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Work in closed quantum systems is usually defined by a two-point measurement. This definition of
work is compatible with quantum fluctuation theorems but it fundamentally differs from its classical
counterpart. In this paper, we study the correspondence principle in quantum chaotic systems. We
derive a semiclassical expression of the work distribution for chaotic systems undergoing a general,
finite time, process. This semiclassical distribution converges to the classical distribution in the usual
classical limit. We show numerically that, for a particle inside a chaotic cavity, the semiclassical
distribution provides a good approximation to quantum distribution.
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I. INTRODUCTION

The last years have seen growing interest in study-
ing the thermodynamics of small quantum systems away
from equilibrium [1, 2]. Thus, several thermodynami-
cal quantities defined in the classical framework were ex-
tended to the quantum regime. In particular, the defini-
tion of quantum work is rather subtle [3–5]. For driven
(but otherwise isolated) systems, work is related to the
change of energy. Thus quantum work is generally de-
fined by two-point energy measurements, one at the be-
ginning and the other at the end of the process [3, 6, 7].
Quantum work is then a stochastic quantity obtained as
the difference between the two energy measurement out-
comes. Notably, the quantum version of non-equilibrium
work relations [8–10], that have been shown to be very
useful in the estimation of free energy difference for small
classical systems [11–13], follow directly from this defi-
nition of quantum work [6, 7, 14]. However, since the
quantum work relies on projective measurements with-
out a classical counterpart, it could be argued that its
definition is tailored so that it satisfies the above rela-
tions.

In order to investigate the relationship between the
quantum and classical definitions of work, it has been
suggested to study the correspondence principle between
those distributions [15]. This correspondence between
quantum and classical work distributions was shown to
exist for integrable systems (1D) [15, 16], a chaotic sys-
tem [17] and a many-body system [18]. In a recent work
[19], this question was also addressed for general chaotic
systems after an instantaneous process (quench). There,
a semiclassical expression for the characteristic function
of the work distribution is introduced. More importantly,
it is shown that the resulting semiclassical work distri-
bution not only provides a good approximation to the
quantum distribution at high temperatures for a parti-
cle inside a billiard, but it is shown analytically that in
the usual classical limit h̵ → 0 it approaches the classi-
cal distribution. The derivation is based on three key
ingredients that are obeyed by generic chaotic systems:

the connection between the characteristic function with
the Loschmidt echo [20, 21], the semiclassical dephasing
representation for the fidelity amplitude [22–24] and the
Berry-Voros quantum ergodic conjecture [25, 26], which
states that the Wigner functions of eigenstates of chaotic
systems are peaked on the corresponding energy shell. In
this paper, we show that a semiclassical expression can
also be found for a more general process that occurs in fi-
nite time. This distribution has the correct classical limit
and also provides a good approximation to the quantum
distribution, supporting the definition of quantum work
via the two-point measurement scheme.

II. SEMICLASSICAL APPROACH

Let us consider a system which evolves under a time
dependent Hamiltonian Ht. Initially, the system is a

thermal Gibbs state ρβ = exp(−βH0/ZQ
0 ) at temperature

β−1, where ZQ
0 = Tr[exp(−βH0)] is the partition func-

tion. Suppose a projective energy measurement is per-
formed and yields Em0 as a result. After that, the sys-
tem is subjected to a process characterised by a time-
dependent Hamiltonian Ht, where a parameter of the
Hamiltonian is switched at a finite rate during a time τ ,
leading H0 to Hτ . This process induces an evolution de-

scribed by a unitary transformation Uτ ≡ T e− ih̵ ∫ τ0 Ht dt.
At time τ a second energy measurement is carried out,
giving Enτ as a result. The quantum work after this pro-
cess is related to the change of energy as W ≡ Enτ −Em0 .
The procedure we described is known as the two-point
measurement scheme, and defines quantum work as a
stochastic quantity characterised by a probability distri-
bution [3, 6, 7]:

PQ(W ) = ∑
n,m

PQ(m)PQ(n∣m)δ[W − (Enτ −Em0 )], (1)

where PQ(m) = e−βEm0 /ZQ
0 is the probability that the

initial energy measurement yields Em0 as a result,
PQ(n∣m) = ∣⟨φnτ ∣Uτ ∣φm0 ⟩∣2 is the conditional probability
to obtain Enτ at the final measurement given that the
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initial result was Em0 , and δ is the Dirac δ-function (∣φmt ⟩
are the eigenstates of energy Emt of Ht). In this case,
we assume that both Hamiltonians have non-degenerate
spectrum. Several methods to measure experimentally
this distribution have been proposed [27–31], and some
of them have been recently implemented verifying fluc-
tuations theorems in the quantum regime [32–34].

The semiclassical approach that we propose is based
on the study of the characteristic function, which is de-
fined as the Fourier transform of the work probability
distribution:

G(u) = ∫ dWeiuWP (W ). (2)

Remarkably, in the quantum case, the characteris-
tic function can also be expressed as a correlation
function[3]:

GQ(u) = Tr[eiuH
H
τ e−iuH0ρβ], (3)

where HH
τ = U †

τHτUτ is the Hamiltonian Hτ in the
Heisenberg picture. In this way, GQ(u) can also be
viewed as the amplitude of a Loschmidt echo [20] (or
fidelity amplitude), where the forward evolution is gov-
erned by the Hamiltonian H0 and the backward evolution
by HH

τ .
A semiclassical expression of the characteristic func-

tion for instantaneous processes (Uτ = I) was recently
[19] proposed. The approach in [19] is based on the de-
phasing representation (DR) [22–24], which provides a
semiclassical expression to the fidelity amplitude. The
DR avoids fundamental problems of traditional semiclas-
sical approaches [23] and it has also the advantage that in
most cases it is the most efficient to compute numerically
[35]. A key assumption in the semiclassical derivation is
that the echo evolution, given by Eq. (3), is governed
by two Hamiltonians with a clear classical counterpart.
While we assume this true for H0 and Hτ , one can notice
that for HH

τ and an arbitrary process Uτ in general this
will not be the case. Therefore, bellow we propose a clas-
sical Hamiltonian for HH

τ . First, let us notice that HH
τ

and Hτ have the same spectrum since they are related
by a unitary transformation, and also the eigenstates of
HH
τ are the eigenstates of Hτ evolved with the backward

process U †
τ . Based on this observation, we consider the

following classical Hamiltonian associated with HH
τ for

the DR: HC
τ (z) ≡ Hτ(zτ(z)), where z denotes a phase

space point (z ≡ (q, p) ∈ R2D, D is the number of de-
grees of freedom) and zτ(z) denotes the final phase space
point of a trajectory that evolves during time τ from an
initial condition z with the Hamilton’s equations during
the process. Our ansatz is also supported by the fact that
this Hamiltonian association is correct in some cases, for
instance quadratic Hamiltonians with Uτ described by
symplectic transformations, and also the resulted expres-
sion for the probability of work has the correct classical
limit. We will also show that the DR, using this classi-
cal Hamiltonian, provides a good approximation to the
quantum distribution of wok. Thus, using these ideas

z0(0)

z0(s)

z0(u)
z⌧ (z0(u))

z⌧ (z0(s))

z⌧ (z0(0))

Ht

FIG. 1. Schematic depiction of the phase trajectories for the
calculation of the points zτ(z0(s)) to be used in the calcula-
tion of GSC

(u). The solid trajectory z0(s) is obtained via the
classical evolution generated by the Hamiltonian H0 with ini-
tial condition z0. The dashed trajectory zτ(z0(s)) is obtained
by evolving each phase space point z0(s) with the classical
process during time τ . For the calculation of GSC

(u), the
Hamiltonian H0 is integrated along the solid trajectory while
Hτ is integrated along the dashed one.

and following the same procedure as in Ref. [19], we ar-
rive at the semiclassical expression for the characteristic
function:

GSC(u) = ∫ dDz0 Wβ(z0) e
i
h̵ ∆Sτ (z0,uh̵) (4)

whereWβ(z0) is the Wigner function of the thermal state
ρβ . The fundamental difference with the quench process
[19] resides in the action difference

∆Sτ(z0, uh̵) ≡ ∫
uh̵

0
[Hτ(zτ(z0(s)))−H0(z0(s))]ds, (5)

where z0(s) denotes the phase space coordinate at time
s of a trajectory generated by a classical Hamiltonian H0

with initial condition z0. While for a quench both Hamil-
tonians that appear in the action difference are evaluated
at the same point z0(s), for a general process the Hamil-
tonian at time τ is evaluated at zτ(z0(s)). In Fig. 1 we
show a schematic representation of this transformation.

The final expression for GSC is obtained after express-
ing the Wigner function for the thermal state. Thus,
we consider that H0 is chaotic and we use the quantum
ergodic conjecture (QEC) [25, 26]. Following the same
procedure as in Ref. [19], we arrive at a semiclassical ex-
pression of the characteristic function:

GSC(u) = ∫ d2Dz0
e−βH0(z0)

ZC
0

e
i
h̵ ∆Sτ (z0,uh̵), (6)

where ZC
0 = ∫ dz exp[−βH0(z)] is the classical parti-

tion function.

III. CLASSICAL LIMIT

We have obtained a semiclassical expression for the
characteristic function, from which we can derive the
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semiclassical approximation of the work probability dis-
tribution. One of the key features of GSC(u) is its para-
metrical dependence on the effective Planck constant (the
classical limit being h̵→ 0).

Now we show that using this semiclassical approxima-
tion one can obtain the classical work distribution in the
usual semiclassical limit h̵ → 0. It is easy to check that

in this limit the exponential of Eq. (6) tends to

GSC
h̵→0(u) = ∫ d2Dz0

e−βH0(z0)

ZC
0

ei[Hτ (zτ (z0))−H0(z0)]u. (7)

We can now include two integrals in energies, as it is done
in Ref. [19],

GSC
h̵→0(u) = ∫ d2Dz0 ∫ dEτ dE0

e−βE0

ZC
0

δ[Eτ −Hτ(zτ(z0))] δ[E0 −H0(z0)] ei(Eτ−E0)u. (8)

In order to obtain the probability of work we perform the Fourier transform. Finally after multiplying and dividing by
g0(E) (notice that g0(E) = ∫ d2Dz δ(E −H0(z)) is the density of states), and interchanging the order of the integrals,
we arrive at:

P SC
h̵→0(W ) = ∫ dE0

e−βE0g(E0)
ZC

0
∫ dEτ ∫ d2Dz0

δ[Eτ −Hτ(zτ(z0))] δ[E0 −H0(z0)]
g0(E0)

δ[W − (Eτ −E0)]

= ∫ dE0 P̄
C
0 (E0)∫ dEτ P̄

C(Eτ ∣E0) δ[W − (Eτ −E0)]

= PC(W ) (9)

where P̄C
0 (E) = e−βEg0(E)/ZC

0 , P̄C(Eτ ∣E0) =
∫ dz0 δ[Eτ −Hτ(zτ(z0))] δ[E0 −H0(z0)]/g0(E0), and
PC(W ) is the classical probability distribution of work
(see Ref. [15]).

t = 0 t = ⌧

00
0 0

1

1 1

1x x

y y

FIG. 2. Representation of the potential that inceases during
the process from t = 0 to t = τ .

IV. NUMERICAL EXAMPLE

Now we show a specific example where this semiclas-
sical expression of the characteristic function is evalu-
ated and compared with its quantum counterpart. In
particular we consider a paradigmatic example of quan-
tum chaotic studies: a quantum particle inside a sta-
dium billiard (hard walls and desymmetrized), with mass
m = 1/2, radius r = 1, and straight line of length l = 1.
Thus, the thermodynamic process is characterised by the
following time-dependent Hamiltonian

Ht =H0 +
t

τ
V (x, y) (10)

whereH0 is the stadium billiard Hamiltonian, x and y are
position coordinates in a bidimensional space (q ≡ (x, y)),

and V (x, y) is a smooth potential consisting on the sum
of four Gaussians

V (x, y) = λ
4

∑
i=1

1

2πσ2
e−

(x−xi)
2
+(y−yi)

2

2σ2 , (11)

of width σ, and strength λ (see Fig. 2). The Gaussians
are centered at (x1, y1) = (0.2,0.4), (x2, y2) = (0.67,0.5),
(x3, y3) = (0.5,0.15) and (x4, y4) = (0.3,0.75). During
the evolution, the perturbation V (x, y) increases linearly
in time from t = 0 to t = τ . Thus, the inverse of the
parameter τ represents the speed of the process.

In order to compute GSC(u), determined by Eq. (6),
first we choose z0 as a random initial position and mo-
menta inside the unperturbed stadium. Then, we obtain
the unperturbed trajectory z0(s) using an efficient ge-
ometrical algorithm. Finally, each z0(s) is used as ini-
tial condition for the classical evolution generated by Ht,
from t = 0 to t = τ , obtaining zτ(z0(s)) (see Fig. 1).
The classical time-dependent evolution is obtained using
a fourth order Runge-Kutta method. After computing
GSC(u), the semiclassical work distribution is then di-
rectly obtained by evaluating the Fourier transform.

We compare the semiclassical calculation with the
quantum probability distribution PQ(W ) of Eq. (1).
This requires the evaluation of PQ(n∣m) = ∣⟨φnτ ∣Uτ ∣φm0 ⟩∣2
and we proceed as follows. The eigenstates of H0 are
obtained using the scaling method [36]. The eigenstates
∣φnτ ⟩ are obtained by diagonalisation of Hτ in the un-
perturbed basis. Due to the time consuming limita-
tions of the numerical integration, in our numerics the
maximum energy level was fixed at ≈ 1400, correspond-
ing wavenumber kmax ≈ 100. This also determined the
maximum temperature that we consider in our simu-
lations. For the calculation of Uτ ∣φm0 ⟩ we write the
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FIG. 3. Main panels show the work distribution for λ = 180, σ = 0.1 and τ = 0.1 with temperatures: left β−1 = 25, center
β−1 = 28, and right β−1 = 210. Solid black lines correspond to the semiclassical calculation and the light-blue lines correspond
to the quantum calculation. The insets show the characteristic function obtained using Eq. (6).
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FIG. 4. Jarzynsky relation for the process described in the
text for different temperatures. The width of the Gaussians
that appear in the potential σ = 0.1, their final heigh λ = 180,
and the duration of the process τ = 0.1. See text for more
details.

time-dependent Schrödinger equation for a generic state
∣ψt⟩ = ∑l al(t) ∣φl0⟩:

i∂t∣ψt⟩ =Ht∣ψt⟩ (h̵ = 1) (12)

i∑
l

ȧl(t)∣φl0⟩ =∑
l

al(t) (El0 +
t

τ
V (x, y)) ∣φl0⟩.

Then we obtain a system of coupled equations

ȧk(t) = −i [ak(t)Ek0 +
t

τ
∑
l

al(t) ⟨φk0 ∣V (x, y)∣φl0⟩] , (13)

that we solved numerically, with initial conditions
am(0) = 1 y al≠m(0) = 0 in (13). After that, Uτ ∣φm0 ⟩ ≡
∣ψτ ⟩ = ∑l al(τ) ∣φl0⟩, so

PQ(n∣m) = ∣⟨φnτ ∣Uτ ∣φm0 ⟩∣2 = ∣∑
l

⟨φnτ ∣φl0⟩al(τ)∣2. (14)

In Fig. 3 (main panels) we show the probability distri-
bution of work using the semiclassical calculation along

with the quantum one. For P SC(W ) we first compute
GSC(u) and then the Fourier transform is performed.
There we show results for three three different values of
β−1 = 25, 28, 210. The semiclassical calculation provides
a better approximation to the quantum result as the tem-
perature increases (small values of β). For large values of
β, only a few low lying energy eigenstates contribute to
the probability distribution, and it is expected that the
Berry-Voros conjecture does not hold. For instance, at
β−1 = 25, due to the fact that the mean level spacing for
the unperturbed billiard is ∆E ≈ 7, the number of energy
levels that are contributing is rather small (≈ 10). We
should also point out that our semiclassical calculation
gives better results for the quench (see Ref. [19]) than for
the continuous process we describe here. This is mainly
due to the fact that, in this case, the semiclassical ap-
proach relays in the approximation HC

τ (z) ≡ Hτ(zτ(z))
and this may not be accurate for arbitrary transforma-
tions. Our simulations suggest that as we decrease the
parameter τ (a measure of adiabaticity) the semiclassical
approximation becomes better.

We benchmark the accuracy of our expression by eval-
uating the Jarzynzki identity [8]. If the system is initially
at thermal equilibrium, the Jarzynski identity reads:

⟨e−βW ⟩ = e−β∆F , (15)

where ∆F = − ln(ZQ
τ /ZQ

0 )/β is the change in the
Helmholtz free energy, and the angular brackets denote
an average with respect to the work probability distribu-
tion of Eq. (1). This relation states that for a thermal
initial state the mean value of a function of work (a non-
equilibrium quantity) is determined by the free energy
difference (an equilibrium quantity). Thus, transforma-
tions that are arbitrary away from equilibrium contain
information about equilibrium quantities. In Fig. 4 we
show Eq. (15) evaluated numerically. The left side of Eq.
(15) is calculated from the semiclassical probability of
work. While the right side of Eq. (6) is obtained by cal-
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culating the quantum energies of H0 and Hτ for different
values of β. The main source of errors in this case came
from the estimation of the weighted assigned to negative
values of work [37, 38]. Here again it is clear that in the
region where the approximations are valid, i.e. small β,
the Jarzynski identity is satisfied with a reasonable error.

V. SUMMARY

The definition of quantum work via the two-point mea-
surement scheme could be challenged as being arbitrar-
ily defined in order to satisfy the non-equilibrium fluc-
tuation relations. In order to settle this controversy it
is expected that correspondence principle should apply
for the work distribution thus obtained [15]. We have
proposed a semiclassical expression for the characteristic
function that could be applied to general thermodynamic
process in chaotic systems. We have shown analytically
that the classical distribution is recovered by taking the

effective Planck constant to zero. Using numerical sim-
ulations for the stadium billiard we show that the semi-
classical expression of the work distribution provides a
good approximation to the quantum distribution, and
its accuracy is also examined by evaluating the Jarzynski
identity. We also show that the quantum distribution is
best approximated for high temperatures, and processes
that are close to the quench (small values of τ in our
formulation). Thus, we also provide further justification
for the definition of quantum work by the two-point mea-
surement scheme.
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