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A study on the spatial organization and velocity fluctuations of non-Brownian spher-
ical particles settling at low Reynolds number in a vertical Hele-Shaw cell is reported.
The particle volume fraction ranged from 0.005 to 0.05, while the distance between
cell plates ranged from 5 to 15 times the particle radius. Particle tracking revealed that
particles were not uniformly distributed in space but assembled in transient settling
clusters. The population distribution of these clusters followed an exponential law.
The measured velocity fluctuations are in agreement with that predicted theoretically
for spherical clusters, from the balance between the apparent weight and the drag
force. This result suggests that particle clustering, more than a spatial distribution of
particles derived from random and independent events, is at the origin of the velocity
fluctuations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948989]

I. INTRODUCTION

Particulate flows are of importance in many industrial and environmental applications and
subsequently are subject of research nowadays. Though an apparently simple problem, the settling
at low Reynolds number of mono-disperse macroscopic solid particles in a Newtonian fluid is not
completely understood. Due to the long range nature of hydrodynamics interactions, the velocity
disturbance caused by the motion of a particle decays as slowly as 1/r (with r the distance from the
particle center). In the case of the simultaneous settling of several particles, the resulting many-body
interactions lead to complex trajectories.

Indeed, in absence of inertia and in an unconfined Newtonian fluid, one isolated particle settles
at the Stokes velocity US =

2
9
ρp−ρ f

η
g a2, where ρp, ρ f , η, g, and a are, respectively, the particles

density, the fluid density, the fluid viscosity, the acceleration due to gravity, and the radius of the
particles. For a suspension of spheres of volume fraction φ, randomly and independently dispersed
in a Newtonian fluid, Batchelor1 calculated a correction to the first order in φ, with average settling
velocity Vsed = US (1 − 6.55φ). However, for confined suspensions of volume fraction larger than a
few percents, there is no theoretical model available, and Vsed is often described using the empirical
correlation2 Vsed = US f (φ), where f (φ) = (1 − φ)n (n ∈ [2,5.5], depending of the Reynolds num-
ber) is the hindrance function that exists due to the presence of a bottom boundary and also to the
hydrodynamic interactions among particles.

Due to these hydrodynamic interactions, the settling velocity is constant only in average, and
it fluctuates both spatially and temporally. The standard deviation of the measured particle veloc-
ities ∆V increases with the particle volume fraction up to φ ≃ 0.4 before decreasing due to steric
effects.3–5 For φ . 0.05 most of the experimental studies4–6 reported ∆V ∝ Vsed φ

1/3. These velocity
fluctuations are attributed to the permanent evolution of the suspension microstructure: the local
volume fraction of the suspension is higher in some regions, and, in those, particles settle faster
than the average settling velocity, which in turn, due to the hydrodynamic interactions, modifies the
microstructure of the suspension. Assuming a uniform random spatial distribution of the particles,
numerical and theoretical studies7–9 predicted an unrestricted increase of the standard deviation of
the velocity fluctuations ∆V with the vessel size, while Koch and Shaqfeh10 found a single particle
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spatial distribution that prevents the divergence of ∆V . However, velocity fluctuations measured
experimentally did not diverge with the size of the vessel. Although, at early times, large-scale fluc-
tuations of size comparable to that of the vessel width were observed, PIV measurements spanning
that dimension of the vessel showed that these fluctuations are transient. In the steady-state regime,
which is achieved 500 Stokes times tS = a/US after the beginning of the sedimentation,4 the spatial
scale of the fluctuation is lc ≃ 20 a φ−1/3. In the same way, the spatial particle occupancy distribu-
tion was found to follow a Poisson law11 at early times but deviates from a Poisson distribution in
the steady-state regime.11,12 For confined suspensions, the size of the vessel has an influence ∆V for
vessel widths6 W ≤ lc with ∆V ∝ φ1/2 and for vessel thicknesses13,14 L ≤ 2 a φ−1/3, ∆V scales as
L1/3, according to a numerical study.15 Finally, for suspensions confined in capillary tubes, a recent
study16 reported an average settling velocity larger than US.

In this paper, we investigate how the spatial distribution of the particles affects the velocity
fluctuations. Instead of analyzing particle occupancy in a fixed size window,11,12 we studied the way
individual particles assemble in groups (or “clusters”), which may contribute to an increase of the
local density, which in turn should impact velocity fluctuations. The assembly of particles in clus-
ters was characterized by studying the cluster population distribution, i.e., the probability density
function of observing a cluster of N particles, and of its statistical moments (average, variance),
as a function of the volume fraction φ and of the ratio L/a between the cell thickness L and the
radius of the particles a. The paper is organized as follows: the experimental setup, methodology,
and data processing are described in Section II. Results are presented in Section III, first describing
the statistical properties of the cluster population Sec. III A, then analyzing how these properties
influence the velocity fluctuations Sec. III B. Conclusions are discussed in Section IV.

II. EXPERIMENTAL SETUP

The Hele-Shaw cell (Fig. 1(a)), set vertically, consisted of two 1 cm-thick parallel glass plates
of 20 × 15 cm, separated by two mylar spacers of 20 × 1.5 cm, located along the two vertical sides
of the cell. Mylar thicknesses L = 100 ± 1,180 ± 1, 250 ± 1, and 300 ± 1 µm have been used to pro-
vide separation between plates L/a = 5,9,12.5, and 15. Two perforated parallelepiped plexiglass
pieces, with one and two milled holes, respectively, were glued to the bottom and top sides of the
cell. The bottom hole was connected to the injection syringe, whereas the top holes were connected
to the purge reservoir for drainage. To avoid the presence of microscopic air bubbles after the

g

FIG. 1. (a) Scheme of the experimental device and setup. (b) and (c) Diameter and circularity characterizations of the
polystyrene particles used in the experiments. Solid line in (b) is a gaussian fit.
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cell filling, all cells were saturated with CO2 prior to suspension injection. Finally, to circumvent
Boycott effects,17 great attention has been paid to the verticality of the cell, which was controlled
with an uncertainty of 0.3◦. Suspensions of volume fraction φ ∈ [0.005,0.05] were prepared by
adding spherical polystyrene particles, of density ρp = 1.05 g cm−3 and average radius a = 20 µm,
to distilled water, of density ρ f = 0.998 g cm−3 at 20 ◦C. A small amount of SDS surfactant has
been added to the mixture to reduce surface tension in the solid-liquid interface. Characterizations
of the diameter and sphericity of the particles were performed using a Morphology G3 equipment
(from Malvern Instrument) and are displayed on Figs. 1(b) and 1(c). As one can see, the standard
deviation is approximately 1 µm for an average diameter 2 a = 40.5 µm, and less than 1% of the
particles have a circularity (ratio of the two axes of the ellipse which best fits the perimeter of the
particles) below 0.99. Suspensions were stirred and then transferred to the injection syringe that was
held always vertical to minimize deposition of particles. Then, the suspension was injected into the
cell. Finally, once the suspension saturated the cell, valves were closed and the suspension settles
freely. This procedure took approximatively 5 s which corresponds to 10 Stokes time tS = a/US,
largely below the duration of the transient regime (≈500 tS).

The motion of the particles was captured using a 8-bit CCD camera, located 20 cm from the
cell, with its optical axis perpendicular to the cell plates. The imaging window, situated in the
middle of the Hele-Shaw cell, was 2.7 mm width by 3.6 mm high. The depth-of-field allowed one
to visualize particles all across the cell thickness (e.g.,) Fig. 2(a)). The positions of the particle
centers were detected using a Hough transformation with an uncertainty of less than one pixel (or
1/8 particle diameters). However, if two particles are separated by a distance shorter than 1.5a, the
Hough transform technique used is not capable of detecting both of them. Stacks of 300 images,
captured with a time interval δt = 0.2 s between images, were used to obtain particles trajectories,
with a minimal total square displacement rule, and their velocities, using a second order scheme.
For each experiment, five stacks were recorded with a time interval δT = 600 s between them, to
improve statistics. Finally, to avoid any transient effects, the first stack is acquired 600 tS (264 s)
after the beginning of the sedimentation.

III. RESULTS AND DISCUSSION

A. Cluster population analysis

The number of the detected particles npart in the imaging window was approximately constant
in time. Within a stack, the standard deviation of npart divided by its average was ∆(npart)/⟨npart⟩

FIG. 2. (a) A zone of the imaging window as captured by the camera for L/a = 12.5, φ = 0.03, t = 1800 s. (b) Radial
pair correlation function g (r/a) where r is the distance between particle centers (measured in the x–z plane of (a),
as viewed by the camera) and made dimensionless with the particle radius a. The data series are displaced vertically
by 0.5 for easier visualization. Top solid line: L/a = 15, φ = 0.03. Mid-solid line: L/a = 12.5, φ = 0.03. Bottom solid
line: L/a = 9, φ = 0.05. Dotted lines: Pair correlation function calculated numerically for a random configuration of
non-overlapping spheres, situated independently, and following a uniform distribution, for the same values of L/a and φ

than the corresponding solid lines.
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. 0.02, while ∆(npart)/⟨npart⟩ . 0.05 when considering the five acquired stacks. These fluctuations
of the number of particles might be considered negligible, and subsequently, the particle volume
fraction φ was approximately constant during the sedimentation. Despite the steadiness of the
average volume fraction φ at the scale of the imaging window in time, Fig. 2(a) evidences that,
as already reported,11,12,18 the spatial distribution of the particles might not be homogeneous. As a
first step to characterize this distribution, the pair correlation function g(r/a) was computed for the
particle positions as detected by the camera. This function represents the probability of finding the
center of a particle at a dimensionless distance r/a away from a given reference particle. Figure 2(b)
displays in continuous lines the experimental g(r/a) for different φ and L/a combinations. For
the same L/a and φ combinations, in dashed lines it is shown the g(r/a) calculated numerically
for a random configuration of particles, situated independently, and following a uniform spatial
distribution (except for the hard sphere excluded volume). In all cases, the g(r/a) for a uniform
distribution shows no evident structure. In contrast, the g(r/a) for the experiments presents a well
defined peak near r/a ≃ 2.2, and some second order structure, independently of φ. This reveals an
existing microstructure in the settling suspension. The non-null value of g(r/a) for r/a < 2, which
might suggest the overlapping of particles, is in fact due to the projection of the actual 3D particle
configuration in the (x, z) plane, as detected by the camera. The peak near r/a ≃ 2.2 implies that a
significant fraction of the particles settle side by side: during the sedimentation, particles were not
isolated but assemble into clusters, with their centers likely to be 2.2a away from each other. Within
these clusters, the fluid should have roughly the same velocity as the particles. The presence of a
peak at r/a ≃ 2.2 has already been reported, using MRI techniques, for a macroscopic suspension
settling in a large cell.19 Besides, clusters are also clearly visible on Fig. 4 of the study of Bergoug-
noux and Guazzelli,12 which shows the location of particle centers during the sedimentation of a
suspension of glass spheres with a = 75 µm and φ = 0.003.

Clusters were detected “neighbour by neighbour,” i.e., all the particles with centers closer than
rc/a = 2.2 from a reference particle were searched recursively. Once all the particles in a given
cluster were identified, it was verified that no one was counted more than once. This procedure
allowed one to sort all the particles in sets of clusters of N particles. For completeness, isolated
particles were considered as a cluster with N = 1. In the following, we analyse the population
distribution P(N) of the clusters as function of φ and of L/a.

It should be noted that the clusters were identified on the acquired images, in which the real
3D particle spatial configuration was projected in the x–z plane by the camera. This causes the
measured distances between particles to be smaller than the real ones. The projection error in such
a measurement increases as L/a increases (would be non-existent for L/a = 2 because all particles
would lay in the x–z plane with perfect match between real and projected configurations). This
projection error may lead to an overestimation of the number N of the particles in a cluster. While
this error cannot be calculated directly, because it depends in the actual 3D spatial configuration of
the particles, which is unknown, an upper bound for it was estimated as 0.15 (15% relative error)
for L/a = 15 (the largest L/a ratio in the experiments). The error decreases with decreasing L/a.
Details of this estimation are provided in the Appendix.

For a given combination of φ and L/a, the number of clusters made of N particles decreases
with N . This behavior is illustrated on Fig. 3(a), which displays, for φ = 0.053 and L/a = 15, the
number of clusters NClusters of N particles as a function of N . Once normalized, this distribution
corresponds to the probability density function P(N) of cluster population. P(N) is displayed in the
inset of Fig. 3(a) as a function of N in a semilog scale. As one can see, P(N) is rather well fitted
with an exponential law (solid line) P(N) = (1/⟨N⟩) exp (−N/⟨N⟩), where ⟨N⟩ is the average of
P(N).

One should note that if the probability that a particle belongs to a given cluster is independent
of the population of the latter, this would lead P(N) to follow a Poisson law. The dashed line on
the inset of Fig. 3(a), which represents this law, shows that this hypothesis is not verified in our
experiments. This is confirmed by the evolution of the standard deviation ∆N as a function of ⟨N⟩,
displayed on Fig. 3(b) for L/a = 5, 9, 12.5, and 15 and for 0.005 ≤ φ ≤ 0.05. The data collapse
onto a single curve, and for large enough ⟨N⟩ (⟨N⟩ & 1.5) ∆N = ⟨N⟩ − 0.5, in agreement with P(N)
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FIG. 3. (a) Histogram showing the number NCluster of clusters of N particles, for φ = 0.053 and L/a = 15. In the inset:
Probability density function P(N ) of the cluster population N . (blue square) P(N ) in semi-logarithmic scale and (black
solid line) exponential law P(N )= (1/⟨N ⟩)exp(−N/⟨N ⟩), while (dashed line) corresponds to a Poisson distribution
P(N )= exp(−⟨N ⟩) ⟨N ⟩N/N !. (b) Evolution of the standard deviation ∆N as a function of the average cluster population
⟨N ⟩. (blue square) L/a = 15, (green triangledown) L/a = 12.5, (magenta star) L/a = 9, and (red lozenge) L/a = 5. Solid
line, black solid line corresponds to ∆N = ⟨N ⟩−0.5.

following an exponential law. However, for ⟨N⟩ . 1.5 (roughly isolated particles), we observe a
small departure from this linear relation.

B. Velocity fluctuations

The velocity fluctuations were characterized by the standard deviation of the particle veloc-
ities normalized by their average. These magnitudes were calculated over all the particles in
the last 299 images of each stack. The velocity fluctuations obtained in this way for the five
different stacks captured in each experiment were in agreement within a 10% variation and, in
the following, ∆V/Vsed corresponds to an average over the five stacks. The relatively small vari-
ation of ∆V/Vsed over the different stacks confirms that, in the steady-state regime,4,11 the ve-
locity fluctuations have no significant evolution during the sedimentation. Figure 4(a) displays
∆V/Vsed in logarithmic scale, as a function of φ for the four values of L/a studied. For all L/a,
∆Vz/Vsed ≃ αφ1/3, in agreement with previous studies5 and a theoretical prediction that accounts
for the presence of confining walls.13 Indeed, for L/a ≥ 9 the volume fraction was large enough,
φ ≥ φ∗ (φ∗ . 0.008, 0.004, and 0.0023 for L/a = 9,12.5, and 15, respectively) so that particles
interact with each other more than with the walls. It has to be noted that this trend exists even

FIG. 4. Velocity fluctuations ∆V /Vsed as a function of φ (a), and as a function of the standard deviation of N 2/3 (b). (blue
square) L/a = 15, (green triangledown) L/a = 12.5, (magenta star) L/a = 9 and (red lozenge) L/a = 5. (blue dotted-dashed
line), (green solid line), (magenta dotted line), and (red dashed line) correspond, respectively, to best fits over (blue
square), (green triangledown), (magenta star), and (red lozenge) with the expression ∆V /Vsed=α×φ1/3. These fits yield
α = 1,1.5,1.8, and 2. The solid line in (b) is ∆V /Vsed= 0.86∆(N 2/3).
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for L/a = 5 while φ < φ∗ ≈ 0.06. Moreover, best fits of the evolution of ∆V/Vsed with φ1/3 leads
to α = 1, 1.5, 1.8, and 2 for L/a = 5, 9, 12.5, and 15, respectively, in agreement with α ∝ (L/a)1/3

reported in a numerical study.15

To study the connection between velocity fluctuations and the cluster population distribu-
tion, we followed Caflish,7 Hinch,8 and Rouyer et al.20 who related the velocity fluctuations to
the statistical fluctuations of the spatial distribution of the particles by considering a “blob,” i.e.,
a given region of space with an excess of particles. Balancing the apparent weight of the blob
with its Stokes drag, they calculated its excess of velocity. Using the same approach, we consider
here a cluster of N particles. The apparent weight of the cluster is: P⃗ = Nvp(ρp − ρ f )g⃗ where
ρp and ρ f are the densities of the particles and the fluid, respectively, while vp = 4/3πa3 is the
volume of a particle. Assuming spherical clusters of radius Rc, the Stokes drag may be written
as: F⃗ = −6πη Rc f −1(φ) V⃗c where V⃗c is the velocity of the cluster, η the fluid viscosity, and f (φ)
is the hindering function2 that takes into account the backflow due to the confinement. Then,
balancing the drag with the apparent weight yields V⃗c = f (φ) �Nvp

�
ρp − ρ f

�
g⃗
�
/ (6πηRc). Finally,

writing Rc = (N/φm)1/3a, where φm is the effective volume fraction of the cluster, one obtains:
Vc = φ1/3

m f (φ)UStokes N2/3 and subsequently, since ⟨Vc⟩ = f (φ)US, the standard deviation of the clus-
ter velocities reads

∆Vc

⟨Vc⟩ = φ1/3
m ∆(N2/3), (1)

where ∆(N2/3) is the standard deviation of N2/3.
Figure 4(b) displays the standard deviation of the vertical velocities ∆Vz normalized with the

average settling velocity Vsed as a function of ∆(N2/3). The data collapse fairly well onto a sin-
gle master curve with a linear trend, for all φ and L/a. The continuous line on Fig. 4(b) has a
slope of 0.86 which would correspond to spherical clusters of a random close packing of spheres
(φ1/3

m ≈ 0.86 for φm = 0.64). As one can see, experimental data are slightly above the prediction for
spherical clusters.

The fact that velocity fluctuations can be strongly related to inhomogeneities in the particle
spatial distribution has been shown theoretically,8 and some authors11,12 characterized this inhomo-
geneity in a fixed inspection window. This result extends the validity of previous findings8,11,12,20 by
determining the relation between velocity fluctuations and the population of particle clusters, rather
than particle distribution in a fixed inspection window.

IV. CONCLUSIONS

The spatial distribution of particles in a settling suspension has been studied. The pair corre-
lation function of the particle positions has revealed a peak for a distance of 2.2 particle radius
between particle centers, which suggested a cutoff length for defining clusters of settling particles.
The distribution of the number of particles in the clusters has been found to follow an exponential
law. The average and the standard deviation of this distribution increase with the particle volume
fraction φ, while the ratio L/a appears to have only weak influence in the range studied.

The measured velocity fluctuations were rather well predicted assuming that particles assemble
in spherical clusters.

The discrepancy between the experimental result and the predicted value of 0.86 (Figure 4(b))
could be related to the fact that the particle diameter distribution (Fig. 1(b)) presented a small degree
of polydispersity, which might increase the value of φm compared with monodisperse spheres.
However, results by other authors21 indicate that for such a narrow distribution, this increase is
likely to be negligible. Another possible explanation is that clusters are not perfectly spherical but
more prolate spheroids: A prolate spheroid with its longest axis aligned with the gravity direction
would settle faster than one with its longest axis perpendicular to the gravity direction. The re-
sulting fluctuations in the settling velocity, if both axis alignments coexist, would then be larger
than for spherical only clusters. To be conclusive on this aspect of the velocity fluctuations, one
should calculate the probability density function of the clusters aspect ratio and of their orientation
with respect to gravity, which would require a large amount of detected clusters to achieve a good



063301-7 Boschan et al. Phys. Fluids 28, 063301 (2016)

statistical sampling. While such a description is beyond the scope of the present study, it constitutes
an interesting motivation for future work.
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APPENDIX: ESTIMATION OF THE PROJECTION ERROR

The measurement error due to projection cannot be directly calculated, because it depends in
the actual 3D spatial configuration of the particles, which is unknown. If particles are closer to each
other than in the case of a uniform random distribution, forming clusters, as suggested by the peak
in the experimental g(r/a), and as it is the thesis of the present work, the error calculated for such a
distribution may provide an upper bound for the error in the experimental configurations.

As stated in the manuscript, two particles participate in a cluster if they are less than 2.2a away
from each other. The projection error can be then quantified by comparing the probability for two
particles being less than 2.2a away from each other in the 2D projection, with the same probability
in the actual 3D particle spatial configuration.

From the g(r/a) curves shown in Figure 2(b), it can be noted that, in the 2D projection, if two
particles are separated by a distance shorter than 1.5a, the Hough transform technique used is not
capable of detecting both of them. Taking this into account, the first probability reads

P2D =
1

πR2

 2.2a

1.5a
g2D(r)2πrdr,

while the second one reads

P3D =
1

4
3πR3

 2.2a

0
g3D(r)πr2dr,

where g2D is the g(r) calculated from the 2D projection of the particle positions as viewed by the
camera, and g3D is the g(r) of the actual particle distances in 3D spatial configuration.

The relative error can be written as E = 2(P2D − P3D)/(P2D + P3D). For φ = 0.05 and L/a =
15 (the largest L/a ratio in the experiments), this estimation yields E = 0.15 or a 15% relative error.
The error E decreases as L/a decreases.
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