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Protein limitation has been considered a key factor in hypotheses on the evolution of life history and
animal communities, suggesting that animals should prioritize protein in their food choice. This
contrasts with the limited support that food selection studies have provided for such a priority in
nonhuman primates, particularly for folivores. Here, we suggest that this discrepancy can be resolved if
folivores only need to select for high protein leaves when average protein concentration in the habitat is
low. To test the prediction, we applied meta-analyses to analyze published and unpublished results of
food selection for protein and fiber concentrations from 24 studies (some with multiple species) of
folivorous primates. To counter potential methodological flaws, we differentiated between methods
analyzing total nitrogen and soluble protein concentrations. We used a meta-analysis to test for the
effect of protein on food selection by primates and found a significant effect of soluble protein
concentrations, but a non-significant effect for total nitrogen. Furthermore, selection for soluble protein
was reinforced in forests where protein was less available. Selection for low fiber content was significant
but unrelated to the fiber concentrations in representative leaf samples of a given forest. There was no
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relationship (either negative or positive) between the concentration of protein and fiber in the food or in
representative samples of leaves. Overall our study suggests that protein selection is influenced by the
protein availability in the environment, explaining the sometimes contradictory results in previous
studies on protein selection. Am. J. Primatol. © 2016 Wiley Periodicals, Inc.

Key words: food chemistry; food selection; leaf-eating; protein availability; meta-analysis

INTRODUCTION

Protein has been considered a major limiting
factor involved in the evolution of animal communi-
tiesand lifehistory traits [e.g.,White, 1993].Theneed
to satisfy protein requirements plays a central role in
hypotheses on the evolution of morphological, physi-
ological, and behavioral life history traits (such as gut
specialization, reducedmetabolism in folivores, social
systems linked to the distribution of different types of
food, habitatutilization, and community composition;
e.g., Mattson, 1980; Moore & Foley, 2005; White,
1993). The essentials of this ideahave been developed
for primates by Kay [1984] and illustrated by
Terborgh [1992]. Specifically, while most primates
eat fruit to satisfy their energy requirements, fruits
typically do not provide enough available protein for
survival and reproduction, though this may not
always be the case (reviewed by Klaasen & Nolet
[2008]; Ganzhorn et al. [2009]; Schwitzer et al.
[2009]). Therefore, smaller-bodied species feed on
insects to meet their protein needs. Larger species,
are unable to obtain enough protein from insects
because the capture rate of insects is independent of
body mass [Hladik, 1978; Rothman et al., 2014].
Consequently, they eat leaves, which usually contain
more protein than fruit and can be found in sufficient
quantities to satisfy their protein needs. According to
this scenario, within the broad constraints of body
mass, protein represents the ultimate factor that
determines whether a species is insectivorous or
folivorous. The idea that protein is limiting has
received support from the studies of Milton [1979],
Oates et al. [1990] and Davies and Oates [1994 and
their contributors]. Milton [1979] postulated that the
densities and biomass of folivorous howler monkeys
are closely related to the average leaf quality of a
forest expressed as the ratio of protein to fiber (most
commonly measured as acid detergent fiber [ADF])
concentrations. Oates et al. [1990] tested and found
support for this idea through a wide comparison of
colobinemonkeys. ADF concentrationswere included
because ADF should represent the refractory fraction
of the cell wall (celluloseþ lignin) and increasing
ADF concentrations are also likely to reflect greater
amounts of indigestible protein [Rothman et al.,
2008]. The concept of protein to fiber ratios was
extended to additional populations of colobines [e.g.,
Chapman et al., 2002, 2004; Fashing et al., 2007;
Wasserman & Chapman, 2003] and supported with

independent datasets on lemurs [Ganzhorn, 1992;
Simmen et al., 2012] and howler monkeys [Peres,
1997]. The biological relevance of this ratio has been
questioned based on biochemical considerations,
statistical issues around the use of ratios [Wallis
et al., 2012] and empirical grounds [Chapman et al.,
2004; Gogarten et al., 2012] but it seems to retain
some predictive capacity.

Restricting the considerations to protein alone,
several studies of folivores have shown that protein
can be limiting with lasting effects on development
and lifetime fitness [e.g., Altmann, 1991, 1998;
DeGabriel et al., 2009; Elias & Samonds, 1977;
Fleagle et al., 1975]. However, the evidence that
folivorous primates actually select leaves with high
protein content is ambiguous. Considering protein
alone, some studies found positive selection by
primates for high protein leaves [e.g., New World
howler monkeys: Milton, 1979, 1998; Glander, 1981;
Old World non- colobine monkeys: Beeson, 1989;
Barton &Whiten, 1994;Old World colobines: Davies
et al., 1988; Koenig et al., 1998; Mowry et al., 1996;
Waterman et al., 1988; Yeager et al., 1997; Apes:
Calvert, 1985; Lemurs: Ganzhorn, 1988, 1992, 2002;
Mutschler, 1999] but others failed to do so [e.g., New
World howler monkeys: Gaulin & Gaulin, 1982;
Estrada & Coates-Estrada, 1986; Occhibove et al.,
2015; Old World colobines: Chapman et al., 2002;
Dasilva, 1994; Kool, 1992; McKey et al., 1981; Oates
et al., 1980; Waterman et al., 1988; Apes: Conklin-
Brittain et al., 1998; Rothman et al., 2011; Lemurs:
Ganzhorn, 1988; Ganzhorn et al., 2004; Simmen
et al., 2014]. Thus, we are left with the conundrum
that protein is hypothesized to be an important
component in primate food selection while only about
half of the studies on food selection criteria demon-
strate that primates actively select high protein
leaves. This discrepancy can be due to methodologi-
cal, ecological, or species-specific reasons, or the
hypothesis may simply be wrong.

On the methodological side, different studies
differ widely in statistical power of their conclu-
sions and have applied different methods to
measure “protein.” The statistical aspect can be
reconciled by meta-analyses [e.g., Starrs et al.,
2014]. The chemical aspects are more complex.
While the conventional method of measuring crude
protein uses total nitrogen concentrations multi-
plied by 6.25 (or a species specific factor [Milton &
Dintzis, 1981]) as a surrogate for protein, this
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measure does not actually distinguish between
protein and non-protein nitrogen [e.g., N in cyano-
genic glycosides, non-protein amino acids, nitrates,
or alkaloids], or between available protein and
protein bound to other components and thus
unavailable for digestion [DeGabriel et al., 2008;
Rothman et al., 2008]. To overcome this shortcom-
ing, some studies have analyzed total amino acids
[e.g., Curtis, 2004; Glander, 1981; Mutschler, 1999;
Simmen & Sabatier, 1996] or soluble protein [e.g.,
Conklin-Brittain et al., 1999; Ganzhorn, 1988;
Koenig et al., 1998; for methodological consider-
ations see Ortmann et al., 2006; Rothman et al.,
2012]. Although the selection for high protein items
was more consistent in studies that analyzed
soluble protein than in studies based on crude
protein, none of these methods accounts for differ-
ences in protein quality (defined by essential amino
acids), or digestibility [DeGabriel et al., 2014; NRC,
2003; Robbins, 1983; Wallis et al., 2012].

From an ecological perspective, the lack of
positive selection for high protein items could also
be explained by the assumption that primates are
able to satisfy their protein requirements with a diet
containing about 6.4–8% crude protein [NRC, 2003].
The crude protein concentration of leaves and the
average concentration of protein in primate foods
are around or well above these requirements [e.g.,
Conklin-Brittain et al., 1998; Ganzhorn et al., 2009;
Hladik, 1977; Oftedal, 1991]. Thus, primates might
not need to select high protein items but could simply
feed according to the average availability of protein
in the environment provided that the digestibility of
protein from the food was not reduced by other
components such as fiber or tannins [Mowry et al.,
1996; Simmen et al., 2014; Yeager et al., 1997].

Deviations from selecting high protein leaves
may also be caused by species-specific adaptation of
gutmorphology [Campbell et al., 1999, 2004; Chivers
et al., 1984; Cork & Foley 1991; Edwards & Ullrey,
1999a,b; Godfrey et al., 2004; Hughes, 1993; Lam-
bert, 1998; Langer & Chivers, 1994; Milton, 1998,
1999; Van Soest, 1994]. Yet, studies on possible effect
of bodymass and gut physiology remain inconclusive,
supporting the conclusion that body mass is not a
useful surrogate to understand primate feeding and
digestion, including protein requirements [Lambert,
1998]. For example, Campbell et al. [2004] found that
different adaptations of the digestive tract result in
food passage times largely independent of body mass
[see also Clauss et al., 2008], such as larger primate
species with foregut fermentation (Colobinae) or
hindgut fermentation (gorillas), and small primates
with hindgut fermentation and caecotropy (e.g.,
Lepilemur spp.) [Charles-Dominique & Hladik
1971], or enlargement of the small intestine (In-
driidae).With respect to protein digestion, there is no
evidence that there is a difference between the
primate digestion types [Schwarm et al., 2009]. Also,

the typical effect of sorting or digesta washing
evident in other mammals is not visible in the
primate hindgut-foregut dichotomy [M€uller et al.,
2011], and there is no indication for a functional
sorting mechanism in the colobine primate foregut
[Matsuda et al., 2015].

In order to investigate protein and fiber selection
in folivorous primates, we consider the availability of
protein and fiber in the environment and test the
hypothesis that these components are limiting
primate food selection and therefore primates should
search for high protein and/or low fiber leaves.
According to this hypothesis, selection for high
protein items would not be necessary if animals
could obtain enough protein from their overall diet.
However, if protein concentrations in the environ-
ment are low, folivorous primates should seek high
protein leaves. Therefore, we predict that selectivity
for high protein leaves declines with increasing
average protein content in leaves encountered by
the animals in their home range. We expect there to
be an inverse relationship between concentrations of
protein and fiber in foliage reflecting a maturation
of the leaf ontogenetically and temporally. We also
tested for this relationship and separately tested
whether fiber in the food selected differed from that
of a general sample.

METHODS
Database

The analyses presented here are based on
published data from all primate radiations (except
for apes; see below), supplemented by new data from
folivorous primates from Madagascar and the New
World (Table I). Analyses were restricted to forest-
dwelling species that have been classified as “foli-
vores” because the majority of their food items were
from photosynthetic material [Kappeler & Hey-
mann, 1996]. As more studies are conducted, it
appears that the classification of species into specific
feeding guilds does not reflect the species-specific
variability of diet [Garber et al., 2015; Hemingway &
Bynum, 2005]. Thus, we call those species “folivores”
that are supposed to derive their protein from leaves
and not insects according to Kay’s [1984] hypothesis.

Species that feed primarily on the leaves of
grasses, bamboo (Hapalemur spp., Prolemur simus)
and herbs (Gorilla spp.) were not included, as grass
and herbs have different physico-chemical properties
than leaves from trees, such as different lignin, a
general lack of tannins and incorporation of silica in
grasses [Robbins, 1983]. We also included body mass
in the database provided in Table I to facilitate
further comparisons. Data for primate body mass
were taken from Smith & Jungers [1997] and
Mittermeier et al. [2010] and averaged between
sexes.
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Food Types and Nutritional Analyses

Foods included in the present analysis were
leaves or flower buds from trees, shrubs, or vines.We
further restricted the analysis to concentrations of
total nitrogen (measured by the Kjeldahl method), or
by a combustion procedure with subsequent analysis
of elementary nitrogen (the Dumas method), or
based on near infrared reflectance spectroscopy
(NIRS) (calibrated against the Kjeldahl or Dumas
method), soluble protein and ADF. Data presented
as “crude protein” (i.e., total nitrogen multiplied by
6.25) were re-transformed to total nitrogen concen-
tration as the biological significance of the conver-
sion factor is presently debated and its biological
meaning is unclear ([Milton & Dintzis, 1981; NRC,
2003]; for methodological details and reviews see
[Foley et al., 1998; Ortmann et al., 2006; Rothman
et al., 2012; Stolter et al., 2006]). The Kjeldahl and
Dumas methods yield almost identical results
(regression between nitrogen measured by Kjeldahl
[y] and by the Dumas method [x] forced through
the origin: y¼0.94x; R2¼ 0.99; n¼ 90; [Terboven,
2014]).

Studies that published soluble protein concentra-
tions (measured by the method outlined by Bradford
[1976]) but without estimates of crude protein were
included in the analysis, when available. However,
these two datasets were analyzed separately. “Avail-
able protein” would be a more biologically appropriate
measure of protein than crude protein [DeGabriel
et al., 2008, 2014; Wallis et al., 2012]. Yet, to date,
too few data exist for available protein to allow for
comparative analyses.

In primate studies, fiber concentrations aremost
commonly reported as ADF. However, not all studies
report exact details of the procedures (e.g., whether
ADF is analyzed sequentially following isolation of
neutral detergent fiber [NDF]). In addition, most
studies do not specify whether ADF is reported on an
ash-free basis or corrections are made for residual
dry matter. Furthermore, there is little appreciation
in primate literature that fiber residues can be
contaminated with tannin-protein complexes [Wallis
et al., 2012]. All these factors can contribute to
unknown errors in the reported ADF concentrations
but how significant they are in different studies
is hard to gauge and it is not possible to apply
a consistent correction factor to compensate for
methodological differences. We emphasize the need
for rigorous analysis to avoid these uncertainties
[Rothman et al., 2012]. As a result, the accuracy of
the “ADF” data is likely to be low and conclusions
derived from fiber concentrations should be consid-
ered with these limitations in mind.

All as yet unpublished chemical analyses were
carried out in the laboratory of the University of
Hamburg [Donati et al., 2007] (Table I). All results
are expressed as % of dry matter.

Quality of Leaves Available in Different
Forests (“Representative Samples”)

Most measures of the availability of protein and
leaf quality in different forests (here termed “repre-
sentative samples”) are based on mature tree leaves.
Leaves were collected opportunistically or from the
most abundant tree species and were assumed to
represent a proxy for leaf quality available in that
forest [e.g., Chapman et al., 2002, 2004; Ganzhorn,
1992; Oates et al., 1990; Simmen et al., 2014;
Wasserman & Chapman, 2003]. The representative
samples for Propithecus edwardsi in Ranomafana
(Madagascar) were based on 14 tree species sampled
at random [Wright &Daniels, unpubl.]. ForAlouatta
palliata in Los Tuxtlas (Mexico) leaves not consumed
by ants (Atta) were used as a representative sample
[Estrada & Coates-Estrada, 1986].

Some studies collected separate representative
samples for young and mature leaves [Estrada &
Coates-Estrada, 1986; Liu et al., 2013] or separate
samples for the wet and the dry season [Ganzhorn,
2002]. These samples were considered as indepen-
dent data points since the concentrations of chemical
components vary significantly between sites and
seasons, and were entered in the analyses as
independent units. Our rationale is that we wanted
to have some measure of leaf nutritional quality in
samples of leaves that we could use for the analyses
of selection of leaves consumed as food against this
representative sample (see “Selection Criteria for
Consumed Leaves” below).

Selection Criteria for Consumed Leaves
Statistical analyses of selection criteria were

restricted to photosynthetic parts (leaves, sometimes
differentiated in different parts of leaves). If possible,
analyses of selection were restricted to the same
types of plant parts becausewewanted to knowwhen
selection occurs with respect to the representative
sample. For example; if the representative sample
consisted of mature leaves, then only food items
consisting of mature leaves were considered. If the
representative sample consisted of young leaves,
then only young leaf food items were considered.

Selection criteria were based on comparisons of
leaves that were consumed with representative
samples from the forest, or leaves consumed were
compared with those that were not eaten. P values
listed in Table I are based on t- tests.

Statistical Analyses
Published data are based on the analysis of a

single individual per plant species or averages based
on several different individuals of the same plant
species or on averages weighted by the frequency of
abundance or the frequency of consumption. When
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possible, we base our analyses on unweighted means
of plant species. Surprisingly, and despite the known
temporal and inter- individual variation within
plant species [Chapman et al., 2003; Ganzhorn &
Wright 1994], the variation between weighted and
unweighted samples seems to average out in large
samples (Table II). Statistical tests were made with
SPSS 21.0.

Meta-analysis is a powerful tool to explore
the significance and consistency of findings across
multiple, independent studies [Borenstein et al.,
2009; Starrs et al., 2014]. Effect size meta-analysis
was conducted on data extracted from studies that
explicitly examined total nitrogen, soluble protein
and/or acid detergent fiber content. Data collection
was restricted to those studies that provided means,
standard deviations and sample sizes of a represen-
tative sample of eaten foods, and a “representative
sample” of foliage roughly matching that selected by
the primate. Where a t-statistic, P-value and sample
sizewas presented, thiswas included. Data reporting
correlations between nutritional quality and rank
order of preferencewere not included in this analysis,
as these data are not directly comparable in the
meta- analyses [e.g., Oates et al., 1980; McKey et al.,
1981].

Effect sizes (Hedges’ g) and variance of Hedges’ g
were calculated for each independent comparison
from all studies. Where a representative sample
was shared between multiple comparisons, a single
composite effect was calculated, as these cannot
be considered totally independent. In addition, the
meanvalueof therepresentative samplewas included
to allow for examination between the strength of
effect size, and nutritional quality of the habitat
examined.

Six separate random effects meta- analyses with
inverse-variance weights were performed each on
the nitrogen, soluble protein and acid detergent
fiber data sets. Firstly, the meta-analytic mean and
variance was calculated to determine if there was a

significant effect. Examination for between-study
heterogeneity was performed using Q-tests. An
additional meta-analysis was then conducted on
each dataset to determine if the representative
sample was a significant moderator variable. Tests
for significant residual heterogeneity was under-
taken using QE tests to determine if additional
moderator variables may be required to further
explain between-study variation in effects. Sensitiv-
ity of analyses was conducted using leave-one-out
analyses to explore whether inclusion of additional
future studies may alter the conclusions drawn from
these analyses. Finally, forest plots were produced to
visualize the results. Effect sizes were calculated
using the R package “compute.es” (version 0.2.1,
Del Re, 2012), and meta-analyses conducted using
the package “metafor” [version 1.7–0, Viechtbauer,
2010].

Ethical Statement
Weconfirm that the research adhered to the legal

requirements of the country in which the research
was conducted and that this research adhered to the
American Society of Primatologists (ASP) Principles
for the Ethical Treatment of Non-Human Primates.

RESULTS
Correlations Between Chemical Components

Nitrogen and soluble protein concentrations
could not be correlated due to the small number of
studies where both components have been measured
(Table I). Both of these protein measures were
uncorrelated with ADF concentrations in food items
(Pearson correlations based on means given in
Table I: Nitrogen-ADF: r¼ 0.14, N¼ 16, P¼0.595;
soluble protein—ADF: r¼0.08,N¼17, P¼ 0.76) and
both components were also uncorrelatedwith ADF in
the representative samples of leaves (nitrogen-ADF:

TABLE II. Comparison of the Concentration of Chemical Components in Leaves Based on Measures of Several
Individuals of the Same Plant Species and on the Mean Per Plant Species

Nitrogen Soluble protein ADF

Propithecus edwardsi
Several measures per plant species 2.16� 0.82 5.53� 2.60 26.57� 6.95

N¼ 100 N¼ 100 N¼ 100
Mean per plant species 2.17� 0.91 6.01� 2.76 30.86� 6.96

N¼ 14 N¼14 N¼ 14
Propithecus candidus

Several measures per plant species 1.38� 0.49 6.38� 3.00 33.76� 9.87
N¼ 309 N¼ 310 N¼ 303

Mean per plant species 1.31� 0.42 6.27� 2.80 34.04� 8.42
N¼ 62 N¼62 N¼ 61

Values are means� standard deviations; N¼ sample size. Data on Propithecus edwardsi from Arrigo-Nelson [2006] based on mature leaves; data on P.
candidus from Patel [2012], restricted to leaves of species identified unambiguously.
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r¼�0.41, N¼ 12, P¼ 0.181; soluble protein—ADF:
r¼�0.12, N¼ 11, P¼0.73; Table I).

Meta-Analyses of Food Selection
Nitrogen

A meta-analysis of 18 effect sizes revealed a
positive but non-significant effect of selection by
primates for foliage with higher than average
nitrogen content (mean effect size, g¼0.34, n¼ 18,
95% confidence interval (CI):�0.05 to 0.73, P¼ 0.09)
(Table I, Fig. 1a). Furthermore, there was significant
between-study heterogeneity in effect sizes
(I2¼87.3%) (Q17¼ 326.3, P<0.0001). Inclusion of
the nitrogen concentration of a representative
sample as a moderator variable was marginally
nonsignificant (coefficient¼�0.60, n¼ 18, 95%CI:
�1.21 to 0.00, P¼0.051), yet indicated an effect of
reduced selectivity when the nitrogen concentration
of a representative sample was higher. There was
significant residual heterogeneity remaining (QE16
¼ 172.2, P<0.0001), indicating that additional fac-
tors may explain the variance between studies. A
leave-one-out analysis produced a range of mean g of
0.19–0.39. Removal of one particular effect size
resulted in a positive, significant mean g, indicating
that inclusion of additional studies could consider-
ably alter the observed effect.

Soluble protein
A meta-analysis of 12 effect sizes revealed

significant, positive effect of selection for foods of
higher than average soluble protein content (mean
g¼ 0.55, n¼12, 95%CI: 0.26–0.84, P<0.0001)
(Table I, Fig. 1b). There was considerable and
significant between-study heterogeneity (I2¼67.7%,
Q11¼ 36.6, P¼ 0.0001). Including the soluble protein
concentrationof a representative sampleasamoderator
variable produced a significant negative effect of
protein content onselectivity byprimates (coefficient¼
�0.22, n¼12, 95%CI: �0.40 to 0.04, P¼0.013).
Significant residual heterogeneity remained (QE10¼
19.5, P¼0.03), suggesting that additional factors
may yet further explain the between-study heteroge-
neity. Finally, a leave-one-out analysis produced a
range of mean g of 0.47–0.65, however, the signifi-
cance of this meta-analysis was robust to removal
of individual effects, suggesting that inclusion of
additional studies is unlikely to significantly alter the
result.

Acid detergent fiber
A meta-analysis of 26 effect sizes revealed a

significant, negative effect of acid detergent fiber
content on selectivity by primates (meang¼�0.72,
n¼26, 95%CI: �1.04 to �0.40, P< 0.0001) (Table I,
Fig. 1c). There was considerable and significant
between-study heterogeneity (I2¼ 84.3%, Q25¼ 305.0,
P< 0.0001). Inclusion of the acid detergent fiber

concentrationofarepresentativesampleasamoderator
variable was non-significant (coefficient¼�0.16,
n¼ 26, 95%CI: �0.048 to 0.015, P¼ 0.31). Significant
residual heterogeneity remained, suggesting that
additional moderator variables are required to explain
the between-study variation in effects (QE24¼ 300.8,
P< 0.0001). A leave-one-out analysis produced a range
of mean g of �0.76 to �0.59. The removal of any
individual effecthadno significant impact on themodel,
suggesting that additional studies are unlikely to
influence this result.

DISCUSSION
The present analysis sought to better under-

stand the discrepancy between the findings of some
studies that identify protein as a limiting resource,
including those that focus on non-human primates
[Kay, 1984] and others that find no evidence for this
phenomenon. Primates (and animals in general)
need to satisfy their protein needs by selecting
protein- rich food, but we found that many primato-
logical studies failed to demonstrate such a selection
for high protein food (Table I). A number of studies
have pointed out that selection of high protein food
would only be required if the food items in the
environment have average protein concentrations
below the required needs [e.g., Ganzhorn et al., 2009;
Mowry et al., 1996; Simmen et al., 2014; Yeager et al.,
1997] and that, once average protein concentrations
are above requirements, selection could be based on
other components and criteria, such as the availabil-
ity within the environment [e.g., Fashing et al., 2007;
Oftedal, 1991] or secondary plant chemicals [Moore
& Foley, 2005]. While this idea has been around for
some time, it has rarely been tested in folivores
[Jensen et al., 2015; Marsh et al., 2014]. Instead,
studies started to focus on long-term nutrient
budgets and nutrient balancing using the conceptual
approach of geometric frameworks [e.g., DeGabriel
et al., 2014; Felton et al., 2009; Irwin et al., 2014;
Johnson et al., 2013; Rothman et al., 2011], on new
methods on how to measure protein that is actually
available [DeGabriel et al., 2008], or on an under-
standing of other confounding variables [Wallis
et al., 2012]. Our results indicate that primates
select for high protein leaves mainly in situations
where the average protein content of leaves in a
forest is low. No such correlation was found with
respect to fiber concentrations. Thus, it appears
that protein is limiting for folivorous primates
under certain conditions, but clearly not in the
majority of tropical forests studied. In contrast,
we found no evidence of an inverse relationship
between protein and fiber concentrations in food.
As such, primates discriminated against fiber, yet
contrary to the situation with protein, the fiber
concentrations in the representative samples of
leaves had no effect on fiber discrimination. We
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Fig. 1. Forest plots of standardized effect sizes (Hedges’ g) �95% confidence intervals of leaf selection in relation to (A) nitrogen,
(B) soluble protein, and (C) acid detergent fiber (ADF). Random effect metaanalytic mean effect size�95% confidence interval
(RE Model) is shown at the bottom of each panel. Vertical dotted lines indicate zero (no effect). “Multiple spp.” include Avahi laniger,
Eulemur fulvus, Indri indri, and Lepilemur microdon for Perinet, Avahi occidentalis, Lepilemur edwardsi, and Propithecus coquereli
for the forest of Ampijoroa, and Eulemur rufifrons and Propithecus verreauxi for Morondava (Site CN5).
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cannot judge whether there is a significant effect of
methodology on this result but it is clear that fiber
is analyzed inconsistently in primatological studies
with little regard to the effects of ash, tannins or
other interfering substances [Makkar & Singh, 1995;
Wallis et al., 2012].

Our comparative study also indicates a funda-
mental problem of field studies on food selection.
Animals are most frequently studied where they
occur in high densities. These are probably the best
areas for survival and reproduction with high
quality food availability. Under these conditions,
it is probably hard, if not impossible, to identify
factors that are actually limiting. Having enjoyed
considerable time in forests with plentiful animals,
it may be an unfortunate conclusion, but in order to
find out what limits primates, researchers will
likely need to turn their attention to regions where
animals are naturally scarce [e.g., Stalenberg et al.,
2014].
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