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ABSTRACT: This contribution undertakes the evaluation of one-dimensional (1D) models to approximate the behavior of
actual three-dimensional (3D) catalyst pellets, in the case of abnormal kinetics and close to the limit of steady state multiplicity.
Two 1D models are tested: a one parameter model, called generalized cylinder (1D-GC) and a three parameter model termed
the variable diffusivity (1D-VD) model. A representative set of shapes presented by commercial catalytic pellets was selected to
study the performance of the models to predict effective reaction rates. Kinetics expressions covering typical cases of thermal and
self-inhibition effects have been considered. Predictions of effectiveness factor using 1D-GC and 1D-VD models are compared
with numerical results obtained from the Comsol Multiphysics environment for the 3D pellets. The simpler 1D-GC model can
lead to maximum errors exceeding 40%, while the 1D-VD model reduces them to a level of 10%.

1. INTRODUCTION

The intraparticle diffusion-reaction problem has been the focus
of numerous studies as it is an important issue in modeling
catalytic fixed beds. Mass conservation balances inside real
pellets should normally be stated for two (2D) or three (3D)
spatial coordinates, and a numerical solution must be
performed. This computational task is affordable when a single
set of conditions is undertaken, but even for the simplest
practical case (e.g., simulation of a catalytic reactor with a single
reaction), the calculations have to be repeated thousands of
times. Besides, for modeling applications such as reactor
optimization, the number of evaluations will increase by orders
of magnitude. In addition, dealing with a set of reactions
introduces a further computational burden. Thus, approaches
that avoid the use of 2D or 3D computations are extremely
valuable or even mandatory in most cases.
A first attempt to reduce the dimensionality of the problem

was introduced by Aris1 in 1965 showing that at large values of
the Thiele modulus, the effectiveness factor for a single reaction
does not depend on the pellet shape, but just on the ratio of
pellet volume to external surface area, . Then, to approximately
evaluate the effectiveness factor at low and intermediate values
of Thiele modulus, any simple 1D geometry satisfying the
actual value of could be adopted, as a slab of semiwidth or a
long circular cylinder of radius 2 . Errors of around 20% should
be expected using this approach for relatively simple kinetics
expressions.
Datta and Leung2 proposed a more convenient 1D model,

here referred to as the generalized cylinder (1D-GC) model. It
is supposed that diffusion takes place along a distance L
(effective diffusion length) of a hypothetical body of cross
section varying as zσ, where z is the nondimensional coordinate.
The suitable value of L is found by matching the value of the

actual pellet and one additional property characterizing its
shape provides the value for parameter σ (shape factor).
Macias et al.3 employed the 1D-GC model to estimate

effectiveness factor in hydrodesulfurization of diesel-fuels
carried out over trilobe catalyst pellets. Recently, Lopes et al.4

analyzed the diffusion-reaction problem in catalytic thin
coatings supported on microchannels and a variety of kinetic
expressions using successfully the 1D-GC approach.
Mariani et al.5−8 focused the application of one-dimensional

models for predicting the effectiveness factor in catalytic pellets
of arbitrary shape in the packed bed reactors. In particular, for
the 1D-GC model they proposed two different criteria to
estimate the shape factor σ by requiring that the 1D-GC model
match the behavior of the actual pellet either at low5 or high6

reaction rates. It is worth noting that when using the high
reaction rate criteria σ can be straightforwardly obtained just
from elementary geometric features of the pellet. The expected
errors of the 1D-GC model employing the high reaction rate
criteria is less than 3% for a variety of commercial shaped
pellets with normal kinetic behavior, i.e. when the effectiveness
factor decreases monotonically as the Thiele modulus
increases.7,8

Nonetheless, it has been detected that even for isothermal
linear kinetics the 1D-GC model becomes unable to accurately
capture the behavior of shaped pellets when some ratios
between their geometrical dimensions are modified up to a
threshold value.9 Therefore, to restore precision within 2% it
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was necessary to propose a new 1D model, called the variable
diffusivity (1D-VD) model, which introduces three parameters
evaluated by satisfying simultaneously the behavior of the actual
pellet at high and low reaction rates.
The purpose of this contribution is to thoroughly test the

effect of kinetic expressions on the prediction of effectiveness
factor by one-dimensional models, extending the analysis up to
near the limit of steady state multiplicity for a representative set
of commercial pellets.

2. FORMULATION FOR THE EFFECTIVENESS FACTOR
IN 3D PELLETS AND SERIES EXPANSIONS AT LOW
AND HIGH THIELE MODULUS

A single catalytic reaction and the following restrictions will be
considered to undertake the diffusion-reaction problem inside a
pellet of arbitrary geometry:

(a) Uniform composition and temperature exist at the external
surface of the pellet.

(b) The porous medium is isotropic as regards mass and heat
transport properties.

(c) Mass f luxes and heat f lux are described by Fick’s and
Fourier’s laws with uniform ef fective dif fusivities and
thermal conductivity.

(d) Uniform catalytic activity exists.

Restrictions c and d can be removed at the expense of minor
modifications in the description of the 3D problem and its
approximation by 1D models. However, as case studies
undertaken in this contribution satisfy those restrictions, they
will be maintained for the sake of simplicity. Keegan et al.10,11

presented an extended formulation for a general 3D problem
removing restrictions c and d.
The flux of any species j, including a key species A (the

limiting reactant is a suitable choice for A), can be written as Nj
= −Dj∇Cj and the heat flux as q = −λ∇T, where Dj and λ are
effective diffusivities and thermal conductivity, respectively.
Under assumptions a−c, molar concentrations and temper-

ature can be related to the molar concentration of A, according
to12

ν ν= + −C C D D C C( / )( / )( )j j j j,s A A A A,s (1a)

λ= + Δ −T T H D C C( / )( )s A A A A,s (1b)

where the suffix “s” stands for values at the external surface, νj
are stoichiometric coefficients, and (−ΔHA) is the heat of
reaction per mole of A.
If the consumption rate of A (πA) is a known expression in

terms of composition and temperature, eqs 1 and the condition
πA = 0 will allow evaluating the molar concentration of A if
chemical equilibrium is reached within the pellet, CAe, for given
values Cj,s and Ts.
Defining the dimensionless concentration Y = (CA − CAe)/

(CA,s − CAe), the dimensionless reaction rate r(Y) = πA/πA,s will
depend only on Y, for given values Cj,s and Ts. Note that 0 ≤ Y
≤ 1, r(0) = 0 and r(1) = 1.
The steady state conservation equation for species A inside

the catalytic pellet can be written

∇* = ΦY r Y V( ) ( ), in2 2
p (2a)

=Y S1, on P (2b)

where Vp stands for either the spatial catalyst domain or its
volume, Sp stands either for the external pellet surface or its

area, the dimensionless Laplacian operator ∇*2 has been
rendered dimensionless with the characteristic length = Vp/Sp,
and the Thiele modulus Φ is defined as

π
Φ =

−D C C( )
2 2 A,s

A A,s Ae (3)

The effectiveness factor is evaluated from

∫η =
V

r V
1

d
Vp

p
p (4)

Series Expansion at Low Thiele Modulus. The solution
of eqs 2 at low Thiele modulus has been addressed in the
literature.13 A regular perturbation analysis can be carried out to
expand η (eq 4) in powers of Φ2, leading to the following three-
term truncated series expression:

η γ β= − ′ Φ + ′ + ″ Φ
⎡
⎣⎢

⎤
⎦⎥r r r1 (1) (1)

1
2

(1)2 2 4

(5)

where r′(1) = (dr/dY)Y=1, r″(1) = (d2r/dY2)Y=1, and γ and β are
expressed as

∫
γ =

G V

V

d
V p

P

P

(6a)

∫
β =

G V

V

d
V

2
p

p

P

(6b)

G is the solution of

∇* = −G V1, in2
p (7a)

=G S0, on p (7b)

It is worth noting that G (auxiliary field) does not depend on
kinetics, hence the parameters γ and β depend only on the
geometry of the pellet. The solution of problem 7 for G should
be carried out only once for a given pellet shape.

Series Expansion at High Thiele Modulus. Assuming
that Sp can be composed of smooth regions, i.e. surface pieces
with continuous curvature radii, separated by edges, Keegan et
al.10,11 developed a formulation for problem described by eq 2
that allows expressing η for high Thiele modulus as a two-term
truncated series in power of (1/Φ).

η =
Φ

−
Φ

Γ
I I1 2

2 (8)

where

∫=I Y r Y Y( ) 2 ( ) d
Y

0
o o (9a)

=I I[ (1)]1
1/2

(9b)

∫=I
I

I Y Y
1

[ ( )] d2
1 0

1
1/2

(9c)

The parameter Γ, which arises from the analysis presented by
Keegan et al.,10,11 accounts for the effect of the smooth regions
and edges of the pellet and can be expressed as

∫ ∫ ω θΓ = +
S

S W[ d ( ) d ]
S WP

s
P (10)
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In eq 10 s = 1/Ra + 1/Rb, where Ra and Rb are the local
principal radii of curvature on the pellet surface with the
following sign convention: positive if the center of curvature is
oriented toward the inside of the catalyst and negative
otherwise.
W in eq 10 accounts for the total length of the edges and

coefficient ω depends very weakly on the type of reaction rate
expression but strongly on the intersecting angle θ that a pair of
smooth regions defines when they meet at the edge. The
following approximation was proposed by Keegan et al.11 to
estimate ω:

ω θ
θ

θ
π

θ π

π
π θ π π

θ
π

π θ π

=

− ≤ ≤

− + −
−

< ≤

π
⎜ ⎟

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

b

A
A A

( )

1 , if 0

( ) (2 )
1 ,

if 2

b
0

/

2

2
0

(11)

where b0 = 5.2I1
0.3/I2

0.1 and A = −ω(2π) = 1.9/(I1I2)
0.07.

Concerning eq 10, it is worth mentioning that almost all
pellet shapes show smooth regions with constant curvatures,
hence the integral on Sp is very easily evaluated by adding the
contribution of each region. Besides, the edges normally
present constant intersecting angles θ and the second integral
in eq 10 can also be straightforwardly evaluated. The effect of
kinetics on Γ is introduced in eq 11 by parameters I1 and I2
(eqs 9). Detailed examples on the procedure to estimate Γ from
eq 10 for different 3D bodies can be found in the works of
Mariani et al.8 and Keegan et al.11 In general, the geometric
information needed for such calculations is basically the same as
needed to evaluate the volume and external surface area of the
3D pellet.

3. DESCRIPTION OF 1D MODELS
The main features of both, 1D-GC and 1D-VD, models will be
outlined in the following paragraphs.
Generalized Cylinder Model (1D-GC). The 1D-GC

model can be envisaged as a solid body that allows material
and heat transport in only one spatial coordinate z′ and
presents a variable cross-section S(z):

= ′ =
σ

σ⎜ ⎟⎛
⎝

⎞
⎠S z S

z
L

S z( ) p p

where Sp is the external surface area of the actual pellet.
Symmetry applies at z = 0 and the external surface is at z = 1,
where the model’s cross-section coincides with the external
surface area of the actual pellet, S(1) = Sp
For a reactant A with dimensionless concentration Y and

reaction rate r(Y), as defined in section 2, the mass
conservation balance according to the 1D-GC model can be
written as

= Φσ σ− ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠z

z
z

Y
z

L
r Y

d
d

d
d

( )
2

2

(12a)

= =Y z1 at 1 (12b)

= =Y z zd /d 0 at 0 (12c)

where the Thiele modulus Φ is the same as in the actual pellet
(eq 3).

The 1D-GC model encompasses the classical 1D problems in
a slab (σ = 0), an infinitely long circular cylinder (σ = 1), and a
sphere (σ = 2).
The effectiveness factor for the hypothetical pellet is

∫η σ= + σ− r Y z z(1 ) ( ) d1D GC

0

1

(13)

To define L, the volume of the 1D-GC body should equal the
actual pellet volume Vp. As the external surface area was chosen
as that of the actual pellet (Sp), this requirement corresponds to
maintaining the same characteristic length as the actual pellet:

∫ σ
= ′ ′ =

+

σ
‐ ⎜ ⎟⎛

⎝
⎞
⎠V S

z
L

z
S L

d
1

L
1D GC

0
p

p

(14)

From V1D‑GC = VP, it follows that

σ= +L (1 ) (15)

Equation 15 allows η1D‑GC to match the limiting values of η at
very high values of Φ, i.e., η1D‑GC → I1/Φ (see eq 8) as Φ→∞.
On the other hand, the use in the 1D-GC model of the same Φ
value as in the actual pellet just warranties that η1D‑GC → 1 as Φ
→ 0. Therefore, the value of the shape factor σ can be evaluated
by matching the second term of either the low-Φ (eq 5) or the
high-Φ (eq 8) expansion series of both, actual pellet and 1D-
GC model.
If the low-Φ series is used as a criterion for fixing σ, it can be

shown that in eq 5 γ1D‑GC = (1 + σ)/(3 + σ). Using γ1D‑GC = γ
(the value of the actual pellet), we obtain

σ γ
γ

= −
−

3 1
1 (16)

Similarly, Γ1D‑GC = σ/(1 + σ) in eq 8 and the high-Φ criterion
leads to

σ = Γ
− Γ1 (17)

where Γ is the second term coefficient in eq 8 for the actual
pellet.
Hereafter, the 1D-GC model will be denoted 1D-GCγ or 1D-

GCΓ, according to the use of eq 16 or eq 17, respectively, to fix
σ.

Variable Diffusivity Model (1D-VD). The 1D-VD model
is based on a hypothetical pellet allowing mass transport along
only one spatial Cartesian coordinate x′ spanning from the
external surface (x′ = 0) to the symmetry position x′ = L, i.e. as
for a slab of half-thickness L. The dimensionless coordinate is
defined as x = x′/L. The diffusivity of the key species A is
assumed to vary with x according to

Θ Θ =D x( ), (0) 1A (18)

where Θ(x) is some positive function containing free
parameters to match the behavior of a given 3D pellet
described in section 2. Restriction Θ(0) = 1 provides a
convenient normalization, without loss of generality. When
kinetics depends intrinsically on the concentrations of other
species j, the diffusivity for them should also be affected by
Θ(x), i.e., DjΘ(x) is to be employed.
We assume for the actual pellet a dimensionless reaction rate

r(Y) for species A, a Thiele modulus Φ, and characteristic
length . Using the same set of variables for the 1D-VD model,
it is obtained for the conservation equation of species A
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Θ = Φ
⎡
⎣⎢

⎤
⎦⎥x

x
Y
x

r Y
d

d
( )

d
d

( )2

(19a)

= =Y x1 at 0 (19b)

= =Y x xd /d 0 at 1 (19c)

where the condition L = has already been employed in eq 19a.
The effectiveness factor can be obtained using the following

expression:

∫η =‐ r Y x( ) d1D VD

0

1

(20)

Without any further specification for Θ(x), the model
satisfies the first terms (η1D‑VD → 1 as Φ → 0; η1D‑VD → 1/Φ
as Φ → ∞) in the series expansions (eqs 5 and 8) of the actual
pellet at low and high Thiele modulus. We state now that the
1D-VD model should satisfy the two additional terms of the
truncated low-Φ series (eq 5) and the second term of the
truncated high-Φ series (eq 8). This is to say, parameters γ, β,
and Γ of the 1D-VD model should coincide with those of the
actual pellet. To this end, we choose Θ(x) as a three-parameter
function, according to the following expression

Θ = + αx C x C x( ) exp( )1 2 (21)

where C1, C2, and α are the fitting parameters.
Choosing a variable diffusivity model and the specific

exponential form in eq 21 obeys to the possibility of fitting
simultaneously the three shape parameters γ, β, and Γ of an
actual pellet without any restriction for their relative values
(details can be found in Mocciaro’s doctoral dissertation14).
Equating terms of the same order in the series expansions of

the actual pellet and 1D-VD model, the following expressions
are derived:

Γ = − Θ = −
=

⎡
⎣⎢

⎤
⎦⎥

x
x

C
1
2

d ( )
d

1
2x 0

1
(22a)

∫γ = −
Θ

x
x

x
(1 )

( )
d

0

1 2

(22b)

∫ ∫β = =
−

Θ
F x x F x

x
x

x( ) d , ( )
1

( )
d

x

0

1
2

0

o

o
o

(22c)

where Γ, γ, and β are the values of the actual 3D pellets
calculated from eqs 6a, 6b, and 10.
C1 is immediately obtained from 22a, C1 = −2Γ, while eqs

22b and 22c are to be simultaneously solved for C2 and α. We
found it convenient to nest iterations by guessing the value of α
(always α > 1), solving 22b for C2 and repeating the α-guess
until satisfaction of eq 22c.

4. RESULTS
A representative set of shapes corresponding to commercially
available catalysts (trilobe, 4-holes, wagon wheel, 10-holes,
modified 4-holes) were selected. The selection of the shapes
showing multiple internal holes was also driven by the fact that
they lead to the largest errors when using 1D approximations
for isothermal first order reactions.7,9 The selected shapes are
intended for a variety of chemical processes, like oxidations,
hydrogenations, isomerizations, hydrotreatments, steam re-
forming, etc. Table 1 summarizes shapes and dimensions of
the catalyst pellets used in this work, which have been taken
from manufacturers’ catalogues (e.g., Haldor Topsoe, Johnson

Matthey, etc.). However, ratios between dimensions can show
differences from those given in Table 1. As an specific example
of such differences, the effect of pellet height H has been
analyzed by considering two values: those leading to the finite
ratios in Table 1 and H → ∞ [i.e., h = 1 in terms of the
dimensionless variable h = H/(H + b) in Table 1]. The reason
for choosing the second case can be explained by noting that
for the opposite situation, H→ 0, any particle behaves as a slab,
irrespective of the cross-section shape. Consequently, any of
the 1D models (σ = 0 for the 1D-GC model and Θ(z) ≡ 1 for
the 1D-VD model) will produce the exact value of η, as the
mass fluxes are 1D. The maximum effect of the cross-section
shape is therefore exerted when H → ∞, and this extreme
involves, for some specific cross-shapes, the highest levels of
errors found from using 1D models. Nonetheless, it should be
mentioned that the maximum error is not always found for H
→ ∞. For example for the circular cylinder, mass fluxes are also
1D along the radial coordinate when H → ∞ and the largest
deviations occur at intermediate values of H.
Abnormal kinetics (i.e. those which go through a maximum

reaction rate as reaction proceeds) are undertaken in this study,
as they show high parametric sensitivity and represent the most
challenging cases for approximations like the 1D models treated
here. It is well-known that abnormal behavior leads eventually
to steady state multiplicity, a fact that will be shown to be
determining for an acceptable precision of 1D models.
The abnormal behavior is introduced by strong self-

inhibition effects or, for exothermic reactions, by temperature
rise inside the pellet. Thus, we employ in this study irreversible
kinetic expressions of the type πA(CA, T) = k(T)CA

n/(1 +
KadCA)

d, with Arrhenius expression k(T) = k0 exp(−E/RT).

Table 1. Cross-sections and Geometrical Parameters of the
Analyzed Pellets (y = a/b; h = H/(H + b)a)

aH stands for the pellet height.
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The coefficient Kad (that can be interpreted as an adsorption
constant) was assumed independent of T. Also, the effect of the
structure of reversible kinetics was studied by considering a
reaction A ↔ B with πA(CA, T) = k(T)(CA

2 − CB
2/Keq), where

the equilibrium constant Keq is taken as a parameter, rather than
temperature dependent. From these rate expressions and taking
into account eq 1a for CB (considering CBs = 0 and DA/DB = 1)
and eq 1b for T, the dimensionless rate r(Y) = πA/πA,s can be
expressed

Irreversible type

δ
β

κ
κ

= −
+ −

+
+

⎜ ⎟
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝

⎞
⎠r Y

Y
Y

Y
Y

( ) exp
(1 )

1 (1 )
1

1
n

d

P (23a)

Reversible type

δ
β

=
− − *

+ − − *

+ * −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥r Y

Y C
Y C

Y

Y C Y

( ) exp
(1 )(1 )

1 (1 )(1 )

[ 2 (1 )]

Ae

P Ae

Ae (23b)

where δ = αAβP, αA is the Arrhenius number E/(RTs), βP is the
Prater number (−ΔHA)(DA/λ)(CA,s/Ts), κ = KadCA,s, and CAe* =
CAe/CA,s.
For the present calculations the denominator in the

exponential arguments was taken as being the unity, because
βP is usually a small number (|βP| < 0.1 is a normal range).
Therefore, the available parameters are δ, n, d for irreversible
kinetics and δ, CAe* for reversible kinetics.
The apparent reaction order is defined as nap = d[ln r(Y)]/

d(ln Y). Abnormal behavior is found if nap < 0 at least for some
values of Y within the range 0 < Y < 1. This is accompanied by
the existence of values η > 1 for some range of Φ values. For
eqs 23, this can happen when δ is large enough (temperature
rise effect) or, specifically for eq 23a and d > n, if κ is large
enough (self-inhibition effect). In both cases, the minimum
value of nap takes place for Y = 1 (at the pellet surface);
therefore, the sign of nap(1) determines the normal or abnormal
behavior once r(Y) is given.
For a given 3D pellet, parameter Γ was evaluated from eq 10

from the geometric information reported in Table 1, while
parameters γ and β were obtained from eqs 6 after solving eqs 7
with COMSOL Multiphysics software (numerical solution of
differential equations by the finite elements method).
Values of Γ, γ, and β for the pellet shapes in Table 1 and

derived parameters of 1D models (eqs 16, 17, and 22) are
displayed in Table 2 for an irreversible first-order exothermic
reaction (δ = 4, n = 1, d = 0 in eq 23a). As discussed before, the
effect of kinetics on shape parameters is mild (only on Γ), a

feature that is transferred to parameters of the 1D models.
Therefore, values in Table 2 are mainly inherent to the 3D
pellet shape. The exponent α of the 1D-VD model is mainly
associated to the requirement of matching parameter β (eq
22c), which in turn describes the behavior at positions well
inside the actual pellet catalyst, where G2 takes maximum values
(eq 6b). Therefore, to capture this effect, values of α becomes
large (the effect of the term C2 x

α in eq 21 is maximum close to
x = 1, i.e. close to the middle of the slab).
COMSOL Multiphysics was also used for solving the mass

balance of the actual 3D pellets (eqs 2) and then the
effectiveness factor evaluated from eq 4. Instead, a routine
developed in our group that is based on a shooting procedure
to solve an integral formulation of the 1D conservation
equations (eqs 12 for the 1D-GC model and 19 for the 1D-VD
model) was employed to evaluate the approximate effectiveness
factors, eqs 13 and 20. Either for evaluating the actual or
approximate values of η, the size of the mesh for numerical
evaluation was adjusted to guarantee accuracy of about 0.1%.
To evaluate the precision of 1D models, the relative error ε

in estimating the effectiveness factor (η) is defined by

ε η η
η

= −
100

m

(24)

where η stands for the effectiveness factor of an actual 3D
pellets and ηm for the value obtained from either 1D-VD or 1D-
GC models.
According to the criteria employed to adjust model

parameters in both cases, 1D-VD and 1D-GC, maximum errors
(denoted by εmax) will take place for an intermediate value of
Thiele modulus. For the most part, these maxima have been
employed as a criterion to assess 1D models precision for each
kinetic expression and 3D pellet shape:

ε ε= | |
Φ

max{ }max (25)

As commented on before, the one parameter 1D-GC model
has been found able to approximate the behavior of a great
variety of pellet shapes with relative dimensions taken from
manufactures’ information, within 3% of error for normal
kinetics.7,8 Isothermal zero-order kinetics can be considered as
the boundary between normal and abnormal reaction behavior
(nap = 0). An isothermal zero-order reaction arises from eq 23a
by taking δ = 0, n = d, κ → ∞, thus resulting in r(Y) = 1 if Y >
0, r(Y) = 0 if Y = 0. Therefore, it is important to explore as a
first step the performance of the 1D models in this case. Table
3 shows εmax for the pellet cross-section shapes in Table 1, but
with H → ∞, as this is the more severe case for 1D-models.
The 1D-GC model (γ or Γ) leads, except for the particular case

Table 2. Shape Parameters for 3D Pellets in Table 1 and Parameter Values of 1D Approximations for an Irreversible First-Order
Exothermic Reaction (δ = 4.0, n = 1, d = 0 in eq 23a)

pellet

parameter 4-holes trilobe 10-holes wagon wheel modified 4-holes

3D pellet Γ 0.196 0.795 −0.034 0.337 0.150
γ 0.448 0.623 0.368 0.447 0.386
β 0.290 0.566 0.179 0.305 0.194

1D-GCγ σ 0.622 2.311 0.166 0.619 0.256
1D-GCΓ σ 0.243 3.872 −0.033 0.508 0.176
1D-VD α 6.380 4.600 7.880 13.86 11.74

C1 −0.391 −1.540 0.069 −0.673 −0.300
C2 −6.230 −3.077 −6.836 −9.132 −7.549
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of the trilobe pellet, to values of εmax considerably larger than
3% (the level found for normal kinetics). On the contrary,
results from 1D-VD model can be considered completely
satisfactory, as εmax is maintained well below 2%.
For a given pellet shape and type of kinetic expression, as

those in eqs 23, a critical parameter can be chosen (e.g., δ or κ)
to vary the apparent reaction order from positive (normal
behavior) to negative values, until steady state multiplicity is
reached. In this sequence, values εmax of 1D approximations
show, in general, an increasing trend and they rapidly rise as
multiplicity is being approached. This behavior can be clearly
appreciated in Figure 1 for the particular case of wagon wheel

pellet (Table 1) with h → 1 and for an irreversible exothermic
first-order reaction (i.e., n = 1, d = 0, δ ≠ 0 in eq 23a). Values of
εmax for an infinitely long circular cylinder are also presented. As
commented on in the Introduction, this 1D geometry can be an
option to evaluate effective reaction rates if no provision is
taken for the real shape of the catalytic pellet. For models 1D-
GCγ, 1D-GCΓ, and 1D-VD, εmax sharply increases as δ
approaches the value corresponding to the onset of multiplicity
(δom ≅ 4.2). The same trend is observed for the long circular
cylinder, but even for the isothermal case (δ = 0), εmax is above
12% and reaches values close to 100% at δ ≅ δom. Other shapes
and kinetic expressions varying their critical parameters were
also tested showing the same trend.

We have analyzed specifically four rate expressions: the
reversible expression eq 23b with CAe* = 0.6 and three
irreversible kinetics derived from eq 23a.

Irreversible first-order exothermic reaction (n = 1, d = 0)

δ= −r Y Y Y( ) exp[ (1 )]

Irreversible second-order exothermic reaction (n = 2, d = 0)

δ= −r Y Y Y( ) exp[ (1 )]2

Self-inhibited isothermal reaction (δ = 0, n = 1, d = 2)

κ
κ

= +
+

⎜ ⎟⎛
⎝

⎞
⎠r Y Y

Y
( )

1
1

2

In the first three cases, the critical parameter is δ and for the
fourth example the role is played by κ. As the onset of
multiplicity varies slightly with geometry, the slab geometry
with uniform diffusivity was (rather arbitrarily) chosen to
characterize each of the four kinetic expressions with a definite
value of the critical parameter for the onset of multiplicity.
Values of εmax from 1D models for the four examples of

kinetic expressions and for pellet shapes and dimensions in
Table 1 (specifically, for the finite heights defined by parameter
h in Table 1) and for critical parameters amounting around
95% of the values for the onset of multiplicity are displayed in
Table 4. It can be clearly appreciated that errors from the 1D-
VD model remain smaller than around 10%. On the other
hand, the 1D-GC model (irrespective of the criterion used to
fix parameter σ) shows values of εmax even higher than 40%.
Similar calculations as those in Table 4 were performed for

pellets with H → ∞ and for critical parameters about 90%
(rather than 95%) of those leading to multiplicity (Table 5).
Basically, the same comments as for Table 4 can be made for
the results of εmax in Table 5. Actually, the slightly larger
departure (from 95 to 90%) from the onset of multiplicity has
to be made for keeping nearly the same level of maximum
errors than in Table 4, since long pellets, in general, tend to
emphasize the effect of shape, as discussed before.
The results in Tables 4 and 5 demonstrate that 1D-VD

model is capable to predict effective reaction rates with
maximum errors bounded by around 10% for the whole range
of Thiele modulus if critical parameters are kept below 90−95%
of the values leading to the onset of steady state multiplicity.
On the other hand, the 1D-GC model can introduce
unacceptable large errors; however, it can still be appropriate
for some shapes, as revealed by results of trilobe pellets and 1D-
GCγ model (Tables 4 and 5). Nonetheless, the possibility of
employing the 1D-GC model will need a previous study
performed on the specific 3D pellet shape.
The magnitude εmax is a stringent measure for assessing the

behavior of 1D approximations, since it arises from detecting
the Thiele modulus at which the maximum error is reached.
These values of Thiele modulus invariably are close to one. In
many problems, it is likely that relevant values of Φ lie outside
the region that gives rise to εmax. Therefore, it is important to
explore the behavior of the approximate models in the whole
range of Φ. Figure 2 presents values of η vs Φ for the 4-holes
pellet (Table 1) with infinite height (h = 1) and self-inhibited
isothermal reaction (δ = 0, n = 1, d = 2, κ = 8 in eq 23a). The
1D-VD model follows the results of the actual pellet very tightly
at both sides of the region around the maximum of η, where
εmax takes place. On the other hand, the 1D-GC not only
introduces differences in that region, but the errors are also

Table 3. Maximum Errors (εmax) in the Prediction of
Effectiveness Factor (η) Using 1D Approximations for
Infinite Pellet Height (H → ∞) Running an Irreversible
Zero-Order Reaction

pellet

kinetic
expression model

4-
holes trilobe

10-
holes

wagon
wheel

modified
4-holes

irreversible
zero-order
reaction (δ =
0, n = d, κ →
∞)

1D-VD 1.6 1.3 1.3 0.7 1.1
1D-GCγ 6.4 0.2 5.1 6.4 2.8
1D-GCΓ 14.0 0.8 15.8 6.4 7.4

Figure 1. εmax vs δ for the wagon wheel pellet from Table 1 (h = 1).
Irreversible first-order exothermic kinetic expression (n = 1, d = 0, eq
23a).
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significantly propagated either at high values of Φ (in the case
of the 1D-GCγ) or at low values (1D-GCΓ); i.e., in
correspondence to the criterion adopted to fix the shape factor
σ.
The distribution of errors shown in Figure 3, for the same

conditions as those in Figure 2, allows further visualization of

the behavior of the three approximate models. To quantify the
spreading of errors, we evaluated the average error

∫ε ε= | | Φ Φ − Φ
Φ

Φ
d /( )av 2 1

1

2

Table 4. Maximum Errors (εmax) in the Prediction of Effectiveness Factor (η) using 1D Approximations for Commercial Pellets
(Finite Height) and Different Abnormal Kinetic Expressions

pellet

kinetic expression model 4-holes trilobe 10-holes wagon wheel modified 4-holes

irreversible first-order exothermic reaction (δ = 4, n = 1, d = 0) 1D-VD 11.0 3.3 11.1 5.2 8.2
1D-GCγ 26.8 3.6 26.8 43.3 19.2
1D-GCΓ 36.1 36.4 32.6 36.0 22.8

irreversible second order exothermic reaction (δ = 5.5, n = 2, d = 0) 1D-VD 7.4 2.7 7.0 3.5 3.9
1D-GCγ 21.7 2.4 18.6 30.6 12.9
1D-GCΓ 31.7 25.2 27.7 24.1 15.2

reversible second-order exothermic reaction (δ = 9.5, CAe = 0.6) 1D-VD 10.2 3.3 10.8 5.0 7.9
1D-GCγ 26.5 3.5 26.2 42.4 18.7
1D-GCΓ 36.0 35.8 32.2 35.1 22.2

irreversible self-inhibited reaction (κ = 9, n = 1, d = 2) 1D-VD 6.2 2.7 5.5 3.3 6.7
1D-GCγ 18.7 2.8 21.6 24.8 15.6
1D-GCΓ 25.7 10.5 22.7 23.1 14.2

Table 5. Maximum Errors (εmax) in the Prediction of Effectiveness Factor (η) Using 1D Approximations for Infinite Pellet
Height (h → 1) and Different Abnormal Kinetic Expressions

pellet

kinetic expression model 4-holes trilobe 10-holes wagon wheel modified 4-holes

irreversible first-order exothermic reaction (δ = 3.7, n = 1, d = 0) 1D-VD 8.3 1.7 7.6 11.2 3.1
1D-GCγ 25.0 4.0 22.4 42.1 14.1
1D-GCΓ 34.8 2.8 31.9 20.0 21.0

irreversible second-order exothermic reaction (δ = 5.0, n = 2, d = 0) 1D-VD 5.8 1.3 2.6 6.0 1.1
1D-GCγ 17.6 1.3 13.1 24.4 8.1
1D-GCΓ 25.7 1.5 23.2 11.0 12.4

reversible second-order exothermic reaction (δ = 9, CAe = 0.6) 1D-VD 9.1 2.2 9.7 13.0 3.9
1D-GCγ 26.7 5.3 25.3 48.0 15.8
1D-GCΓ 37.7 3.7 34.2 22.7 23.9

irreversible self-inhibited reaction (κ = 8, n = 1,d = 2) 1D-VD 6.3 2.0 5.8 9.1 4.4
1D-GCγ 22.2 3.8 24.4 31.4 15.3
1D-GCΓ 33.1 1.6 27.2 24.3 14.4

Figure 2. η vs Φ for the 4-holes pellet from Table 1 (h = 1). Self-
inhibited isothermal kinetics (δ = 0, n = 1, d = 2, κ = 8).

Figure 3. ε vs Φ for the 4-holes pellet from Table 1 (h = 1). Self-
inhibited isothermal kinetics (δ = 0, n = 1, d = 2, κ = 8).
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in the range 0.5 < Φ < 2.5 of Figure 2. Values of εav are 11.3,
13.0, and 2.85% for the 1D-GCγ, 1D-GCΓ, and 1D-VD models,
respectively. Thus, it can be concluded that the 1D-VD model
not only assures acceptable maximum errors (εmax), but it
achieves a high level of precision within the whole range of Φ.
The same kind of behavior as that analyzed on the basis of

Figures 2 and 3 holds qualitatively for the other pellet shapes,
heights, and kinetics studied.
One additional aspect that deserves attention concerns the

criteria used to obtain parameter σ in the 1D-GC model. The
results discussed above show that the 1D-GC model with its
single parameter σ adjusted using the low-Φ (1D-GCγ) or
high-Φ (1D-GCΓ) series expansion cannot produce accurate
results for abnormal kinetics. However, it can be thought that
the lack of precision may arise from the criteria employed
rather than from the own structure of the model. To clarify this
point, having available the exact results for each of the 3D pellet
shapes, σ can be fixed using a direct optimization criterion. To
this end, we have chosen the minimization of εmax. A
representative example of the results obtained in this way is
provided by Figure 4, where values of η for the wagon wheel

pellet (finite height in Table 1) and irreversible first-order
exothermic kinetic expression (δ = 4.0, n = 1, d = 0, eq 23a) are
compared to values from the 1D-GC model with optimized σ
and from the 1D-VD model. It is evident from Figure 4 that
even using the best possible value of σ, the 1D-GC model
cannot predict values of η with similar precision as the 1D-VD
model can [εmax

1D‑GC(σopt=0.3) = 19.2% vs εmax
1D‑VD = 5.2%].

5. CONCLUSIONS
Two different 1D models intended to approximate the behavior
of 3D catalyst pellets have been evaluated in this contribution
for abnormal kinetics expressions: a three-parameter model
identified as the variable diffusion model (1D-VD) and a one-
parameter model called the generalized cylinder model (1D-
GC). Parameters of both models are evaluated by matching the
behavior of the actual 3D pellets at low and high reaction rates
(i.e., low and high Thiele modulus, Φ).

Several 3D pellets with shapes and dimensions taken from
manufacturers were employed for the study. Both models were
evaluated up to conditions close to the onset of steady state
multiplicity, at which maximum levels of error are found. It has
been shown that the applicability of the 1D-GC model,
irrespective of the criterion chosen to fix its parameter, lead at
the most stringent conditions to errors of up to near 50% in the
estimation of the effectiveness factor. Taking into account
results from previous contributions, it can be concluded that
the 1D-GC model can be employed with acceptable precision
for normal kinetics, but its general use for abnormal kinetics
cannot be recommended.
On the contrary, the 1D-VD model appears to be much more

robust for dealing with abnormal kinetics, as it can be employed
with suitable precision (maximum levels of errors in the order
of 10%) even at conditions close to steady state multiplicity.
The approach to the onset of multiplicity has been evaluated on
the basis of a critical kinetic parameter identified as being the
main cause of the abnormal behavior. If this critical kinetic
parameter takes less than 90% of its value defining the onset of
multiplicity, the 1D-VD model can be employed within the
quoted level of precision. Maximum errors from 1D models
take place close to the appearance of the maximum of
effectiveness factor as a function of Φ. Outside a small zone
of Φ around the value leading to the maximum, the errors from
the 1D-VD model rapidly diminish and becomes essentially nil
for most of the ranges of low and fast reactions.
A number of aspects deserve further studies to appraise

comprehensively the capability of 1D models, being one of the
most important the analysis of simultaneous multiple reactions,
as the saving in computing time when using a one-dimensional
approximation will be most significant.
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