic energy range for which the fit is valid.

Model Tp [GeV] a1 a2 a3 a4 a5

GEANT 4 ≥5 0.728 0.596 0.491 0.2503 0.117
PYTHIA 8 >50 0.652 0.0016 0.488 0.1928 0.483
SIBYLL 2.1 >100 5.436 0.254 0.072 0.075 0.166
QGSJET-I >100 0.908 0.0009 6.089 0.176 0.448
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working energy of this model. If the chosen high energy
model is instead PYTHIA 8.18, then T tran

p ¼ 50 GeV, and
for Tp > 50 GeV one adopts the PYTHIA 8.18 multiplic-
ities. If the choice at high energies is instead SIBYLL 2.1 or
QGSJET-I, then T tran

p ¼ 100 GeV, and for Tp > 100 GeV
we adopt the multiplicities of the respective model.

Figure 5 compares our low energy σπ values with the
parametrization provided in Ref. [67] and the data from the
HADES Collaboration [60,68,69]. We can conclude that
the Dermer [67] parametrization is missing some features
that the inclusive π0 production cross section has around
1–2 GeV. Differences between the high energy models that
we have used here are also shown in Fig. 5.
As we have mentioned, QGSJET-I predicts a π0 pro-

duction average multiplicity or cross section at Tp ¼
100 GeV, about 1.7 times higher than the other models
considered. Notice also that GEANT 4.10.0 works up to
Tp ¼ 105 GeV, thus, the discrepancies between models are
less than 30% for 103 GeV ≤ Tp ≤ 106 GeV.

III. PARAMETRIZATION OF THE γ-RAY
DIFFERENTIAL CROSS SECTION

We divide the γ-ray differential cross section into two
parts. The fist part is the maximum value AmaxðTpÞ ¼
maxðdσ=dEγÞ that depends only on the proton energy
Tp. The second part is FðTp; EγÞ which describes the
shape of the spectrum and is a function of Tp and γ-ray
energy Eγ. We therefore express the differential cross
section as
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FIG. 4 (color online). The average π0 production multiplicity as a function of proton kinetic energy. GEANT 4.10.0 multiplicity for
1 GeV ≤ Tp < 5 GeV is calculated using the fit formula in Eq. (6), whereas, for Tp ≥ 5 GeV is calculated using fit formula of Eq. (7)
with the appropriate coefficients in Table IV. For PYTHIA 8.18, SIBYLL 2.1 and QGSJET-I the fit formula is Eq. (7) with the
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dσ
dEγ

ðTp; EγÞ ¼ AmaxðTpÞ × FðTp; EγÞ: ð8Þ

The peak AmaxðTpÞ is a function of the pion production
cross section and is fitted separately from FðTp; EγÞ. Let us
define the following variables:

Yγ ¼ Eγ þ
m2

π

4Eγ
; Ymax

γ ¼ Emax
γ þ m2

π

4Emax
γ

;

Xγ ¼
Yγ −mπ

Ymax
γ −mπ

: ð9Þ

Here, Emax
γ is the maximum γ-ray energy allowed by the

kinematics. Let us denote with ECM
π and Emax

πLAB the
maximum π0 total energy in the center-of-mass and
laboratory systems, respectively. Let us further denote with
γCM the Lorentz factor of the center-of-mass system and
γLABπ the maximum π0 Lorentz factor in the laboratory
system. The maximum or minimum γ-ray energy Emax =min

γ

is given by

ECM
π ¼ s − 4m2

p þm2
π

2
ffiffiffi
s

p ;

Emax
πLAB ¼ γCMðECM

π þ PCM
π βCMÞ;

γCM ¼ Tp þ 2mpffiffiffi
s

p ; γLABπ ¼ Emax
πLAB

mπ
;

Emax =min
γ ¼ mπ

2
γLABπ ð1� βLABπ Þ: ð10Þ

Here, PCM
π ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðECM

π Þ2 −m2
π

p
is the pion maximum center-

of-mass momentum, βCM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ−2CM

p
is the center-of-

mass velocity, and βLABπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðγLABπ Þ−2

p
is the pion

maximum velocity in the laboratory system.
The value of Ymax

γ is the same if we replace the maximum
γ-ray energy with the minimum one Emin

γ . The reason being
that Yγ is a symmetric function of Eγ with respect to Eγ ¼
mπ=2 on a logarithmic energy scale. Values of Yγ lie in
Yγ ∈ ½mπ; Ymax

γ �, thus, Xγ ∈ ½0; 1�. It is expected that
FðTp; EγÞ be a function of Yγ , hence, a function of Xγ .
Therefore, the functional shape of FðTp; XγÞ, for a given

proton energy, is defined in the range ½0; 1� × ½0; 1�, which
simplifies the expression of its parametrization.
With very good accuracy FðTp; EγÞ can be parametrized

as

FðTp; EγÞ ¼
ð1 − X

αðTpÞ
γ ÞβðTpÞ

ð1þ Xγ

C ÞγðTpÞ : ð11Þ

Here, κðTpÞ and μðTpÞ are given by Eqs. (14) and (15)
respectively, andC ¼ λ ×mπ=Ymax

γ . Table V lists the values
of λ, αðTpÞ, βðTpÞ and γðTpÞ for different energies and
models.
The peak value Amax on the other hand can be expressed

as follows:

AmaxðTpÞ ¼ b0 ×
σπðTpÞ
Emax
π

∶ for T th
p ≤ Tp < 1 GeV;

AmaxðTpÞ ¼ b1θ
−b2
p exp ðb3log2ðθpÞÞ ×

σπðTpÞ
mp

∶ for Tp ≥ 1 GeV: ð12Þ

Where, θp ¼ Tp=mp, Emax
π is the maximum total π0 energy

in the laboratory frame that is allowed by the kinematics,
see Eq. (10). σπðTpÞ is the inclusive π0 production cross
section as was explained in Sec. II, and b0 − b3 are
constants that depend on the hadronic model.

A. Gamma-ray spectra for Tth
p ≤ Tp < 1 GeV

Good quality π0 spectral data for Tp < 1 GeV exist in
the literature. We have collected these data (see Table VI),
calculated the corresponding γ-ray spectra produced, and
compared these with other models.
Figure 6 shows some of these data as well as our χ2-fit

of them.
Assuming that the π0 spectra in the center-of-mass

system for Tp < 1 GeV is isotropic, one can calculate
the π0 spectra in the laboratory frame (dσπ=dEπ) using its
description in the center-of-mass frame, and subsequently
calculating the γ-ray spectra with the relation

TABLE V. Functions αðTpÞ, βðTpÞ, γðTpÞ and λ coefficients in Eq. (11) for GEANT 4.10.0, PYTHIA 8.18,
SIBYLL 2.1 and QGSJET-I. Functions κðTpÞ and μðTpÞ are given in Eqs. (14) and (15), respectively.

Model Energy [GeV] λ αðTpÞ βðTpÞ γðTpÞ
Experimental data T th

p ≤ Tp < 1 – 1.0 κðTpÞ 0
GEANT 4 1 ≤ Tp ≤ 4 3.00 1.0 μðTpÞ þ 2.45 μðTpÞ þ 1.45
GEANT 4 4 < Tp ≤ 20 3.00 1.0 3

2
μðTpÞ þ 4.95 μðTpÞ þ 1.50

GEANT 4 20 < Tp ≤ 100 3.00 0.5 4.2 1
GEANT 4 Tp > 100 3.00 0.5 4.9 1
PYTHIA 8 Tp > 50 3.50 0.5 4.0 1
SIBYLL 2.1 Tp > 100 3.55 0.5 3.6 1
QGSJET-I Tp > 100 3.55 0.5 4.5 1
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dσ
dEγ

¼ 2 ×
Z

Emax
π

Yγ

dσπ
dEπ

dEπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
π −m2

π

p : ð13Þ

Here, Eπ is the π0 total energy in the laboratory frame, Emax
π

is the maximum total π0 energy in the laboratory frame that
is allowed by the kinematics see Eq. (10), Yγ is given in
Eq. (9) and the factor 2 in front comes from the multiplicity
of γ-rays due to π0 → 2γ decay.
Using a χ2 method, we have fitted these results with

functions presented in Eqs. (11) and (12). We find

b0 ¼ 5.9; κðTpÞ ¼ 3.29 −
1

5
θ−3=2p ð14Þ

where θp ¼ Tp=mp.
Figure 7 shows how well the Amax of Eq. (12), fits the

peak value of the γ-ray spectrum calculated from π0

spectral data. The accuracy of the fit is better than 10%,
as can be seen from the ratio.
Figure 8 shows some examples of the γ-ray production

differential cross section calculated from the experimental
π0 spectrum data and compares them with the low energy
models from Kamae et al. [43], Dermer [67]. Although, the
shape of π0 spectra between data and the Dermer [67]
calculations are very different in the center-of-mass frame,
these differences become less noticeable in the γ-ray
spectra. This testifies to the fact that the γ-ray spectrum
inherits from the π0 production, the multiplicity and the
kinematics of the π0 → 2γ decay. Subsequently, the γ-ray
spectrumwashes out and is less sensitive to the actual shape
of the π0 production spectrum.

B. Gamma-ray spectra from GEANT 4.10.0,
PYTHIA 8.18, SIBYLL 2.1 and QGSJET-I

Employing the functions in Eqs. (11) and (12), we have
fitted the γ-ray production differential cross sections for all
these models. The fitting results are summarized in
Tables VII and V. The function μðTpÞ that is used in
Table V is given in Eq. (15). If q ¼ ðTp − 1 GeVÞ=mp,
then

μðTpÞ ¼
5

4
q

5
4 exp

�
−
5

4
q

�
: ð15Þ

Figure 9 shows the Amax fit calculated using Eq. (12) and
parameters in Table VII compared with the one calculated
from GEANT 4.10.0, PYTHIA 8.18, SIBYLL 2.1 and
QGSJET-I models. As can be seen from the plots, the
accuracy of the fit is better than 15% for 1 ≤ Tp ≤ 5 GeV
and better than 3% for Tp > 5 GeV. It is remarkable to
notice that Amax=σinel, for most of the models, does not have
a strong energy dependence especially for Tp > 100 GeV.
This means that Amax, the peak of the γ-ray spectrum, takes
the same energy dependence, at high energies, as the total
inelastic cross section.

TABLE VI. References for pp → π0 differential cross section
data for Tp ∈ ½0.293; 0.989� GeV.
Tp [GeV] Reference

0.293 AbdEl Samad et al. [70]
0.3 Bondar et al. [50]
0.31–0.425 Zlomańczuk et al. [71]
0.4 El-Samad et al. [56]
0.6–0.86 Andreev et al. [72]
0.8 Comptour et al. [73]
0.97 Bugg et al. [59]
0.989 Sarantsev et al. [74]
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FIG. 6 (color online). Comparison of the center-of-mass system
π0-spectrum between data (open circles), our χ2-fit of the data
(full red line) and the isobar calculations from Dermer [67] (dash
blue line). Our fit of the pion differential cross section is based on
the partial wave expansion and the FSI. This function is a sum of
three terms f1, f2 and f3 which are a function of x ¼ Tπ=Tmax,
where Tπ is the π0 kinetic energy in the center-of-mass system,
while, Tmax is the maximum π0 kinetic energy in the center-of-
mass frame allowed by the kinematics, see Eq. (10). The function

f1 ¼ A1 × x4
ffiffiffiffiffiffi
1−x

p
1−xþB, where B ¼ 1 MeV=Tmax. Function f2 ¼

A2 × xð1 − xÞ and f3 ¼ A3 × x3ð1 − xÞ3=2. A1, A2 and A3 are
fitted using the χ2 method. The pion differential cross section is

given by dσ
dTπ

¼ σπðTpÞ
Tmax

× ðf1 þ f2 þ f3Þ, with σπðTpÞ the π0

inclusive production cross section.
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Figures 10–13 show the GEANT 4.10.0, PYTHIA 8.18,
SIBYLL 2.1 and QGSJET-I γ-ray production differential
cross sections compared with their respective fit formulas
given in Eq. (11) and exponents summarized in Table V.
The accuracy of the fits is better than 20% for GEANT
4.10.0 and PYTHIA 8.18. For SIBYLL 2.1 and QGSJET-I,
the accuracy improves as the proton energy is reduced.

IV. THE EFFECT OF NUCLEUS-NUCLEUS
INTERACTION

Elements heavier than hydrogen, are found in many
astrophysical environments. As a result, it is necessary to
have a formalism to describe the γ-ray production in
nucleus-nucleus interactions. Generally we expect that
the nucleus-nucleus contribution be small compared to
the pp one, because, the abundances of nuclei heavier than
hydrogen are small. Hence, a simplified description of the
nucleus-nucleus interaction is justified.
In the context of Glauber’s multiple scattering theory

[76–78], high energy nucleus-nucleus collisions can be
treated as a sequence of binary nucleon-nucleon scatter-
ings. This simplifies the complicated nucleus-nucleus
scattering into individual nucleon-nucleon ones and
neglects the effects that come with the nuclear medium
and nucleons motion inside the nucleus. Not all the
nucleons, however, participate in the collisions because
nucleons inside the nucleus “eclipse” each other. Therefore,
the inelastic cross section is smaller than the sum of all
binary nucleon-nucleon cross sections. In this picture, the
γ-ray spectrum produced by nucleus-nucleus collisions will
be essentially the same with that of pp, but with an Amax in
Eq. (12), scaled by the nucleus-nucleus inclusive π0

production cross section.
To calculate the nucleus-nucleus inclusive π0 production

cross section, we need the nucleus-nucleus inelastic cross
sections and the π0 average multiplicity. A simple and
accurate model for calculating the average π0 multiplicity,
is the so-called “wounded nucleons” model [79]. This
model assumes that the average meson production multi-
plicity is proportional to the number of nucleons that
underwent at least one inelastic collision during a
nucleus-nucleus interaction. According to this model if
A and B are two nuclei with mass numbers A and B,
respectively, the average π0 multiplicity is hnABπ0i ¼
1
2
wAB × hnπ0i, where wAB is the number of wounded

nucleons and hnπ0i is the average π0 multiplicity for pp
collisions. The factor wAB is given by

wAB ¼ AσpB þ BσpA
σAB

ð16Þ

where, σpA and σpB are the nucleon(proton)-nucleus A or B
inelastic cross sections, and σAB is the A+B inelastic cross
section.
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FIG. 7 (color online). The peak value of the γ-ray produc-
tion differential cross section as a function of proton
kinetic energy. Open circles represent the calculations from
π0-spectrum data; whereas, the line represents our fit function

Amax ¼ 5.9 × σπðTpÞ
Emax
π ðTpÞ. \The accuracy of the fit is better than 10%

as it is seen from the ratio.
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FIG. 8 (color online). Gamma-ray spectrum for different proton
collision energies. The open circles (“Data”) are calculations using
experimental π0 spectra. Full red line is the fit formula in Eq. (14).
Dash blue lines are calculations fromDermer [67]. Dash-dot green
lines are calculations from Kamae et al. [43] fits. Kamae et al. [43]
calculations are valid for Tp ≥ 0.488 GeV and they do not respect
γ-ray kinematic limit. Moreover, they do not satisfy the expected
symmetry with respect to Eγ ¼ mπ=2 that π0 → 2γ decay create.
The ratios are taken with respect to calculations from data and the
accuracy of the fit is better than 20%.
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For the nucleus-nucleus inelastic cross sections, there
exist different phenomenological models and fits of the
experimental data, see e.g.
Bradt and Peters [80], Karol [81], Letaw et al. [82], Kox

et al. [83], qing Shen et al. [84], Webber et al. [85], Sihver
et al. [86], Tripathi et al. [87–89]. This cross section shows
an energy dependence below Tp < 0.2 GeV=nucleon,
above which it approaches the geometrical cross section
and thus, thereafter, it remains constant. At very high
energies though, it is expected that the nucleus-nucleus
cross section increase. Soft-sphere models, for instance,
predict that the nucleus-nucleus cross section will increase
with energy as the logarithm of the pp inelastic cross
section, see e.g. Karol [81].
Based on these considerations we use the parametriza-

tion of Sihver et al. [86] for describing the nucleus-nucleus

cross section. This parametrization is energy independent.
For very high energies (Tp > 103 GeV=nucleon) we
modify this parametrization with a logarithmic term of
the pp inelastic cross section. For completeness we state
here explicitly the formulas adopted for nucleus-nucleus
reaction cross sections, provided in Sihver et al. [86]:

σR ¼ σR0½A1=3
p þ A1=3

t − β0ðA−1=3
p þ A−1=3

t Þ�2; ð17Þ

where, σR0 ¼ πr20 ≈ 58.1 mb with r0 ¼ 1.36 fm. Ap and At

are the projectile and the target mass numbers, respectively.
The coefficient β0 ¼ 2.247 − 0.915ð1þ A−1=3

t Þ if the pro-
jectile is a proton, and β0 ¼ 1.581 − 0.876ðA−1=3

p þ A−1=3
t Þ

for a projectile different from a proton. This formula is
valid for projectile energies Tp ≥ 0.2 GeV and Tp ≥
0.1 GeV=nucleon, for proton and nuclei projectile species,
respectively.
To account for the energy dependence of the cross

section at very high energies, we slightly modify the
formula

σinelðAp; At; TpÞ ¼ σRðAp; AtÞ × GðTpÞ ð18Þ

where, Tp is the projectile kinetic energy per nucleon. For
the function GðTpÞ we assume a simple form
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FIG. 9 (color online). The value of the peak of the γ-ray production differential cross section over the total inelastic cross section
(Amax=σinel) as a function of proton kinetic energy. Open circles give GEANT 4.10.0, PYTHIA 8.18, SIBYLL 2.1 and QGSJET-I
calculations; whereas, the red line is the fit formula of Eq. (12) with coefficients listed in Table VII. As the ratio shows, the accuracy of
the fit is better than 15% for 1 ≤ Tp ≤ 5 GeV and better than 3% for Tp > 5 GeV. It is remarkable that Amax=σinel, for most of the
models, does not have a strong energy dependence especially for Tp > 100 GeV. This means that Amax will have the same energy
dependence, at high energies, as the total inelastic cross section.

TABLE VII. Coefficients b1–b3 in Eq. (12) for GEANT 4.10.0,
PYTHIA 8.18, SIBYLL 2.1 and QGSJET-I.

Model Energy range b1 b2 b3

GEANT 4 1 ≤ Tp < 5 GeV 9.53 0.52 0.054
GEANT 4 Tp ≥ 5 GeV 9.13 0.35 9.7e-3
PYTHIA 8 Tp > 50 GeV 9.06 0.3795 0.01105
SIBYLL 2.1 Tp > 100 GeV 10.77 0.412 0.01264
QGSJET-I Tp > 100 GeV 13.16 0.4419 0.01439
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GðTpÞ ¼ 1þ log

�
max

�
1;
σinelðTpÞ
σinelðT0

pÞ
��

: ð19Þ

σinelðTpÞ is the pp inelastic cross section given in Eq. (1),
and we choose T0

p ¼ 103 GeV as the energy at which
the nucleus-nucleus cross section growth becomes

noticeable. We note that the function GðTpÞ can increase
the nucleus-nucleus cross section by about 50% at ener-
gies Tp ∼ 106 GeV=nucleon.
If we suppose that we haveP projectiles and T targets, the

total γ-ray differential cross sectionwill be the sum fromeach
component. Therefore, if we scale their contributions with
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FIG. 10 (color online). GEANT 4.10.0 γ-ray production differential cross section for some specific proton kinetic energies. The open
circles areGEANT4.10.0calculations;whereas, the full red lines are the fit formula showninEq. (11)ofSec. III,withαðTpÞ,βðTpÞ and γðTpÞ
summarized inTableV. The dash-blue line are calculations fromDermer [67]which are based on the isobarmodel. The dash-dot green line is
theparametrizationgivenbyKamaeetal. [43].The ratiobetween the fit and thecalculationsshowthat the accuracyof the fit isbetter than20%.
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respect to the pp component, we form the so-called nuclear
enhancement factor ϵ. Let us denote with Yi

p ¼ ðni=npÞproj
the number ratio of a given projectile i with respect to the
proton component, and let the Yj

t ¼ ðnj=nHÞtarg be the ratio
by number of a target j with respect to hydrogen in that
medium. The ratio between nucleus-nucleus and pp
inclusive π0 production cross sections is σijπ =σπ ¼
1
2
wijσinelðAi; Aj; TpÞ=σinelðTpÞ ¼ 1

2
ðAiσinelðp; Aj; TpÞþ

Ajσinelðp; Ai; TpÞ=σinelðTpÞ, where Ai and Aj are the
projectile and target mass numbers. σinelðTpÞ is pp inelastic

cross section, whereas, σinelðp; Ai; TpÞ and σinelðp; Aj; TpÞ
are proton-target and proton-projectile inelastic cross sec-
tions, respectively given by Eq. (18). The nuclear enhance-
ment factor is given by

ϵ ¼
XP;T
i;j

Yi
pY

j
t

�
Aiσðp; Aj; TpÞ þ Ajσðp; Ai; TpÞ

2σinel

�
; ð20Þ

where for simplicitywewrite σinelðp; Ai; TpÞ≡ σðp; Ai; TpÞ
and σinelðp; Aj; TpÞ≡ σðp; Aj; TpÞ. When nuclei interact
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FIG. 11 (color online). PYTHIA 8.18 γ-ray production differential cross section for some specific proton kinetic energies. The open
circles are PYTHIA 8.18 calculations, whereas, full red line is the fit formula shown in Eq. (11) with the corresponding αðTpÞ, βðTpÞ
and γðTpÞ listed in Table V. The dash-green line is the fit given in Kamae et al. [43] which works for 0.448 ≤ Tp ≤ 512 TeV. Although
not clearly shown in these plots, the fit provided by Kamae et al. [43] violates the symmetry that π0 → 2γ decay spectra has with respect
to Eγ ¼ mπ=2. It also violates the Emax

γ that is allowed by the kinematics. The ratio between the fit and the calculations shows that the
accuracy of the fit is better than 20%.
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FIG. 12 (color online). SIBYLL 2.1 γ-ray production differential cross section for some specific proton kinetic energies. The open
circles are SIBYLL 2.1 calculations, the full red line is the fit formula shown in Eq. (11) with the corresponding αðTpÞ, βðTpÞ and γðTpÞ
listed in Table Vand the dash green line is the fit given in Kelner et al. [44]. The ratio between the fit and the calculations shows that the
accuracy of the fit is of the order 20%.
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with hydrogen, the pp inelastic cross section will appear
which in principle has a different energy dependence than the
nucleus-nucleus cross section. Thus we separate the con-
tribution that comes when at least one of the interacting
particles is a proton (or hydrogen). Let us denote with

ϵc ¼ 1þ 1

2

XP
i>p

AiYi
p þ

1

2

XT
j>H

AjY
j
t ; ð21Þ

ϵ1 ¼
1

2

XP
i>p

Yi
p
σRðp; AiÞ

σppR
þ 1

2

XT
j>H

Yj
t
σRðp; AjÞ

σppR
; ð22Þ

ϵ2 ¼
XP;T

i;j>p;H

Yi
pY

j
t

�
AiσRðp; AjÞ þ AjσRðp; AiÞ

2σppR

�
: ð23Þ

Where the i > p and j > Hmeans that the index runs over all
other elements except protons and hydrogen as projectile
and targets, respectively. We denoted with σppR ¼ πr2p ¼
10π mb ≈ 31.4 mb the proton geometrical cross section, by
assuming that rp ¼ 1 fm. σRðp; AÞ is the inelastic proton-
nucleus cross sections given in Eq. (17). The nuclear
enhancement factor will be expressed as

ϵðTpÞ ¼ ϵc þ ðϵ1 þ ϵ2Þ ×
σppR × GðTpÞ
σinelðTpÞ

: ð24Þ

The last expression of the nuclear enhancement factor is
very practical. ϵc does not depend on energy and is not
model dependent, i.e. the nucleus-nucleus cross section
model. ϵ1 and ϵ2 are not functions of energy but are model
dependent. The only energy dependent term in the enhance-
ment factor is due to GðTpÞ=σinelðTpÞ which multiplies
ðϵ1 þ ϵ2Þ—if, of course, we assume that abundances
(expressed in energy per nucleon) do not change with
energy. The ratio σinelðTpÞ=σppR is very close to unity
for energies between 10–1000 GeV=nucleon, therefore,
σppR × GðTpÞ=σinelðTpÞ is also close to unity.

The nuclear enhancement factor ϵ enters in the
calculation of the γ-ray differential cross section by
multiplying the maximum Amax → ϵ × Amax, where Amax
is given in Eq. (12).
To illustrate the above formulas, we consider the inter-

action of the primary cosmic rays with the local Galactic
interstellar medium. By following Gaisser and Honda [90],
the ratios of primary cosmic ray fluxes at Tp ¼ 10 GeV=
nucleon for the HðA ¼ 1Þ, HeðA ¼ 4Þ, CNOðA ¼ 14Þ,
Mg-SiðA ¼ 25Þ and FeðA ¼ 56Þ are Yp ¼ 1∶5.51×
10−2∶3.25 × 10−3∶1.61 × 10−3∶3.68 × 10−4. The local
Galactic interstellar medium abundances for HðA ¼ 1Þ,
HeðA ¼ 4Þ, CðA ¼ 12Þ, NðA ¼ 14Þ, OðA ¼ 16Þ,
NeðA ¼ 20Þ, MgðA ¼ 24Þ, SiðA ¼ 28Þ, SðA ¼ 32Þ,
FeðA ¼ 56Þ have Yt¼1∶9.59×10−2∶4.65×10−4∶8.3×
10−5∶8.3×10−4∶1.2×10−4∶3.87×10−5∶3.69×10−5∶1.59×
10−5∶3.25×10−5, see e.g. Meyer [91]
Using Eqs. (21)–(23) we find that ϵc ≈ 1.37, ϵ1 ≈ 0.29

and ϵ2 ≈ 0.1; whereas, ϵ ¼ 1.79 if we choose Tp¼10GeV=
nucleon. Figure 14 shows the energy dependence of the
nuclear enhancement factor ϵðTpÞ. For the sake of com-
parison we have included two more models of p-nucleus
inelastic cross sections which describe the energy depend-
ence at low energies, namely Letaw et al. [82] and Tripathi
et al. [89]. Different authors have estimated the nuclear
enhancement factor at Tp ¼ 10 GeV=nucleon, see
Stephens and Badhwar [14], Dermer [20], Mori [41],
Cavallo and Gould [92], Mori [93]. Mori [93] includes
in addition to p and α the contribution of the cosmic ray
CNO, Mg-Si and Fe nuclei. The cross section of nucleon-
nucleus (or nucleus-nucleus) were calculated using
DPMJET-3. The value of the nuclear enhancement factor
found by this author, which adopted the same abundance
ratios as was done here, is ϵ ¼ 1.84. For comparison, we
find that ϵ ¼ 1.84 using Letaw et al. [82] cross sections,
ϵ ¼ 1.81 using Tripathi et al. [89] cross sections and ϵ ¼
1.79 using Sihver et al. [86] cross sections.
The shape of the γ-ray spectrum due to nucleus-

nucleus interactions is not exactly the same as that
produced through pp interactions. Recently Kachelrieß
et al. [94] have calculated the enhancement factor using
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FIG. 13 (color online). QGSJET-I γ-ray production differential cross section for some specific proton kinetic energies. The open
circles are QGSJET-I calculations, the full red line is the fit formula shown in Eq. (11) with the corresponding αðTpÞ, βðTpÞ and γðTpÞ
listed in Table Vand the dash green line is the QGSJET-II fit calculated using the ppfrag code given in Kachelrieß and Ostapchenko [75].
The ratio between the fit and the calculations shows that the accuracy of the fit is of the order 20%.
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QGSJET-II-04 and EPOS-LHC. They show that the nuclear
enhancement factor does not depend only on the abundan-
ces of the primary nuclei but also on the spectrally averaged
photon energy. The enhancement factor that was found by
these authors, agreed approximately with that of Mori [93],
however, for Eγ > 100 GeV they get larger values.
The Glauber approach does not hold at low energies,

because nucleons motion inside the nucleus as well as
coherent interactions of many nucleons simultaneously
become important. It is interesting to notice that although
pp inelastic collisions do not produce pions below
Tp < 0.28 GeV, nucleus-nucleus interactions can produce
pions efficiently below Tp < 0.28 GeV=nucleon in the so-
called subthreshold meson production, see e.g. Braun-
Munzinger et al. [95], Noll et al. [96], Badal´a et al.
[97], Badal‘a et al. [98], Behnke [99]. This means that the
enhancement factor in Eq. (20) will go to infinity as we
approach the pp kinematic threshold, Tp ≈ 0.28 GeV.
Therefore, the enhancement factor does not have a meaning
at low energies and the γ-ray spectrum should be calculated
separately between pp and nucleus-nucleus (p-nucleus)
collisions.

V. APPLICATIONS

Using the parametrized results provided in the previous
sections, the determination of the resultant γ-ray spectrum
produced through pp interactions with a power-law dis-
tribution of protons is considered. To account for the energy
range of the protons, and their abundance at each energy, an
integral over the proton energy spectra must be carried out,

ΦγðEγÞ ¼ 4πnH

Z
dσ
dEγ

ðTp; EγÞJðTpÞdTp; ð25Þ

where nH is the density of target protons.
For a proton spectrum of the form

JpðppÞ ¼
A
pα
p
exp

�
−
�

pp

pmax
p

�
β
�

ð26Þ

we have investigated the corresponding functional form of
the γ-ray.
Overall, the functional shape of γ-ray spectrum produced

in the 0.01 − 1 GeV energy region depends on the proton
spectral index, α, adopted. For sufficiently large cutoff
energies (pmax

p ≫ 10 GeV), the spectrum obtained consists
of a rising part from threshold to energies ∼ 0.1 GeV,
followed by a subsequent break in the spectrum at this
energy giving rise to a 0.1 GeV bump feature (note, this
feature sits at ∼ 0.1 GeV in the Φγ representation). This
bump feature remains, although becomes somewhat less
pronounced, as the proton spectral slope is hardened (i.e. α
is reduced). At energies above ∼ 10 GeV, the power-
law component of the spectrum becomes well estab-
lished, becoming subsequently harder above an energy
of ∼ 100 GeV, which originates from the growth in the
inelastic cross section, σinel. Generally, neglecting cutoff
effects, this hardening equates to the γ-ray spectral index
decreasing by ∼ 0.04 for each decadal increase in the
photon energy.
We next proceed to focus more closely on the specific

threshold and cutoff regions in the γ-ray spectrum regions.
Both of these “end regions hold potential for providing key
information on the underlying proton spectrum which gave
rise to them.
To investigate the growth of the γ-ray spectrum produced

in the region from threshold up to energies ∼ 1 GeV, we
adopt the parametrization,

ΦγðEγÞ ¼ BEη
γ

�
1þ 2Eγ

mπ

�
−δ

ð27Þ

where B, η, and δ are fit parameters. Using this prescription,
the flux in the threshold energy region, defined by the
energy flux in the range ð10−3 − 1Þ × E2

γΦγð1 GeVÞ, was
found to be accurately described, for all hadronic models,
with an accuracy of better than 5% in all cases.
Furthermore, with this prescription, the low energy
power-law slope, η, was found to be closely related to
the underlying proton spectral slope, α, with the approxi-
mate expressions η ≈ 0.1þ 0.9α and δ ≈ 2η. These results
demonstrate the fact that both the low (Eγ ≪ mπ=2) and
high energy (Eγ ≫ mπ=2) γ-ray spectral slopes reflect that
of the parent proton spectrum, though with differing signs.
Indeed, being built up of symmetric functions as discussed
in Sec. III, the γ-ray spectrumΦγ must itself be a symmetric
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FIG. 14 (color online). The nuclear enhancement factor ϵ as a
function of cosmic ray kinetic energy. For comparison we include
Sihver et al. [86] cross sections and two more cross section
models Letaw et al. [82] and Tripathi et al. [89], which take into
account the energy dependence of p-nucleus inelastic cross
sections at low energies. Broken lines represent ϵ in the case
when GðTpÞ ¼ 1, whereas, the full lines are calculations with
GðTpÞ given in Eq. (19).

KAFEXHIU et al. PHYSICAL REVIEW D 90, 123014 (2014)

123014-14



function about Eγ ¼ mπ=2, which discloses the origin of
the ∼ 0.1 GeV bump feature.
Similar to the above description of the threshold region,

we adopt a parametrization of the γ-ray spectrum produced
from energies above 10 GeV into the cutoff region, of the
form,

ΦγðEγÞ ¼
A0

Eα0
γ

exp

�
−
�

Eγ

Emax
γ

�
β0
�
: ð28Þ

With this prescription, the γ-ray and proton spectrum cutoff
parameters, β0 and β respectively, were found to follow the
relation β0 ¼ aβ=ðβ þ bÞ. This description was found
to provide an accurate description of the cutoff region,
defined by the energy flux in the range ð1 − 10−3Þ×
E2
γΦγð10 GeVÞ, for all hadronic models, with an accuracy

of better than 20% in all cases. A table of a and b best-fit
values for specific proton spectral indices is provided in
Table VIII. The spectrum of secondary γ-rays, therefore,
undergoes a slower cutoff than that of the parent proton
spectrum. Furthermore, a cutoff with β0 > a is never
expected in the secondary γ-ray spectrum, regardless of
the severity of the proton spectrum cutoff.
Additional insight into the nature of the threshold and

cutoff regions is provided through a consideration of the
δ-approximation description. Since different authors adopt
different definitions for approximation, we state explicitly
the procedure adopted here. For this prescription, only
single pion production is considered, with the pion receiv-
ing energy Eπ ¼ KTp, in the lab frame, through a pion
production interaction. We here adopt K ¼ 0.17, as was
motivated in Kelner et al. [44]. The differential cross
section approximation for this description assumes

dσπ
dEπ

¼ σinelðTpÞδðEπ − KTpÞ: ð29Þ

Subsequent to a pion’s production, its isotropic decay gives
rise to a γ-ray spectrum with a top-hat functional form in
Φγ, with the end-points of this function being dictated by
the kinematics described in Eq. (10). With such top-hats
being symmetric about Eγ ¼ mπ=2, the subsequent spec-
trum produced from a power-law distribution of protons

will, as for the full description, itself be symmetric. The
δ-approximation method, therefore, is expected to accu-
rately describe the γ-ray spectrum deep in threshold region.
However, at the high energy end of this region
(Eγ ≈mπ=2), this agreement starts to fail, achieving agree-
ment only within a factor of ∼ 3 at this break energy.
Furthermore, with the δ-approximation description neglect-
ing large K interactions, it predicts a cutoff shape which
closely follows that of the parent proton spectrum. Thus,
the agreement this description achieves in the cutoff region
is very poor. A comparison of the δ-approximation result
with that produced through the full description is shown in
Fig. 15 for a particular example case.

VI. DISCUSSION AND CONCLUSIONS

The aim of this work is to provide a framework of
accurate and simple fitting formulas for the γ-ray spectra
produced in pp inelastic collisions that cover the energy
interval from threshold to very high energies (Tp ∼ 1 PeV),
with the added flexibility to switch between different high
energy models. As space-based γ-ray detectors are begin-
ning to probe theEγ < 100 MeV, improved accuracy of the
pp → γ production cross section at low energies is needed.
As a result we have revised here the low energy π0

production cross section and differential cross section data
below 2 GeV. We use GEANT 4.10.0 for energies above
2 GeV and at high energies, where different hadronic
interaction model descriptions diverge, we have used
GEANT 4.10.0, PYTHIA 8.18, SIBYLL 2.1 and
QGSJET-I. Different validations of the MC codes against
the π0 and γ-ray experimental data at the LHC energies (see

TABLE VIII. Table of a and b fit parameters for different
proton spectral index values, α.

GEANT PYTHIA SIBYLL QGSJET

α a b a b a b a b

1.5 1.0 1.0 1.1 1.2 1.2 1.2 1.1 1.1
1.75 1.1 1.1 1.2 1.3 1.3 1.3 1.2 1.2
2.0 1.3 1.1 1.4 1.4 1.5 1.4 1.3 1.3
2.25 1.4 1.2 1.5 1.5 1.6 1.4 1.4 1.3
2.5 1.5 1.1 1.7 1.7 1.7 1.5 1.5 1.4
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FIG. 15 (color online). An archetypal spectral plot (black line)
demonstrating the quality of fits to both the “threshold” (red
dotted-line region on left of the plot) and “cutoff” (green dotted-
line region on right of the plot) regions. The model parameters
adopted are α ¼ 2.0, β ¼ 1.0 and pmax

p ¼ 104 GeV. The blue
dash-dot-line is the same result including the nuclear enhance-
ment factor calculated in Sec. IV. The magenta dashed-line shows
the equivalent result adopting the δ-approximation (no enhance-
ment factor).

PARAMETRIZATION OF GAMMA-RAY PRODUCTION … PHYSICAL REVIEW D 90, 123014 (2014)

123014-15



e.g. d’Enterria et al. [100], Adriani et al. [101,102], Menjo
et al. [103]) show that none of the MC models is able to
explain fully all the available experimental data. It is for this
reason that we parametrize different models which are
representative of different descriptions of hadronic inter-
actions. Note that the latest version of QGSJET in the
CORSIKA code is QGSJET-II. In the present work,
however, we do not run the CORSIKA code. We use here
the fits of π0 and η spectra for both SIBYLL 2.1 and
QGSJET-I provided in Kelner et al. [44]. Despite this, we
have good reason to believe that the parametrization
provided here can fit well the spectra of other MC codes
that were not considered.
Recently the TOTEM Collaboration at the LHC has

measured the pp inelastic cross section at
ffiffiffi
s

p ¼ 7 and
8 TeV. The widely used parametrizations for this cross
section in astrophysics e.g. Kamae et al. [43] and Kelner
et al. [44], do not fit well these two data points. Therefore,
here we give a parametrization of the pp inelastic cross
section that fits well both the low energy as well as new
high energy LHC data.
The inclusive π0 production cross section that we have

suggested here, is composed of fits of the experimental one-
pion and two-pion production data and fits from GEANT
4.10.0 π0 production multiplicity. At very high energies we
have fitted separately the π0 production multiplicity from
GEANT 4.10.0, PYTHIA 8.18, SIBYLL 2.1 and QGSJET-
I. All these fits have an accuracy better than 3% for proton
energy T th

p ≤ Tp ≤ 1 PeV. It is very likely that this para-
metrization continues to accurately describe the inclusive
π0 production cross section above 1 PeV.
By comparing another widely used low energy para-

metrization by Dermer [67] with the experimental π0

production cross section data near the kinematic threshold
(around Tp ¼ 0.3 GeV), we show that this parametrization
is 70%–80% higher than the data. Furthermore, we high-
light that it fails to describe some of the features around
1–2 GeV, being at least 20% higher than the inclusive cross
section data around 1.25 GeV provided by Agakishiev
et al. [69].
The γ-ray production differential cross section is divided

into two parts. One part is the value at the peak of the
differential cross section (i.e. the value at Eγ ¼ mπ=2),
which is only a function of proton energy, namely
AmaxðTpÞ. The second part is the shape of the spectrum
and is a function of γ-ray and proton energies FðTp; EγÞ.
This division turns out to be useful since it simplifies the
fitting of each part. The AmaxðTpÞ for instance, can be
composed into the inclusive π0 production cross section
and a relatively simple function of proton energy, as it is
shown in Eq. (12). The shape of the spectrum FðTp; EγÞ, on
the other hand, expressed in terms of the variable Xγ

defined in Eq. (9), simplifies the fitting function. As is
shown in Eq. (11), FðTp; XγÞ is a function defined in the
range ½0; 1� × ½0; 1� for a given proton energy. Its

denominator ð1þ Xγ

C ÞγðTpÞ is responsible for the shape near
Eγ ¼ mπ=2, whereas the numerator ð1 − XγÞβðTpÞ or
ð1 − ffiffiffiffiffiffi

Xγ

p Þβ¼const is responsible for the shape near the
kinematic limit Eγ ¼ Emax

γ .
The accuracy of the AmaxðTpÞ is better than 15% at

energies Tp < 5 GeV and better than 3% at higher ener-
gies. It is remarkable to notice that AmaxðTpÞ=σinel for
Tp > 10 GeV has a very weak energy dependence, thus,
AmaxðTpÞ mimics the σinel.
The accuracy of the γ-ray production differential cross

section dσ=dEγ ¼ Amax × FðTp; EγÞ is better than 20%,
see Figs. 10–13. As the proton energy increases, the γ-ray
spectrum becomes wider and the “distance” between Eγ ¼
mπ=2 and Eγ ¼ Emax

γ becomes larger. As a result, at very
high energies, the accuracy of the fit for mπ=2 ≪ Eγ ≪
Emax
γ is 20% or worse as can be seen for the case of

SIBYLL 2.1 and QGSJET-I.
The γ-ray spectra for T th

p ≤ Tp < 1 GeV is calculated
using experimental π0 spectral data. Although, the shape of
the π0 spectra between experimental data and Stecker [12]
or Dermer [67] isobaric model calculations are very differ-
ent in the center-of-mass frame, these differences in the
γ-ray spectra are less noticeable. The δ-approximation
introduced at higher energies by Aharonian and Atoyan
[104] (see Sec. V) is another example where the π0 spectral
shape itself does not play a large role. This quality of the
γ-ray spectrum is evidence that the π0 multiplicity and the
kinematics of the π0 → 2γ decay play the greatest
contribution.
We observe that the γ-ray spectrum parametrization

provided in Kamae et al. [43], does not satisfy the expected
kinematic limit at certain proton energies, with the spec-
trum going substantially beyond the Eγ ¼ Emax

γ limit. A
second unphysical feature of this parametrization is that the
γ-ray spectrum is not symmetric with respect to Eγ ¼ mπ=2
in the logðEγÞ axis, which is expected from the kinematics
of π0 → 2γ decay.
In real astrophysical environments hydrogen is not the

only element present; thus, π0 production due to nucleus-
nucleus interaction must be included. Traditionally, the
nuclear effect has been embedded in the nuclear enhance-
ment factor. This factor however, is meaningful only if
the energy of the nuclei is much higher than
0.28 GeV=nucleon. For completeness we have shown
explicitly how to calculate this factor using the Glauber
theory and the wounded nucleon model as well as using
inelastic nucleus-nucleus cross sections from Sihver et al.
[86] with a modification that accounts for the increasing of
this cross section at very high energies. At low energies
Tp < 1 GeV=nucleon the pp contribution to the γ-ray
spectrum decreases. Nucleus-nucleus interaction on the
other hand can still produce π0s at this energies very
efficiently even when Tp < 0.28 GeV=nucleon through the
subthreshold meson production effect. At such energies the
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nuclear enhancement factor increases and goes to infinity
as we approach Tp ¼ 0.28 GeV=nucleon beyond which
this factor becomes completely meaningless and the con-
tribution of nucleus-nucleus in the γ-ray spectrum should
be calculated separately. Furthermore, the Glauber multi-
scattering theory is also expected to break down at these
energies due to the internal motion of the nucleons inside
the nucleus and the coherent interaction between groups of
nucleons from projectile and target nuclei becoming
important.
The parametrization that we described here is applied to

different proton spectra, see Eq. (26). Simple fits and
relations are found between proton and γ-ray spectral
parameters. Generally, by neglecting the cutoff effect,
the power-law part of the γ-ray spectrum is hardened by
4% each decadal increase in γ-ray energy. For the energy
region from threshold up to 1 GeV the spectrum can be
fitted accurately with a very simple function shown in
Eq. (27). The parameters η and δ of the Eq. (27), are closely
related to the power-law index α of the proton spectrum as
follows: η ≈ 0.1þ 0.9α and δ ≈ 2η. Near the cutoff region
the γ-ray spectrum can be fitted with the function shown in
Eq. (28). The β0 parameter of the γ-ray spectrum cutoff is
related to the β parameter of the proton spectrum cutoff by
β0 ¼ aβ=ðβ þ bÞ, where a and b are fitting parameters and
are functions of the proton power-law index α and their
relation is provided in a tabular form in Table VIII.
Recent study by Carlson and Profumo [105] of the γ-ray

spectrum due to π0 production from the galactic cosmic
rays, have combined the model from Dermer [20] near
threshold and interpolates it to Kachelrieß and Ostapchenko
[75] model at very high energies. By using the parametri-
zation provided here, we have recreated Carlson and
Profumo [105] power-law and broken power-law proton
spectra calculations. We find that in case of the power-law
proton spectrum, our γ-ray spectrum peaks around
Eγ ≈ 0.4 GeV; whereas, the γ-ray spectrum from Carlson
and Profumo [105] has a plateau-like between 0.3 < Eγ <
1 GeV which is about 10% lower than our γ-ray spectrum
peak. For energies between 1 ≤ Eγ ≤ 10 GeV, Carlson and
Profumo [105] γ-ray spectrum is higher than our spectrum
with the maximum difference about 30% at Eγ ≈ 1 GeV. At
higher energies the two spectra are comparable. For the
broken power-law case the two spectra are comparable
except for energies between 0.2 < Eγ < 1 GeV, where the
Carlson and Profumo [105] γ-ray spectrum is lower than our
spectrum. The largest difference is about 40%–45% around
Eγ ≈ 0.4 GeV.
Lastly, it is possible that one can use the γ-ray spectra to

gain information on other secondary particles such are
muons, electrons, neutrinos, and their antiparticles. This is

possible due to the relations that exist between charged and
neutral pion production cross sections far from the pp
kinematic threshold. Therefore, by using the production
cross section ratios between γ-rays and other secondary
particles that are described e.g. in Kelner et al. [44], one can
potentially apply this information to our results to obtain
the secondary spectra of other particles also.

VII. SUMMARY

In this work we combined experimental data on the
pp → π0 production below 2 GeV and results from
publicly available Monte Carlo codes at higher energies,
to parametrize the γ-ray spectrum due to inelastic pp
collisions. This parametrization is accurate (≤ 20%), and
spans from the pp kinematic threshold to 1 PeV proton
energy, and provides flexibility to switch between different
high energy models. We provide this parametrization in the
form of a computer library in [106].
We have introduced a practical way to calculate the

nuclear enhancement factor at high energies and we show
that this factor increases for Tp < 2 GeV=nucleon and
eventually becomes meaningless as we approach pp
kinematic threshold Tp ∼ 0.28 GeV=nucleon. At this point
nucleus-nucleus continues to efficiently produce π0 for
Tp < 0.28 GeV=nucleon through the subthreshold meson
production effect.
We have applied our parametrization to different proton

spectra and related γ-ray and proton spectral parameters.
Fitting formulas were found which provided a simple
relation between the two spectra parameters.
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