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a b s t r a c t

The evolutionary metabolic synthesizer (EvoMS) is an evolutionary tool capable of finding novel metabolic
pathways linking several compounds through feasible reactions. It allows system biologists to explore
different alternatives for relating specific metabolites, offering the possibility of indicating the initial
compound or allowing the algorithm to automatically select it. Searching process can be followed graph-
ically through several plots of the evolutionary process. Metabolic pathways found are displayed in a
eywords:
volutionary algorithms
etabolic network representation
etabolic pathway searching

athway synthesis

web browser as directed graphs. In all cases, solutions are networks of reactions that produce linear or
branched metabolic pathways which are feasible from the specified set of available compounds.

Source code of EvoMS is available at http://sourceforge.net/projects/sourcesinc/files/evoms/. Subsets
of reactions are provided, as well as four examples for searching metabolic pathways among several
compounds. Available as a web service at http://fich.unl.edu.ar/sinc/web-demo/evoms/.

© 2015 Elsevier Ireland Ltd. All rights reserved.
. Introduction

Nowadays, biological databases have turned into true atlas that
tore information about genes, proteins and metabolites for a wide
ange of organisms (Karp and Caspi, 2011). Traditionally, metabolic
athways are shown as static maps, built as sets of reactions
nd compounds that fulfill some biologically relevant purpose.
here are several tools to create, combine and edit those maps,
esides analyzing their topological properties (Droste et al., 2011;
rakelyan and Nersisyan, 2013; Posma et al., 2014). However, new
athways can be built linking specific compounds by searching a set
f reactions providing the connections. Finding a way to produce
ome compounds starting from a set of given ones involves search-
ng a network of reactions linking those compounds. This is a widely
tudied problem in bioinformatics (Planes and Beasley, 2008) since
t allows to know if a given organism can produce specific com-
ounds from a particular food source, or simply find new ways
o synthesize them (Lee et al., 2009; Yim et al., 2011). However,
nding those relations by hand from the available and well-known
ompound-to-compound links (reactions) can be a really hard task.
Several methods have been developed for finding new path-
ays automatically (Planes and Beasley, 2009), mainly based on

lassical search strategies (Faust et al., 2011). These tools search
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for metabolic pathways between only two compounds taking into
account information about connectivity of metabolites (Croes et al.,
2005), the transference of atoms (Heath et al., 2010), or the molecu-
lar structure of compounds (Rahman et al., 2005), whereas in Faust
et al. (2010) several elements can be related. The main problem
faced by those methods is the exponential growth of the search
trees when a large number of highly connected reactions and
compounds are involved. This problem can be easily addressed
by evolutionary algorithms (Pal et al., 2006), since they are able
to explore multiple solutions simultaneously in a large searching
space. Recently, an approach based on this kind of algorithms was
developed to search metabolic pathways between two metabolites
(Gerard et al., 2013). However, all of these tools provide only linear
paths, taking into account the last synthesized product to select a
new reaction.

In this work we present EvoMS, an evolutionary algorithm
for searching branched metabolic pathways among a set of com-
pounds. This tool performs the search taking into account the
availability of substrates for each reaction in the pathway, in order
to obtain a completely feasible solution. Thus, all the compounds
synthesized by the reactions in the network are considered as
potential substrates for new reactions, allowing to synthesize not
only linear but also branching pathways. EvoMS can be easily cus-
tomized to perform the search under different initial conditions,
by modifying a single text file. For example, different ways to syn-

thesize one or more compounds from a given one can be found, by
specifying the set of reactions of a particular organism. It is also
possible to indicate which compounds should be used as start sub-
strates for the search. Progress of the exploration can be followed
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Fig. 1. Example of a hypothetical metabolic pathway encoded into a chromosome.
Top: Chromosome that encodes five reactions of a metabolic pathway. Bottom:
Metabolic pathway linking three compounds through the five reactions (dark blue
circles). Green circles indicate abundant compounds. Light blue circles correspond
to new compounds generated by the reactions in the metabolic pathway. Initial sub-
strate and final products are in red and yellow, respectively. Black circle corresponds
to a non-available substrate, required by the reaction r4. (For interpretation of the
4 M.F. Gerard et al. / Bio

hrough several plots that show information about the population
f solutions over time. Furthermore, the pathways found can be
isually analyzed by a biologist in a simple way through graphical
epresentations displayed on a web browser.

. Software description

.1. Evolutionary model

EvoMS models each metabolic pathway as a network of reac-
ions encoded into the chromosomes of an evolutionary algorithm.
hus, each gene is a reaction of the pathway. Chromosomes are ini-
ialized by selecting one reaction at a time from a set of available
eactions. The products of each reaction are combined with the pre-
ious products to build an expanded set from which new reactions
an be carried out. This model allows evolving branched metabolic
athways where two or more reactions could occur simultaneously
o generate the substrates of a subsequent reaction. Once chromo-
omes are initialized, the search is performed by applying mutation
nd crossover, and evaluating the fitness of the encoded metabolic
athways for a particular set of available compounds.

Fig. 1 presents an example of an EvoMS chromosome encoding
metabolic pathway. The network is composed by five reactions

hat relate three compounds, drawn as red and yellow circles. The
ed circle is the initial substrate of this network, while the yellow
nes are the sought final products. Abundant compounds, such as
ater or ATP, are green circles. New compounds produced into the
etwork are drawn as light blue circles.

To start the search, this tool only requires the definition of a set
f compounds among which to find a metabolic network. Each one
s specified in the COMPOUNDS.yaml text file by its code in KEGG
otation (Kanehisa and Goto, 2000) and a label that indicates if it
ust be used to start the search. When there are two or more com-

ounds with this label, EvoMS uses them all to start the search. At
he end of the evolution, only the initial compound of the individual
ith the highest fitness will survive. Additionally, a set of abundant

ompounds, such as water and ATP, must be specified. Those will
e freely available to be used for any reaction. A list with several
bundant compounds, including several common cofactors, is pro-
ided by default in this file. They are all combined to build the initial
et of available compounds.

In order to build the reactions file, reversible reactions were split
nto two independent semireactions with opposite direction. Each
ne is specified by its code, substrates S(r) and products P(r), using
he standard KEGG notation. Thus, reaction S(r)←−P(r) was decom-
osed as the direct and reverse semireactions, S(r)−→P(r) and
(r)−→ S(r), respectively. The direction information for irreversible
eactions was extracted from the KGML files of KEGG.

Tool settings are stored in a single text file, and include the
lgorithm parameters and the names of the files that store the com-
ounds to relate and the available reactions. The number of cores
o perform a parallelized search can be specified in the desktop
ersion of EvoMS. The behavior of the tool can be easily modified
y editing this file. For example, it is possible to easily change the
earch space just by indicating a different subset of reactions.

.2. Fitness function

The evolutionary searching process is guided by an additive fit-
ess function based on four terms, that evaluates the quality of the
etabolic pathways found. This function and its terms are normal-
zed in the interval [0−1], and a maximum fitness is reached when
metabolic pathway meets two conditions: (i) each reaction has

ll necessary substrates, and (ii) there is a network of feasible reac-
ions that relates all the compounds required. The four terms of
references to color in this figure legend, the reader is referred to the web version of
the article.)

the fitness function are: validity, related compounds, rate of useful
products and connectivity.

The validity term evaluates the proportion of reactions in the
metabolic pathway for which substrates are available. For exam-
ple, for the chromosome in Fig. 1, reaction r4 is invalid because it
requires a substrate that is not available. Since the reaction r5 uses
a product of an invalid reaction (r4), it is also invalid. As a con-
sequence, only 3 of the 5 reactions are valid, and the validity is
3/5.

The related compounds term evaluates if at least one reaction
uses the initial substrate, as well as the proportion of the final prod-
ucts produced in the network. For the example in Fig. 1, this term
is 3/3 since all compounds to relate are in the pathway.
The rate of useful products determines the proportion of reactions
in the metabolic pathway that produce, at least, one compound that
has not been previously produced in the network. Assuming that
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Fig. 2. Views generated by EvoMS. (a) Evolution of pathways size; (b) histogram of pathway sizes; (c) evolution of the fitness terms for the best individual (validity in red,
related compounds in blue, rate of useful products in green and connectivity in magenta); (d) evolution of the average (red) and the maximum (blue) fitness for the population,
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Resulting metabolic pathways are shown as an interactive

web page. Fig. 3 displays an example of this visualization. The
roportion of available reactions used (green), and proportion of pathways initialize
or the current generation; (f) evolution of average values of the fitness terms. (For
eb version of the article.)

ll the light blue circles in Fig. 1 were different, this term would be
.0.

Finally, the connectivity term evaluates the proportion of final
roducts for which there is a network of reactions that relates them
ith the initial substrate. Analyzing the metabolic pathway in Fig. 1,

t can be seen that there is a network of reactions that produces both
nal products (yellow circles) starting from the initial substrate
red circle). In consequence, the connectivity term is 1.0.

.3. Visualizations

An important feature of EvoMS is the visualization of the search
rocess and the solutions found. Fig. 2 presents an example of all
raphics generated by EvoMS along the search, where each one
hows the evolution of different aspects of the solutions. While
he web version generates a static figure with all the information
t the end of the search, the desktop version updates the search
rogress with each generation in the evolution. In both cases, all this

nformation is automatically saved in a text file for further analysis.
Fig. 2a shows the evolution of the average (red line) and maxi-

um (blue line) size of pathways, in terms of number of reactions.
his can be useful to follow the incorporation and elimination of
eactions. Fig. 2b shows the histogram of pathway sizes in the cur-
ent generation. Fig. 2c shows the evolution of the four terms of
he fitness function for the best solution, while Fig. 2f shows their
verage value for the whole population. Fig. 2d shows the aver-
ge fitness for the population and the best solution. This subplot
lso displays the proportion of reactions of the search space used
n each generation, together with the evolution of the proportion
f individuals initialized with each initial substrate (a color line for
ach one). They allow to follow the competition among compounds

o be used as the beginning of the metabolic network. Fig. 2e shows
he solutions in terms of the number of reactions and the fitness. It
rovides a quick overview of the evolution of pathway sizes associ-
ted to the best solutions. Information on this figure is a visual way
h each initial substrate; (e) solutions displayed in terms of pathway size and fitness
retation of the references to color in this figure legend, the reader is referred to the

of evaluating if the characteristics of the desired solution are actu-
ally improving during evolution which can be followed through the
terms of the fitness function (validity, connectivity, etc). Thus, for
example, an increasing value in the red line in Fig. 2c indicates that
the number of reactions that have the required substrates is rising.
Similarly, an increase in the magenta line suggests that metabolic
pathway is relating an increasing proportion of the desired com-
Fig. 3. Graphical representation of a metabolic pathway found by EvoMS. Reactions
are in dark blue, initial substrate is in red, final products are in yellow, and abun-
dant compounds are in green. New products of the network are in light blue. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)
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Table 1
Comparisons with other algorithms for searching a pathway between l-histidine
and l-serine.

Generations Pathway size Branching

med max med max ave max

BFS – – 5 5 1.00 1.00
DFS – – 100 100 1.00 1.00
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EAMP 23 305 9 19 1.00 1.00
EvoMS 23 518 6 9 1.06 1.22

olution is drawn as a network where reactions and compounds
re represented by circles linked with two kinds of lines. Solid
ines indicate substrates, while dashed lines indicate products. Fur-
hermore, compounds are painted with several colors: the initial
ompound C00267 is red, while the final products C00036, C00118
nd C00181 are yellow. Compounds like C00668, produced inside
he network, are light blue while abundant compounds are green.
his representation can be manipulated interactively to rearrange
he elements of the metabolic pathway.

. Applications

EvoMS has important advantages over previous tools. Its main
eature is the ability of finding networks that relate several com-
ounds, at the same time. This is really important because most
f metabolic pathways in nature are rather complex networks of
nteracting reactions among several compounds. EvoMS takes it
nto account to find solutions that resemble those found in nature.

To measure the network branching of a metabolic pathway it
ust be taken into account that a compound may lead to (that is, be

ubstrate of) one or more reactions. Thus, the number of reactions
hat can be performed from each compound provides a simple way
o calculate it. Note that abundant compounds must not be consid-
red. Then, the branching factor was calculated here as the ratio
etween the sum of the number of reactions that employ each sub-
trates and the total number of substrates. Accordingly, a branched
athway should have a ratio higher than 1.0. For example, in the
athway of Fig. 1 only one reaction arises from 5 of the 6 non-
bundant substrates (one red and five light blue circles), while 2
eactions (r2 and r5) arise from the remaining compound. Therefore
he branching factor is � = 7/6 = 1.167.

Table 1 shows results of 20 runs1 for EvoMS versus methods
ased on classical search algorithms such as breadth-first search
BFS) and depth-first search (DFS) (Croes et al., 2005; Rahman
t al., 2005; Heath et al., 2010), and also with an evolutionary
lgorithm for searching linear metabolic pathways (EAMP) (Gerard
t al., 2013).2 Comparisons were performed by searching metabolic
athways between l-histidine (code C00135 in KEGG) and l-serine
code C00065 in KEGG). Both are essential for humans, and produce
ntermediate compounds for the citric acid cycle. For fair compari-
on with existing methods this is a simple linear case relating two
ompounds.3

As it could be expected, BFS found the shortest paths (5 reac-
ions) while DFS, the longest ones (100 reactions, the maximum
llowed in these runs). In both cases, only linear pathways were

ound, as reflected by the 1.00 value in the branching factor. EAMP
ound solutions with more reactions, being each one a linear path-
ay. Regarding EvoMS, it could also find pathways with a variable

1 Runs were performed on a single computer with an Intel i7 CPU and 8 parallel
hreads.

2 This previous work provides further comparisons between three methods for
inear pathways.

3 Details of runs in Table 1 and samples of pathways obtained can be found in
upplementary material.
s 134 (2015) 43–47

number of reactions, offering alternative mechanisms for relat-
ing compounds. It should be noted that the minimum number of
reactions to relate several compounds is not known in advance.
Intuitively, it could be expected that pathways requiring a few reac-
tions to link compounds of interest would be more specific than
those containing a lot of them. However, a bit larger solutions can
provide additional information to understand the biological pro-
cess, and therefore be more interesting from the application point
of view. EvoMS achieved an average 1.06 branching because this
case could be solved with a linear pathway, and a more complex
case could not be fairly used for a quantitative comparison with the
other simpler methods. In spite of this simplification, it should be
noted that EvoMS was able to find a pathway with branching factor
of 1.22.

It is important to highlight that there are cases where a path-
way between two compounds needs a branching to be possible.
For example, in the case where a reaction needs two substrate, and
each one of them should be provided by independent reactions that
must be carried out in parallel. Supposing that only feasible solu-
tions should be found, algorithms searching lineal pathways cannot
find any solution in this case. Instead, EvoMS will be certainly capa-
ble of providing a solution to such problems because of its ability
to model branched pathways.

4. Conclusions

EvoMS provides a simple tool for searching de novo metabolic
pathways. Solutions are networks of feasible reactions from a set of
available compounds that relate the specified metabolites. Configu-
ration from text files provides a great flexibility to adapt this tool to
different datasets of reactions and initial conditions. The displaying
of measures assessed over solutions gives a simple way to follow
the search process. Moreover, the graphical representation of the
metabolic pathways on a web browser allows to easily appreciate
in a glimpse its structure and main connections.
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