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Abstract

Questions: Can the species–environment relationship be understood using cur-

rent remote sensing techniques? Can the derived indicators of remotely sensed

data serve as a proxy for variables that affect habitat suitability of plant species?

Which remote sensing predictors are best associated with woody species occur-

rence in a desert environment? How well do models with derived indicators of

remotely sensed data predict the occurrence of these species? What are the

potential distributions of Ramorinoa girolae, Prosopis spp. and Bulnesia retama in

the study area?

Location: Ischigualasto Provincial Park, San Juan province, Argentina.

Methods: We selected random field points from a Landsat 8 OLI to determine

presence/absence of trees species. We calculated Brightness index (BI) using the

same image and used this index to calculate texture measures on a 3 9 3 mov-

ing window size. We used the following subset of texture measures: (1) first-

order: range, (2) second-order: mean, variance, contrast, entropy, second

moment and correlation. We also calculated Topographic Wetness Index (TWI),

slope angle and slope aspect fromGlobal Digital ElevationModel.

Results and Conclusion: Second-order mean of BI had an important effect on

the occurrence of target trees species. TWI was an important variable for Prosopis

spp. and B. retama, whereas slope angle was important for R. girolae and B. re-

tama. In addition, the occurrence of R. girolaewas affected by second-order vari-

ance of BI and slope aspect; and the presence of B. retama was affected by

second-order contrast of BI. All the variables that had important effects on the

occurrence of tree species provide environmental information about their differ-

ent habitat requirements; therefore, our findings indicate that the remote sens-

ing data are reliable to derive indicators of tree species presence in our study

area.

Introduction

Habitat suitability models are being increasingly used to

assess the impact of future land use or climate changes

(Austin et al. 1996; Buckland et al. 1996; Peterson et al.

2002; Thuiller 2003). Remotely sensed data can directly

measure or serve as a proxy for variables that affect habitat

suitability of species, and are therefore widely recognized

for their applicability to ecological research. These data can

even improve the overall accuracy of prediction models

(see review of Bradley et al. 2012). Remotely sensed mea-

sures of vegetation productivity, such as Normalized Dif-

ference Vegetation Index (NDVI) and Enhanced

Vegetation Index (EVI), have been extensively used as

predictors of habitat characteristics associated with animal

distribution and abundance (Pettorelli et al. 2005, 2011).

Moreover, applications for plant habitat modelling are on

the rise; indeed, a number of recent studies have applied

vegetation proxies or land-cover data to models of habitats

for plant species (see review of Bradley et al. 2012). Classi-

fication of vegetation in predictive modelling studies is

usually not desirable, especially for plant species where cir-

cularity would be introduced when using plant communi-

ties as predictors. Problems with introduced bias are less

likely to occur if the remotely sensed variables do not mea-

sure vegetation directly but consider habitat characteristics

of the species (Sellars & Jolls 2007; Cord et al. 2010; Brad-

ley et al. 2012).
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The ecological traits of the target species can

influence the accuracy of predictions. Brotons et al.

(2004) observed difficulties in obtaining accurate esti-

mates for generalist species, regardless of the modelling

approach used, because of the high number of factors

determining their distributions (Osborne & Su�arez-

Seoane 2002; Su�arez-Seoane et al. 2008). In contrast,

models for specialist species show better performance

given by the narrow ecological niches of specialists

(McPherson et al. 2004; Tsoar et al. 2007; Mor�an-

Ord�o~nez et al. 2012). Understanding and relating the

species–environment relationship to current and evolv-

ing remote sensing techniques are relevant steps for the

understanding of the complexity of realized ecological

niche of species (Zimmermann et al. 2007).

Spatial heterogeneity in a wide range of abiotic features

(elevation, aspect, soil type, rainfall patterns, snow accu-

mulation) leads to a non-random plant distribution in the

landscapes (Searle et al. 2010). In the Monte Desert of

Argentina, as suggested for other desert zones, distribution

of plant species seems to result from the existence of a dual

gradient – edaphic factors and distance from watercourses

– producing significant differences in floristic composition

(Acebes et al. 2010). In this region, woody plants produce

changes in microclimate (temperature, evaporation, light

intensity) and soil properties under their canopy through

nutrient accumulation. These conditions favour the estab-

lishment of plant species, increase total biodiversity of the

system thereby facilitating biological interactions, and

reduce the eroding effects of wind and water (Villagra

2000; Rossi & Villagra 2003; Cesca et al. 2012; Campos

et al. 2013).

Delineating suitable habitats based on physical habitat

variables may contribute to the conservation of suitable

habitat areas and the identification of potential habitat for

species restoration or reintroduction. Accordingly, our

main goal was to evaluate the applicability of remotely

sensed information for modelling habitat suitability for

woody species with different habitat requirements in a

desert environment. We proposed to determine (1) the

remotely sensed data that are best associated with

the occurrence of tree species in the study area; and (2) the

potential of these variables for predicting suitable habitats

for these species.

Methods

Study area

The study was conducted in Ischigualasto Provincial Park

(IPP), San Juan province, Argentina (29°550 S, 68°050 W;

Fig. 1). The park extends over an area of 62 916 ha and

is located in a hyper-arid sector of the Monte Desert,

which corresponds to the centre of the Monte of hills and

closed basins (Monte de Sierras y Bolsones). Average

annual precipitation is 100 mm (Labraga & Villalba

2009). Temperature is characterized by considerable day/

night variations and a wide range throughout the year,

with absolute maximum and minimum values of 46.2

and 12.8 °C in summer, and 39.4 and 9.9 °C in winter,

respectively (Campos 2012). The study area is dominated

Fig. 1. Ischigualasto Provincial Park. Limits of Ischigualasto Provincial Park (dashed line). The circles indicates the sampling field points.
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by rocky outcrops of sandstones with varying salt content;

moreover, there are areas of fine-textured substrata

(sands and clays) where water accumulates after a rainfall

event (M�arquez et al. 2005). The vegetation is xerophytic

due to the low rainfall and high temperatures, and has a

heterogeneous distribution ranging from 5% to 80%

(M�arquez et al. 2005).

Target species

The Monte Desert is home to key woody species due to

the ecosystem services they provide: Ramorinoa girolae

(Speg. 1924), Prosopis flexuosa (Burkart 1976), P. chilensis

(Burkart 1976) and Bulnesia retama (Gillies ex Hook. &

Arn. 1874). These selected target species are dominant

in the woody vegetation due to their ability to tolerate

drought, extreme temperatures and adverse edaphic

conditions. R. girolae is associated with rocky hillsides

(Hadad et al. 2014) and was categorized as vulnerable

due to its restricted geographic distribution, slow growth

and poor fire resistance (Demaio et al. 2002). Prosopis

species occur along riverbanks (P. chilensis and P. flexu-

osa) or areas with groundwater; therefore, water is avail-

able to them throughout the year, as occurs with

P. flexuosa. According to their requirements, both species

could be considered habitat specialists, and therefore

would have a narrow ecological niche. Moreover, B. re-

tama occurs in a wide variety of soils, from shallow

stony to sandy and clay, with some degree of salinity

(Dalmasso & Llera 1996); hence, it can be considered a

habitat generalist with a wide ecological niche. Predic-

tive models are most useful when the habitat variables

of interest can be derived a priori (Wiser et al. 1998);

therefore, we chose environmental habitat variables rel-

evant to these trees, i.e. soil heterogeneity, slope angle,

slope aspect and soil surface moisture.

Field survey

Fieldwork was conducted in Nov 2013. We based sampling

design on a Landsat 8 OLI image (30-m resolution) of the

study area (path 232, row 081) acquired on 16 Nov 2013

(http://earthexplorer.usgs.gov/). This image was stored in

the Quantum GIS program (v 2.4.0 Chugiak, http://

qgis.osgeo.org/), which allowed us to select 733 random

field points in a logistically accessible area of IPP. This area

has different substrata, such as hard and stony soil, fine

substratum (sands and clays), as well as diverse topo-

graphic features. Moreover, this area harbours the six veg-

etation communities reported in Acebes et al. (2010). We

determined presence/absence of tree species in a 15-m

radius area around each field point. The total sampled area

was 2189.28 ha.

Remote sensing variables

The Landsat 8 OLI image (30-m resolution) of the study

area was rescaled to the Top Of Atmosphere (TOA) reflec-

tance with a correction for the sun angle using coefficients

provided in the product metadata file (MTL file). This

image has cloud cover of 0.02%.

Tasseled Cap Transformation (TTC; Kauth & Thomas

1976; Crist & Cicone 1984) combines original bands of the

image to create new bands in order to enhance some fea-

tures of interest. The first Tasseled Cap index (Brightness

Index, BI) provides data on soil signature; the second index

(Greenness Index, GI) reflects vegetation characteristics

and the third index (Wetness Index,WI) captures informa-

tion on the interaction of soil and vegetation. BI was found

to be useful to determine substratum heterogeneity in a

desert because it is a measure of reflectance on the image

(Martinelli 2009; Gatica 2010). We used BI to assess the

type of substratum in the study area as it provides informa-

tion about reflectance particularly generated by the soil.

Image texture is a remote sensing approach of spatial

variability of grey level (i.e. grey shadow of pixels); hence,

it contains important information about the spatial and

structural arrangement of objects on an image (Haralick

et al. 1973; Mihran & Jain 1998). First-order texture mea-

sures are based on the number of occurrences of each grey

level within a given processing window. Second-order

texture measures use a grey level spatial dependence

matrix (i.e. grey level co-occurrence matrix) to calculate

texture values (Haralick et al. 1973), which indicate the

probability that each pair of pixel values co-occurs in a

given direction and distance (Haralick et al. 1973; Mihran

& Jain 1998). Some first-order texture measures are

strongly correlated with second-order measures (i.e.

mean, variance and entropy; Wood et al. 2012); there-

fore, we selected second-order measures because they

considered the spatial relationships of pixels. We used the

following subset of texture measures: first-order (range)

and second-order (mean, variance, contrast, entropy, sec-

ond moment and correlation). We calculated first-order

texture measures on BI image, using a 3 9 3 moving win-

dow size, i.e. the pixel values within a moving window

were used to calculate a statistic that was assigned to the

central pixel (Haralick et al. 1973). We applied a 3 9 3

window size because this size has the advantage of captur-

ing heterogeneity of pixel values over small extents

(8100 m2; Wood et al. 2012). Second-order texture mea-

sures were calculated on BI image using the same moving

window, but the pixel values were first translated into a

grey level co-occurrence matrix, which allowed us to con-

sider the relationship among neighbouring pixels (Haral-

ick et al. 1973). Second-order texture measures were

calculated in four directions, i.e. from the GLCM
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computed at 0° (horizontal neighbours), 45° (diagonally

right), 90° (vertically), 135° (diagonally left) and averaged

(Haralick et al. 1973). Slope angle and slope aspect were

modelled on the basis of a GDEM (ASTER Global DEM

30 m-resolution, with accuracy of 21.31 m at 95% confi-

dence, http://gdex.cr.usgs.gov/gdex/) of the study area. A

secondary terrain attribute was also computed from the

GDEM as an indicator of soil moisture, i.e. the Topo-

graphic Wetness Index (TWI), which quantifies the role of

topography in redistributing water in the landscape

(Beven & Kirkby 1979). All environmental variables were

finally stored as separate layers in the GIS and were

extracted for each sampling field point. We used Quan-

tum GIS, SAGA GIS (v 2.1.2, http://www.saga-gis.org/en/

index.html) and ENVI GIS (ENVI 2004, Research Systems,

Boulder, CO, US) to calculate and obtain the predictor

data.

Model building

We parameterized generalized linear models (GLMs) with

remotely sensed independent variables and with presence

points (1) vs absence points (0) for each tree species as

response variables (binomially distributed). We used infor-

mation-theoretic (I-T) methods described by Burnham &

Anderson (2002) to model the data, based on the second-

order Akaike information criterion (AIC), which is defined

as �2 L + 2 K (L is the maximum log-likelihood of the

model and K is the number of parameters in the model;

Akaike 1973). The I-T method provides a formal and

robust approach that develops a set of hypotheses a priori

and ranks those hypotheses by quantifying data-based evi-

dence (multimodel inference; Burnham & Anderson 2002;

Burnham et al. 2011). Models were compared with ΔAIC,

which is the difference between the lowest AIC value (i.e.

the best of suitable models) and AIC from all the other

models. We considered Akaike weight of a model (wi),

which determines the relative likelihood that the specific

model is the best of the suite of all models; then we ranked

the models according to their weight value and obtained

quantitative measures of the strength of evidence for each

one (Burnham & Anderson 2002; Burnham et al. 2011).

The wi for a model is exp(�0.5*ΔAIC score for that model)

divided by the sum of these values across all models (Burn-

ham & Anderson 2002). We evaluated the support for pre-

dictor variables by summing wi across all models that

contained the parameter being considered (parameter like-

lihood; Burnham & Anderson 2002). Parameter estimates

were calculated using model-averaged parameter esti-

mates based on wi from all candidate models. To supple-

ment parameter-likelihood evidence of important effects,

we calculated 95% confidence interval limits (CL) of

parameter estimates.

To obtain presence/absence data for model building for

each species, first we selected field points of presence for

the species separated by at least 100 m between individu-

als. Then, to obtain the absence data, we selected field

points separated by at least 100 m between them and with

presence points of this species. Sometimes presence and

absence points were separated by <100 m, so we preferred

to keep presence points. We did not evaluate habitat suit-

ability for co-existence of species; therefore, absence points

for target species were considered specifically for each spe-

cies, regardless of the presence of some of the other target

species (one or two) or of neither of them, e.g. absence

points for R. girolae were points where R. girolae was

absent but with probable presence of either Prosopis spp. or

B. retama, both of them or neither of the species. After

selecting sampling points, we kept 118 presence and 472

absence points for R. girolae, 156 presence and 308 absence

points for Prosopis spp., and 128 presence and 444 absence

points for B. retama. Finally, presence/absence data for

each tree species was split into two subsets: training data

set (70%), which was used for calibrating the models, and

the testing data set (30%), which was then used to evalu-

ate the quality of model predictions with the area under

the receiver operating characteristic curve (AUC). Model

performance has a useful amount of discrimination with

an AUC value >0.5 (Elith et al. 2006).

To identify collinearity between independent variables

we used Spearman rank correlation, a non-parametric

measure of statistical dependence (Zar 1999). It is impor-

tant to identify the high collinearity because this can result

in coefficient estimates that are difficult to interpret as

independent effects and/or have high SE (see review of

Zuur et al. 2009). We excluded variables when the coeffi-

cient r was >|0.8|. Then, we assessed the variance inflation

factor (VIFs) for any remaining collinearity on the full

models from different sets and excluded variables with

VIFs >5, which indicate collinearity between predictors

(Heiberger & Holland 2004). To check for spatial autocor-

relation among sampling points, we fitted semivariograms

with the Pearson residuals of the models containing all

explanatory variables (Zuur et al. 2009). We did not find

evidence of spatial dependence affecting themodels.

All statistical analyses were performed using R (2014,

http://www.R-project.org/). We assessed the VIFs using

‘HH’ package (Heiberger & Robbins 2014). The pattern of

spatial autocorrelation was evaluated using the ‘sp’

(Pebesma & Bivand 2005; Bivand et al. 2008) and ‘geoR’

(Ribeiro & Diggle 2001; Diggle & Ribeiro 2007) packages.

The models were selected with ‘MuMIn’ package (Barton

2013, R package v 1.9.5. http://CRAN.R-project.org/pack-

age=MuMIn). The spatial dependence in the final model

was evaluated using ‘ROCR’ (Sing et al. 2005) package

for R.
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We constructed habitat suitability maps of the best

model of tree species (Figs 2–4), using ENVI GIS and

Quantum GIS. The equations of the best models predict

the occurrence of tree species categorized into four proba-

bility classes.

Results

After performing the correlation analysis, we eliminated

variables that were strongly correlated with one another

(r > |0.8|; i.e. first-order range, second-order entropy, sec-

ond moment and correlation; Appendices S1-S3); thus, we

retained second-order mean, variance, contrast, and vari-

ables from GDEM (i.e. slope angle, slope aspect and TWI)

for further analysis.

The best model explaining occurrence of R. girolae

included contrast, mean, variance, slope angle and slope

aspect (Table 1). This model had a good performance

(AUC 0.70). The probability of occurrence of R. girolaewas

higher with increasing variance and slope angle, but

decreased with increasingmean and slope aspect (Table 2).

For Prosopis spp.,wi of the first and second models was 0.12

(Table 3); however, the best model was the first one

because it included the lowest number of parameters, i.e. it

was the most parsimonious (Burnham et al. 2011). This

model included mean and TWI; the probability of occur-

rence of Prosopis spp. was higher with increasing values of

these variables (Table 4). The best model had a good

performance (AUC 0.71). The best model for the occur-

rence of B. retama included contrast, mean, TWI and slope

angle (Table 5). The probability of occurrence of this spe-

cies was inversely related to all the variables included in

this model (Table 6). This model had a good performance

of 0.76.

Discussion

Habitat features have a large influence on plant distribu-

tion; remote sensing data provide information about habi-

tat variables at high spatial and temporal resolution and

can be quantified across broad extents (Bradley et al.

2012). In this study the high quality of the predictions

provided by the selected model indicates that remote

sensing data are reliable to derive indicators of tree species

presence in our study area. The second-order mean of BI

had an important effect on the occurrence of trees spe-

cies. TWI was an important variable for Prosopis spp. and

B. retama, whereas slope angle was important for R. giro-

lae and B. retama. Moreover, the occurrence of R. girolae

was affected by second-order variance of BI and slope

aspect, and the occurrence of B. retama was affected by

second-order contrast of BI. All these variables that had

an important effect on the occurrence of trees species pro-

vide environmental information about different habitat

requirements.

Second-order mean was included in the best model for

R. girolae; this measure represents the average distribution

of grey level (Haralick et al. 1973). The mean texture of BI

Fig. 2. Potential distribution of R. girolae. Probability area for occurrence of R. girolae categorized into four probability classes according to the best

model.
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was lower on occurrence points than on absence points

because lowmean values indicate less bright areas, such as

the rocky substratum (Campos et al. 2015), where this

species occurs. Variance was also included in the best

model; this measure is ecologically relevant since it cap-

tures textural heterogeneity (Wood et al. 2012). Previous

studies found that variance or entropy applied on vegeta-

tion index captured the variation of foliage height diversity

Fig. 3. Potential distribution of Prosopis spp. Probability area for occurrence of Prosopis spp. categorized into four probability classes according to the

best model.

Fig. 4. Potential distribution of B. retama. Probability area for occurrence of B. retama categorized into four probability classes according to the best

model.
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and horizontal vegetation structure within savannas

(Wood et al. 2012). Variables obtained from GDEM, such

as slope angle and slope aspect, were relevant to the occur-

rence of R. girolae. Our results are consistent with findings

reported by Hadad et al. (2014), who indicated that this

species principally occupies the middle area of rocky hill-

sides, i.e. areas with a steep slope.

Phreatic aquifers can make an important contribution

to the water balance of desert ecosystems, with this flux

depending strongly on topography and species composi-

tion (Jobb�agy et al. 2011). P. flexuosa occurrence does not

depend on watercourses because it is a facultative

phreatophyte species (Jobb�agy et al. 2011) that can reach

groundwater (Roig 1985). On the other hand, P. chilensis

is strongly linked to water presence; therefore, it is the

dominant species along margins of dry watercourses,

which occasionally contain water after heavy rains

(Acebes et al. 2010). TWI, an indicator of soil moisture,

was positively related to the occurrence of Prosopis spp.

This index combines local upslope contributing area and

Table 1. Summarized results of selection of models explaining the

occurrence of R. girolae in relation to the second-order texture measures

(calculated from Brightness Index in a 3 9 3 moving window), and vari-

ables from GDEM. k is the number of estimated parameters. Models with

Δi < 2; univariate models and the null model are shown and listed in

decreasing order of importance.

Model k AIC Δi wi

CONT +MN + VAR + SLO + ASP 6 367.74 0.00 0.20

CONT +MN + TWI + VAR + SLO + ASP 7 368.49 0.75 0.14

MN + ASP + SLO + VAR 5 368.65 0.91 0.12

CONT +MN + TWI + VAR + ASP 6 368.86 1.12 0.11

MN + TWI + VAR + SLO + ASP 6 369.58 1.84 0.08

VAR 2 395.53 27.79 <0.00

SLO 2 396.02 28.28 <0.00

TWI 2 398.26 30.51 <0.00

CONT 2 400.41 32.67 <0.00

MN 2 402.31 34.57 <0.00

ASP 2 408.80 41.06 <0.00

Null 1 510.85 56.72 <0.00

Second-order texture measure: MN, mean; VAR, variance; CONT, contrast.

GDEM: ASP, slope aspect; SLO, slope angle; TWI, topographic wetness

index.

Table 2. Parameter likelihoods, estimates (�SE) and 95% confidence inter-

val limits (CL) for explanatory variables describing the occurrence of

R. girolae: considering the second-order texture measures (calculated

from Brightness Index in a 3 9 3 moving window), and variables from

GDEM. Explanatory variables with CL excluding zero are in bold.

Explanatory

Variable

Parameter

Likelihood

Parameter

Estimate � SE

CL

Lower Upper

Intercept 4.94 � 3.31 �1.67 11.56

MN 1.00 �0.18 � 0.05 �0.28 �0.08

VAR 0.92 0.18 � 0.09 0.01 0.35

ASP 0.77 �0.00 � 0.00 �0.01 �1.22e-04

SLO 0.73 0.18 � 0.08 0.01 0.24

CONT 0.67 0.10 � 0.05 �0.01 0.21

TWI 0.57 �0.31 � 0.19 �0.70 0.06

Second-order texture measure: MN, mean; VAR, variance; CONT, contrast.

GDEM: ASP, slope aspect; SLO, slope angle; TWI, topographic wetness

index.

Table 3. Summarized results of selection of models explaining the

occurrence of Prosopis spp. in relation to the second-order texture mea-

sures (calculated from Brightness Index in a 3 9 3 moving window), and

variables from GDEM. k is the number of estimated parameters. Models

with Δi < 2, univariate models and the null model are shown and listed in

decreasing order of importance.

Model k AIC Δi wi

MN + TWI 3 403.04 0.00 0.12

MN + TWI + SLO 4 403.13 0.10 0.12

CONT +MN + TWI + SLO 5 403.86 0.82 0.08

CONT +MN + TWI 4 403.97 0.93 0.08

MN + TWI + SLO + ASP 4 404.26 1.22 0.07

MN + TWI + SLO + VAR 5 404.33 1.30 0.07

MN + TWI + VAR 4 404.34 1.31 0.06

MN + TWI + ASP 4 404.37 1.33 0.06

CONT +MN + TWI + SLO + ASP 6 404.84 1.80 0.05

TWI 2 407.22 4.19 0.02

SLO 2 420.57 17.54 <0.00

MN 2 420.84 17.81 <0.00

Null 1 423.15 20.11 <0.00

VAR 2 424.37 21.34 <0.00

CONT 2 424.58 21.54 <0.00

ASP 2 424.78 21.74 <0.00

Second-order texture measure: MN, mean; VAR, variance; CONT, contrast.

GDEM: ASP, slope aspect; SLO, slope angle; TWI, topographic wetness

index.

Table 4. Parameter likelihoods, estimates (� SE) and 95% confidence

interval limits (CL) for explanatory variables describing the occurrence of

Prosopis spp.: considering: the second-order texture measures (calculated

from Brightness Index in a 3 9 3 moving window), and variables from

GDEM. Explanatory variables with CL excluding zero are in bold.

Explanatory

Variable

Parameter

Likelihood

Parameter

Estimate � SE

CL

Lower Upper

Intercept �10.97 � 2.79 �16.54 �5.40

TWI 1.00 0.61 � 0.17 0.28 0.95

MN 0.92 0.10 � 0.04 0.03 0.18

SLO 0.50 0.10 � 0.07 �0.03 0.24

CONT 0.37 �0.04 � 0.05 �0.13 0.05

ASP 0.36 �0.00 � 0.00 �3.36e-03 1.26e-03

VAR 0.32 �0.04 � 0.08 �0.19 0.11

Second-order texture measure: MN, mean; VAR, variance; CONT, contrast.

GDEM: ASP, slope aspect; SLO, slope angle; TWI, topographic wetness

index.
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slope, and has been useful for predicting the spatial distri-

bution of vascular plant species richness in the Swedish

boreal forest (Zinko 2004). Another important variable

was the second-order mean of BI, with higher values of

suitable habitat indicating brighter areas, such as the

sandy substratum of watercourses.

Bulnesia retama is a generalist species that inhabits a wide

variety of soils; its abundance in IPP is highest in creosote

bush scrub, a plant community that occurs on hard, stony

and heterogeneous soils (Acebes et al. 2010). Further-

more, it occurs in lower abundance in a saltbush commu-

nity on fine sandy-silty and disaggregated soils. Both

communities are on flat areas with gentle and mild slopes

(Bisigato et al. 2009). Our results showed that

second-order mean, contrast and slope angle are good con-

tinuous spatial measurements of habitat quality for B. re-

tama because they were able to detect important features

of the landscape for this species. Moreover, TWI was nega-

tively related to the occurrence of B. retama, probably

because this species has little dependence on groundwater,

indicating occasional or opportunistic phreatophitic activ-

ity (Jobb�agy et al. 2011).

Habitat is defined in Kearney (2006) as the physical

characteristics of the place where an organism either actu-

ally or potentially lives; thus, a habitat suitability model

projects suitable habitat for that organism. Here, we mod-

elled the potential habitat of tree species and, to avoid bias,

as suggested by Bradley et al. (2012), we excluded proxies,

i.e. green indices or land-cover data that could indicate

their current distribution. We discriminated between suit-

able and unsuitable habitats across IPP by using distribu-

tion (presence/absence) of species and remote sensing

data. Thus, we were able to predict areas of high probabil-

ity of occurrence for our target tree species. Generalist spe-

cies, which select habitats that differed little from the

available environmental conditions, are modelled with less

accurately than selective species (Hepinstall et al. 2002;

Stockwell & Peterson 2002; Brotons et al. 2004; McPher-

son et al. 2004; Segurado & Ara�ujo 2004; Tsoar et al.

2007). However, our models predicted the distribution of

tree species with high accuracy. Probably we need to con-

sider different scales to evaluate the distribution of B. re-

tama, which at a fine scale, i.e. in IPP, is abundant on

harder and coarser soils but at coarse scale, i.e. Monte

Desert, it occurs in a wide variety of soils.

Continuous spatial measurements of habitat quality can

be difficult to acquire across broad spatial extents (St-Louis

et al. 2006, 2009; Bellis et al. 2008; Wood et al. 2012,

2013). Our findings will contribute to the identification of

suitable habitats for these tree species using remotely

sensed data. Predictive models that include the variables

used in the present work may be useful for managers to

identify patterns of occurrence of these species and

therefore direct the efforts of new sampling sites and give

priority to areas for conservation and restoration.
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ables from GDEM. k is the number of estimated parameters. Models with

Δi < 2, univariate models and the null model are shown and listed in

decreasing order of importance.

Model k AIC Δi wi

CONT +MN + TWI + SLO 5 414.75 0.00 0.32

CONT +MN + TWI + SLO + ASP 6 415.20 0.45 0.25

CONT +MN + TWI + SLO + VAR 6 416.68 1.93 0.12

CONT 2 424.63 9.88 <0.00

VAR 2 431.20 16.45 <0.00

MN 2 433.41 18.66 <0.00

SLO 2 438.22 23.47 <0.00

Null 1 438.73 23.98 <0.00

TWI 2 439.51 24.76 <0.00

ASP 2 440.54 25.79 <0.00

Second-order texture measure: MN, mean; VAR, variance; CONT, contrast.

GDEM: ASP, slope aspect; SLO, slope angle; TWI, topographic wetness

index.

Table 6. Parameter likelihoods, estimates (� SE) and 95% confidence

interval limits (CL) for explanatory variables describing the occurrence of

B. retama: considering the second-order texture measures (calculated

from Brightness Index in a 3 9 3 moving window), and variables from

GDEM. Explanatory variables with CL excluding zero are in bold.

Explanatory

Variable

Parameter

Likelihood

Parameter

Estimate � SE

CL

Lower Upper

Intercept 8.33 � 3.09 1.97 14.69

CONT 0.97 �0.32 � 0.11 �0.56 �0.08

TWI 0.96 �0.53 � 0.18 �0.88 �0.17

SLO 0.96 �0.30 � 0.11 �0.51 �0.09

MN 0.86 �0.09 � 0.04 �0.18 �0.01

ASP 0.44 0.00 � 0.00 �8.90e-04 3.80e-03

VAR 0.30 �0.06 � 0.15 �0.36 0.24

Second-order texture measure: MN, mean; VAR, variance; CONT, contrast.

GDEM: ASP, slope aspect; SLO, slope angle; TWI, topographic wetness

index.
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