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We study the spin dynamics of carriers due to the Rashba interaction in semiconductor quantum
disks and wells after excitation with light with orbital angular momentum. We find that although
twisted light transfers orbital angular momentum to the excited carriers and the Rashba interaction
conserves their total angular momentum, the resulting electronic spin dynamics is essentially the
same for excitation with light with orbital angular momentum l = +|l| and l = −|l|. The differences
between cases with different values of |l| are due to the excitation of states with slightly different
energies and not to the different angular momenta per se, and vanish for samples with large radii
where a k-space quasi-continuum limit can be established. These findings apply not only to the
Rashba interaction but also to all other envelope-function approximation spin-orbit Hamiltonians
like the Dresselhaus coupling.
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Light with orbital angular momentum (OAM), referred
to as twisted light, is a relatively new field of research
which has become increasingly popular [1–17] since Allen
et al. showed how twisted light beams can be easily gen-
erated from conventional laser beams [18]. Recently, the
theoretical foundation of the optical excitation of solids
and nanostructures with twisted light has been estab-
lished [19–27], and experimental studies with twisted
light on semiconductors have been carried out [28, 29].

One motivation for such studies is the prospect of us-
ing the large amounts of angular momentum that twisted
light can carry in order to control the spin dynamics of
electrons, thus adding a flexible tool to the active field of
spin control [30–39]. In this context two different mech-
anisms need to be distinguished. First, angular momen-
tum as well as energy selection rules can lead to selective
optical excitation of carriers with a preferred spin direc-
tion. This mechanism enables fast spin-selective prepara-
tion of states during the photoexcitation process and has
recently been studied for strongly confined systems such
as quantum dots [27] and quantum rings [23]. Secondly,
the spin-orbit interaction—like the Rashba [40] and Dres-
selhaus [41] couplings in semiconductor structures—is ex-
pected to couple the OAM of carriers transferred from
the twisted light [19, 22] to their spin degree of freedom.
This would provide a slower carrier spin control which
would be dynamical and would remain active after the
twisted light pulse.

In this Letter, we study the spin dynamics of carriers
in semiconductor quantum disks and wells excited with
twisted light taking into account the Rashba spin-orbit
interaction. Our central finding is that, rather unexpect-
edly, the spin dynamics of the photo-excited electrons
differs only slightly after excitation with light with and
without OAM in the limit of large quantum disks, be-
coming insensitive to the OAM content of the twisted

light beam for extended quantum wells. This result is
consistent with the outcome of recent experiments which
did not show traces of the OAM transferred from twisted
light to bulk GaAs in spin-resolved photoemission mea-
surements [29].

Analytically, we find that the Rashba interaction, while
conserving the total angular momentum of the electrons,
has matrix elements which are independent of the OAM
quantum number in the (k-space) quasi-continuum limit.
As a consequence, the induced spin dynamics is almost
identical, in particular, for twisted light with components
of the OAM in the growth direction l = +|l| and l = −|l|.
This finding can be generalized to all possible effective
spin-orbit interactions stemming from a lattice-periodic
potential in the envelope-function approximation, e. g.
the Dresselhaus coupling. Our results suggest that for
the search for materials supporting twisted-light based
spin control it is most promising to concentrate on small
quantum structures and other discrete systems.

The discussion of the optical excitation of electrons
with twisted light is especially clear when a basis of
cylindrical states is chosen [22]. The wave functions of
these basis states are expressed in cylindrical coordinates
{r, φ, z} as

ψbmν(r, φ, z) = NmνJm(kmνr)e
imφΦb(z), (1)

where Jm is the m-th Bessel function, Φb(z) is
the z-envelope of the b subband (the band index
includes the spin quantum number) and Nmν =
[
√
πRJm+1(kmνR)]−1 is the normalization factor. For a

circular quantum disk with radius R, width L and growth
direction z, the boundary conditions ψbmν(R,φ, z) = 0
are satisfied, if kmν = um,ν/R where um,ν is the ν-th
zero of the m-th Bessel function. Note that ψbmν is an
eigenstate of the z-component of the envelope OAM oper-
ator with eigenvalue ~m and kmν determines the kinetic
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FIG. 1. Diagonal elements of the density matrix ρcmνcmν after an excitation of a cylindrical quantum disk with radius R with
a box-shaped pulse of length t = 5 ps and orbital angular momentum l of the light. (a) and (b) show the occupations of a
R = 1.2 µm quantum disk with l = 0 and l = 5, respectively. (c) and (d) display the occupations for a larger R = 5 µm disk
with l = 0 and l = 5. For a better comparison, the matrix elements are plotted against the energies εcmν instead of the indices
ν and the absolute values of the occupations are rescaled.

energy of the state ψbmν , since in a parabolic band b
with effective mass m∗b the energy of the state is given
by εbmν = ~2k2

mν/(2m
∗
b). Note also how the precise lo-

cation of the energy eigenvalues is given by the zeros
of the Bessel functions; this detailed information will be
“smeared out” in the limit R→∞ as the allowed values
of k become a quasi-continuum. For the sake of sim-
plicity, we restrict our discussion to a case where only
spin degenerate conduction (b = c = {−1/2, 1/2}) and
heavy-hole (b = v = {−3/2, 3/2}) bands are considered.

The matrix elements of the twisted-light–matter inter-
action Hamiltonian HI (in the dipole approximation for
only the z-component) in the cylindrical basis states was
derived in Ref. 22:

〈cm′ν′|HI |vmν〉 = ξcvν′νm′e−iωtδm,m′−l, (2a)

ξcvν′νm′ = − e

me
A0 εσ · pcv〈Φc|δkz,qz |Φv〉Nm′ν′Nmν×

×
R∫
0

dr rJl(q‖r)Jm′(km′ν′r)Jm′−l(kmνr), (2b)

where e and me are the electron charge and (bare) mass,
A0 is the field strength, ω is the light frequency, q‖ the
in-plane and qz the growth-direction part of the light
wave vector, kz is the electron wave vector in the growth
direction, l the OAM of the light, εσ is the light polariza-
tion vector and pcv is the dipole matrix element between
heavy-hole and conduction band states. Note that pcv
contains spin selection rules. Let us consider the case
where due to excitation with circularly polarized light
only spin-up electrons are excited.

In Ref. 22 equations of motion were presented for
the density matrix under the influence of twisted light
switched on with constant amplitude at t = 0. In the
low-excitation limit, i.e. initially empty conduction and
filled valence bands excited with a moderate light field
so that the occupations can be well approximated by an
expansion up to second order in the field strength, we
find from Eqs. (16) and (17) of Ref. 22:

ρcmνc′m′ν′(t) =
∑
m1ν1v

δ 3
2 ,v
ξcvνν1mξ

∗
c′vν′ν1m′

[
1− e−i(εcmν−εc′m′ν′ )t/~

εcmν − εc′m′ν′

(
1

εc′m′ν′ − εvm1ν1 − ~ω
− 1

εcmν − εvm1ν1 − ~ω

)
+

+
1

(εcmν − εvm1ν1 − ~ω)(εc′m′ν′ − εvm1ν1 − ~ω)

(
ei(εc′m′ν′−εvm1ν1

−~ω)t/~ + e−i(εcmν−εvm1ν1
−~ω)t/~ − 2

)]
δmm′δc 1

2
δc′ 1

2
.

(3)

Thus, the optical excitation yields only diagonal ele- ments of ρcmνc′m′ν′ with respect to m. Also, we find
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from Eqs. (2) that for every electron with OAM m there
occurs an unoccupied state with OAM m − l in the va-
lence band, i.e. a hole with OAM l−m. From this we can
conclude that the total envelope OAM ltot induced in va-
lence and conduction band together is ltot = lNe~ where
Ne is the number of excited electrons or, equivalently,
holes. The distribution of the total orbital momentum
into conduction and valence band contributions depends
on the details of the band structure, the pulse duration
and the laser frequency. For example, for the effective
masses m∗c = 0.067me and m∗hh = 0.45me for conduction
and heavy-hole bands, respectively, an excitation with a
circularly polarized twisted-light pulse with OAM l = 5,
pulse duration t = 5 ps, and central frequency resonant
to the band gap leads to a total OAM in the conduction
band of ltotc = 2.866Ne~ for R = 1.2µm, ltotc = 3.145Ne~
for R = 5µm, and ltotc = 2.914Ne~ for R = 10µm.

Figure 1 shows the diagonal elements of the density
matrix ρcmνcmν for the excitation conditions described
above. The oscillatory structure of the occupations along
the energy axis can be attributed to the finite pulse du-
ration via the energy-time uncertainty relation. Along
the m axis, there are also oscillations in the occupations.
Since their frequency depends strongly on the radius R
of the sample and they get smeared out for large values
of R, we attribute these oscillations to finite size effects.
Note that in Fig. 1(b), where the occupation for light
with l = 5 is plotted, the states with the 5 lowest values
of m for every energy shell are empty (seen more clearly
at low energies), since there are no valence band states
which satisfy the condition m′ = m − l of the matrix
element in Eq. (2a). Figures 1(c) and (d) show that for
the larger R = 5 µm quantum disk, the difference be-
tween the occupations after l = 0 and l = 5 excitations
diminishes visibly.

Now, we focus on the spin dynamics after the optical
excitation. We study the effects of spin-orbit coupling
mechanisms, considering for concreteness the Rashba
Hamiltonian [40], HR, which is usually the dominant
mechanism in quasi-two-dimensional systems. In order
to better work with the cylindrical states given in Eq. (1),
we switch from the usual cartesian-coordinate expression
of HR to its expression in polar coordinates:

HR =~αR
(
kyσx − kxσy

)
= ~αR

(
s+∂− − s−∂+

)
, (4a)

∂± :=
∂

∂x
± i ∂

∂y
= e±iφ

(
∂

∂r
± i

r

∂

∂φ

)
, (4b)

where αR is the Rashba coefficient, σi and s± are the
Pauli matrices and spin raising and lowering operators,
respectively. With the relation

R∫
0

dr rJm(pr)Jm(qr) =

= R
pJm(qR)J ′m(pR)− qJm(pR)J ′m(qR)

q2 − p2
, (5)
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FIG. 2. Spin dynamics after excitation with twisted light
with orbital angular momentum l = {−5, 0, 5} and quantum-
disk radius R = 1.2µm and with l = {0, 5} and R =
{5µm, 10µm}.

it is straightforward to calculate the matrix elements of
HR with respect to the cylindrical states:

〈c′m′ν′|∂±|cmν〉 = δm′,m±1
2

R

kmνkm′ν′

k2
mν − k2

m′ν′
, (6a)

〈c′m′ν′|HR|cmν〉 =
~αRkmνkm′ν′

R(k2
mν − k2

m′ν′)
×

× (s+
c′cδm′,m−1−s−c′cδm′,m+1). (6b)

It can be seen from the form of the Rashba Hamiltonian
in cylindrical coordinates that an electron with spin-up
(down) and envelope OAM m flips to a state with spin-
down (up) and OAM m + 1 (m − 1). In this sense, ∂±

can be regarded as raising and lowering operators in m.
If HR is applied a second time, the electronic state is
transferred back to the initial spin and OAM state, while
a change in ν is possible. Note that the sum J = m + s
of the envelope OAM m and the spin s is conserved by
the Rashba Hamiltonian.

Having derived the matrix elements of HR in cylin-
drical coordinates, it is straightforward to calculate nu-
merically the time evolution of the density matrix, where
the initial conditions correspond to the final occupations
generated by optical excitation with light with OAM l,
illustrated in Fig. 1. The resulting dynamics for the
total conduction-band spin is shown in Fig. 2. We
show results for three different values of the disk radius,
R = {1.2, 5, 10}µm. As in the case of optical excita-
tion with light with zero OAM, the Rashba interaction
leads to a dephasing of the initial electron spins. Since
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for small disks only a finite number of states contributes
noticeably to the dynamics, oscillations are found which
do not cancel completely so that for long times the total
spin reaches a non-zero value. Note that the curves for
excitation with l = 5 and l = −5 almost coincide (shown
for R = 1.2µm). This unexpected result shows clearly
the insensitivity of the spin dynamics, in the presence of
the Rashba spin-orbit interaction, to the content of OAM
transferred from twisted light to the electron gas. For the
same quantum disk, an excitation with l = 0 produces
spin dynamics different from the l = ±5 excitation, but
this difference decreases for larger radii. This tendency
can be seen by comparing the excitation with l = 5 and
l = 0 for the three different values of R used in Fig. 2.

To understand this finding, it is useful to analyze the
case of an infinitely extended quantum well, obtained
letting R → ∞. In this limit, the discrete kmν become
continuous and the eigenstates can be written as

ψbkm(r, φ, z) :=

√
k

2π
Jm(kr)eimφΦb(z), (7)

with the orthogonality relation 〈bkm|b′k′m′〉 =
δbb′δmm′δ(k − k′). Using that Bessel functions satisfy

∞∫
0

dr rJm(kr)Jm(k′r) =
1

k
δ(k − k′), (8)

the corresponding matrix elements become

〈c′k′m′|∂±|ckm〉 = ∓kδm′,m±1δ(k − k′) (9a)

〈c′k′m′|HR|ckm〉 = ~αRk δ(k − k′)×
× (s+

c′cδm′,m−1+s−c′cδm′,m+1). (9b)

Thus, in the quasi-continuum limit, the prefactor of the
Rashba-interaction depends only on the energy of the
state via k but not on m. The spin dynamics is there-
fore a precession of the electron spin with a k-dependent
frequency which, for a given k, is the same for all differ-
ent values of m. Since the effect of the excitation with
twisted light was mainly that states with different m are
excited, it is now easy to see why, for extended systems,
the spin dynamics due to the Rashba Hamiltonian is al-
most the same for excitations with light with and without
OAM.

It is noteworthy that this statement is also true for all
effective Hamiltonians with a microscopic origin in the
lattice-periodic crystal potential such as the Dresselhaus
[41] spin-orbit coupling when treated in the envelope-
function approximation: For a lattice-periodic potential,
the solutions of the corresponding Schrödinger equation
are given by the Bloch theorem as ψ(r) ∝ eikrunk(r)
with lattice-periodic Bloch function unk(r), band index
n and wave-vector k. The envelope-function approxima-
tion consists of integrating over the plane-wave part of
the wave function yielding an effective Hamiltonian [42]
Heff for the unk which is diagonal in k and the matrix

elements can be written as a power series in k. The
resulting effective Hamiltonian can be rewritten by de-
composing kx and ky in terms of ∂+ and ∂−, as done
in Eqs. (4). Thus, the dependence of the matrix ele-
ments of Heff in cylindrical states on m is of the same
character as for the Rashba Hamiltonian and vanishes in
the quasi-continuum limit. For systems with finite size,
however, a weak dependence on m can be found due to
the m-dependence of the possible k-values in the prefac-
tor of the Rashba Hamiltonian in Eq. (6b). This means
that, e.g. for small quantum disks, where the energy sep-
aration between the discrete cylindrical states becomes
important, the OAM of the exciting light can influence
the spin dynamics significantly.

In conclusion, we have shown that although the OAM
of twisted light can be transferred into the envelope OAM
of electrons, the usual solid state spin-orbit interactions,
such as Rashba and Dresselhaus interactions, do not cou-
ple the envelope OAM of the carriers to their spin degree
of freedom in such a way that a significant difference in
the spin dynamics after excitation with light with and
without OAM is found in large extended systems. This
finding can explain that in recent experiments [29] no
influence of the light’s OAM on the spin polarization
was found. However, for cylindrical quantum disks with
small radii, the discreteness of the states plays an im-
portant role so that the spin dynamics indeed depends
on the OAM of the light. Nevertheless, also for small
systems, the spin dynamics after excitation with OAM
l = |l| and l = −|l| are very similar, in contrast to optical
excitation with opposite circular polarization, where the
spin dynamics acquires a different sign. Thus, twisted-
light based spin control is fundamentally different from
traditional spin orientation and combining these control
schemes should therefore open new ways for spin ma-
nipulation. Our findings have direct implications for the
search for systems where optical excitation with twisted
light can be used to manipulate the spin dynamics: A
continuum of states has to be avoided. Such systems can
be confined structures like quantum dots [27] and rings
[21, 23], discrete states due to multi-particle effects, e.g.
excitons or localized states due to impurities and surface
effects.
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P. Schlammes, T. Schäpers, M. Lepsa, G. Güntherodt,
and B. Beschoten, Phys. Rev. Lett. 105, 246603 (2010).

[36] F. G. G. Hernandez, G. M. Gusev, and A. K. Bakarov,
Phys. Rev. B 90, 041302 (2014).

[37] S. Kuhlen, K. Schmalbuch, M. Hagedorn, P. Schlammes,
M. Patt, M. Lepsa, G. Güntherodt, and B. Beschoten,
Phys. Rev. Lett. 109, 146603 (2012).

[38] E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khat-
sevich, J. E. Avron, and D. Gershoni, Phys. Rev. Lett.
107, 087401 (2011).

[39] A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev,
D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer,
Nature Physics 5, 262 (2009).

[40] Y. A. Bychkov and E. I. Rashba, Journal of Physics C:
Solid State Physics 17, 6039 (1984).

[41] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[42] G. Bastard, Wave Mechanics Applied to Semiconductor

Heterostructures, Monographies de physique (Les Edi-
tions de Physique, JOUVE, France, 1990) pp. 35–54.


