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Fax: þ54-2241-424048; E-mail: hrosli@intech.gov.ar

Abstract

Tomato (Solanum lycopersicum), along with many other economically valuable species, belongs to the Solanaceae family.
Understanding how plants in this family defend themselves against pathogens offers the opportunity of improving yield
and quality of their edible products. The use of functional genomics has contributed to this purpose through both trad-
itional and recently developed techniques that allow determination of changes in transcript abundance during pathogen
attack. Such changes can implicate the affected gene as participating in plant defense. Testing the involvement of these
candidate genes in defense has relied largely on posttranscriptional gene silencing, particularly virus-induced gene silenc-
ing. We discuss how functional genomics has played a key role in our current understanding of the defense response in
tomato and related species and what are the challenges and opportunities for the future.
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Introduction

Plants have evolved defense mechanisms to survive in an envir-
onment populated with phytopathogens. Current models include
a first layer of defense against microbes that is activated by the
recognition of highly conserved molecular features (microbe-
associated molecular patterns, MAMPs). Examples of MAMPs in-
clude bacterial flagellin and fungal chitin. Plants perceive the
presence of MAMPs in the apoplastic space through membrane-
associated receptors or pattern-recognition receptors (PRRs) and
activate a defense response termed pattern-triggered immunity
(PTI) [1]. Additional membrane-associated receptors are involved
in the recognition of damage-associated molecular patterns,
such as endogenous peptides [2] and oligogalacturonides [3] that
are released upon damage or pathogen recognition. The detec-
tion of some proteins secreted by fungi, such as AVR9 from
Cladosporium fulvum, also relies on PRRs [4]. Insect chewing is
associated with the release of herbivore-associated molecular
patterns that trigger plant defense responses, different from
those that result from mechanical damage [5].

Certain pathogens deliver effectors that are able to suppress
PTI activation signaling [6]. An additional level of defense
termed effector-triggered immunity (ETI) is activated when
plants detect, through intracellular receptors (R proteins), the
activity of pathogen effectors [7]. A localized programmed cell
death or hypersensitive response (HR) is usually associated
with ETI activation, which leads to the suppression of pathogen
growth [8].

The Solanaceae family includes many economically import-
ant species such as tomato (Solanum lycopersicum), potato, egg-
plant, pepper, petunia and tobacco. Because of tomato’s
relevance as fresh and processed produce, there is great interest
in using genomic resources to improve this crop [9]. Tomato is
susceptible to a wide range of pathogens including bacteria,
fungi, oomycetes, viruses and nematodes [10] and has become
one of the model species within this family for the study of
plant defense mechanisms [11]. A high degree of gene sequence
similarity among the Solanaceae [12] raises the possibility of
transferring knowledge generated using tomato to other species
and vice versa. Wild relatives of tomato also provide a source of
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valuable traits, which can be introgressed into cultivated to-
mato. In this sense, natural resistance to pathogens has proven
useful in the identification of novel immune-related genes
[13–19]. A high-quality genome sequence for tomato became
available in 2012 [20], further enhancing the use of this species
as a model to study plant defensive mechanisms.

In this review, we focus on the use of functional genomics as
a means to study tomato plant immunity. In particular, we dis-
cuss how different experimental approaches have been used to
enhance our knowledge in this field.

Mutagenesis approach

A thorough overview of mutagenesis in tomato has been pre-
sented elsewhere [21]. This approach requires a subsequent
screening method that relies on identifying individuals with the
phenotype of interest. The Pto gene, which encodes a serine/
threonine kinase, confers tomato resistance to Pseudomonas
syringae pv. tomato (Pst) strains carrying AvrPto and/or AvrPtoB
effectors [22]. Pto-mediated resistance requires Prf, an NBS-LRR
(nucleotide-binding site/leucine rich repeat) protein identified
through mutagenesis with diepoxibutane and fast neutron ir-
radiation, followed by map-based cloning [23, 24].

Part of the complex response of plants to herbivore insects
involves the transcriptional activation of genes encoding prote-
ase inhibitors (PIs) that reduce the activity of digestive enzymes
present in the herbivore gut [25]. An 18-amino acid peptide iso-
lated from wounded tomato leaves, named systemin, was
found to induce gene expression of PIs [26]. Later studies
showed that systemin originates through proteolytic cleavage
of prosystemin (Solyc05g051750), a larger precursor protein [27],
and that prosystemin overexpression under the CaMV 35S pro-
moter (35S::PS) results in plants with a higher basal level of PIs
in the absence of insect challenge [28]. Systemin is the molecu-
lar link between herbivore wounding and the signaling cascade,
which leads to increased levels of the phytohormone jasmonic
acid (JA) and the consequent transcriptional activation of de-
fense genes [29]. Howe et al. [30] used a mutagenesis approach
with ethyl methanesulfonate (EMS) on 35S::PS tomato plants to
identify components of the systemin-dependent response.
Non-mutagenized overexpressing lines possessed several-fold
higher polyphenol oxidase activity compared with wild-type
plants [31]. This characteristic was used to perform a rapid
screening to identify spr (suppressor of prosystemin-mediated re-
sponses) mutants. The use of map-based cloning allowed the
identification of Spr2 or LeFad7 (Solyc06g051400) that encodes a
chloroplastic fatty acid desaturase that participates in JA syn-
thesis and whose mutation resulted in increased susceptibility
to tobacco hornworm larvae [32]. Recently, also with the use of
map-based cloning, Spr8 or TomLoxD (Solyc03g122340) was
found to encode for a chloroplast-localized lipoxygenase that is
involved in JA biosynthesis [33]. In this case, overexpression of
TomLoxD led to increased immunity against cotton bollworm
larvae and Botrytis cinerea.

Mutagenesis was also successfully used to study the inter-
action between tomato and C. fulvum. This pathogen secretes
avirulence (Avr) proteins that trigger an HR-based immune re-
sponse that arrests fungal growth in resistant tomato plants ex-
pressing the corresponding Cf resistance protein [4]. The
tomato Cf-9 gene, which was identified using a transposon tag-
ging approach [34], encodes a membrane-anchored protein with
LRRs that confers resistance to C. fulvum strains expressing the
corresponding Avr9 protein [35]. Cf-2 from resistant Solanum
pimpinellifolium has been bred into commercial tomato [15].

Using such resistant plants, Dixon et al. [36] performed muta-
genesis with EMS or diepoxybutane and tested for compromised
resistance to C. fulvum. The screening strategy involved the use
of a C. fulvum race 4 b-glucuronidase (GUS) whose growth can be
followed both by macroscopic abundance of mycelium and a
GUS activity assay. This study led, by using positional cloning,
to the identification of Rcr3 (required for C. fulvum resistance 3;
Solyc02g076980) that encodes a secreted cysteine protease
required for Cf-2-dependent response [36, 37].

A system for studying the interaction of tomato and the
oomycete Phytophthora infestans that can be combined with mu-
tagenesis was recently developed by Jia et al. [38]. The potato
gene R3a confers resistance to P. infestans strains expressing the
corresponding avirulence gene, Avr3a [39, 40]. Co-expression in
tomato of this pair of genes results in HR development, suggest-
ing a conserved signaling cascade. In the future, mutant screen-
ings using this overexpressing line could help in the
identification of novel Avr3a/R3a signaling components.

Mutagenesis has been used in combination with TILLING
(targeting induced local lesions in genomes) [41, 42] as a means
of identifying individuals that carry mutations in a specific gene
[43, 44]. Piron et al. [45] generated a tomato-based TILLING plat-
form to identify individuals with mutations in the eukaryotic
initiation factor 4E [46, 47] associated with resistance to mem-
bers of the Potyvirus genus.

In recent years, precise genome-editing strategies have been
developed [48]. Even though these have not been used yet to
study tomato immunity, they present a promising approach.
Zn-finger nucleases [49] and TALE (transcription activator-like
effectors) nucleases [50, 51] can be modified to target specific
genomic regions to generate double-stranded cleavage sites
that when repaired by plant cell machinery result in a broad
range of mutations. The use of CRISPR (clustered regularly inter-
spaced short palindromic repeats) approach has emerged as a
particularly powerful genome-editing tool. This method relies
on RNA-guided endonucleases (such as Cas9, for CRISPR-
associated nuclease 9) that can direct a double-stranded DNA
break at a specific target sequence with an associated higher
mutagenesis rate, compared with Zn-finger or TALE approaches
[48, 52].

Differential transcript abundance approach

A popular approach for functional genomics of plant immunity
is to investigate differences in transcript abundance when
comparing different treatment conditions. This approach
usually results in the identification of a set of candidate genes
and requires further investigation of their involvement in plant
defense. In this section, we discuss examples that range from
pioneering to the most recent techniques, focusing on those
studies that led to the identification and characterization of
novel genes involved in immunity. Even though they can be in-
formative, we will not address examples of general descriptive
transcriptomic studies.

Differential complementary DNA libraries

The use of complementary DNA (cDNA) libraries to identify
differentially expressed genes relies on the differential hybrid-
ization or subtraction between cDNAs derived from the tissues
under study. This technique was used for the identification of
genes encoding components of tomato immunity against
‘Tomato yellow leaf curl virus’ (TYLCV) [53–55]. Comparing
cDNAs from a susceptible and a resistant tomato line
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challenged with TYLCV, 70 candidate genes with higher expres-
sion levels in the resistant plants were identified. Further ana-
lysis of this set of genes using virus-induced gene silencing
(VIGS, see section below) in the resistant line background, led to
the identification of a permease-like protein (Solyc03g114030), a
hexose transporter (LeHT1; Solyc02g079220) and a lipocain-like
protein (SlVRSLip; Solyc10g0744580), as having a key role in the
resistance to TYLCV.

This approach has also been used to study the interaction
between tomato and the parasitic plant Cuscuta reflexa. Albert
et al. [56] identified 15 genes upregulated in infected (12 h post-
inoculation, hpi) plants. A gene encoding an arabinogalactan
protein (attAGP; Solyc08g078020) was further studied owing to
its predicted extracellular localization. Silencing attAGP using
VIGS and interference RNA resulted in a looser attachment of C.
reflexa to tomato stems.

Selective fragment amplification

DNA-AFLP
The cDNA amplified fragment length polymorphism (cDNA-
AFLP) method is based on the analysis of PCR amplification
products using several combinations of primers. The polyacryl-
amide gel-resolved pattern of amplification products allows the
identification of fragments with different abundance when
comparing two conditions or treatments [57]. Further isolation
and sequencing of these differential fragments lead to estab-
lishing the identity of candidate genes. This is a laborious tech-
nique that nevertheless proved to be successful for studying the
interaction of tomato and C. fulvum.

Using a cDNA-AFLP approach, a tobacco cell line expressing
Cf-9 was used for the identification of novel components of
Avr9/Cf-9-mediated defense response [58]. Such Avr9/Cf9 rapidly
elicited (ACRE) genes were identified by treating the suspension
cells with a fluid containing Avr9. Taking advantage of the rapid
and synchronous response of these culture cells [59], of the
30 000 fragments inspected, 290 were found with differential
abundance 30 min after treatment. This study was the basis for
the identification of a protein kinase (ACIK1, for Avr9/Cf-9-
induced kinase; Solyc06g062920) and a U-box protein with
armadillo repeat domains (ACRE276; Solyc02g072080) that par-
ticipate in Avr9/Cf-9-associated immunity [60, 61]. Experiments
using tomato VIGS-silenced plants for these genes indicated
that they are required for Avr9/Cf-9-mediated HR and
resistance.

A similar approach was used to study Avr4/Cf-4-mediated
immunity [62] using tomato plants expressing both Avr4 and
Cf-4 [63]. Co-expression of these proteins leads to systemic HR
symptoms when grown at room temperature, but when seed-
lings are incubated at high temperature (33�C) these symptoms
are suppressed. Thus, tissue was collected at different time-
points after transferring the plants from high temperature to
room temperature [62]. From 343 ART (for Avr4-responsive to-
mato) genes identified, 192 were selected for further analysis
using VIGS in Nicotiana benthamiana. A CC-NB-LRR (NRC1, for NB-
LRR protein required for HR-associated cell death 1; Solyc06g062920)
candidate whose silencing affected Avr4/Cf-4-mediated HR de-
velopment, was further studied using VIGS in tomato plants
[64].

GeneCalling
This technique also relies on the differences in cDNA amplifica-
tion products, but does not require laborious fragment cloning
(necessary for cDNA-AFLP) to identity the corresponding gene

[65, 66]. Only fragments derived from unknown genes (not pre-
sent in databases) need to be cloned for identification.
GeneCalling was used to study the transcript changes that occur
in the interaction of tomato and Pst. Mysore et al. [67] studied
the transcript abundance changes that follow AvrPto-mediated
recognition, comparing the response in Rio Grande (RG) plants
lacking Pto (RG-PtoS), lacking Prf (RG-prf3) and fully resistant
RG-PtoR plants. These latter plants had that largest transcript-
level changes and accounted for nearly 90% (395 of 432) of all
the differential genes identified. The data generated in this
work led to the identification of several proteins that participate
in the tomato–Pst interaction [68–70], using VIGS as a first ap-
proach to study their involvement in immunity.

DNA microarrays

This approach is based on the hybridization of a probe derived
from RNA isolated from the tissue under study and DNA spotted
on a glass slide [71]. Three microarrays have been generated for
tomato: TOM1 cDNA array, TOM2 oligo array and an Affimetrix
genome array [72].

Mi-1.2, which confers resistance to root-knot nematodes
(RKNs), potato aphids and sweet potato whitefly, provides a
good example of the use of functional genomics to investigate
plant immunity. Tomato Mi-1.2 (Solyc06g008450) was first intro-
gressed from resistant Solanum peruvianum into cultivated to-
mato in the 1940s and later identified by using a map-based
cloning approach [17]. Mi-1.2 encodes a resistance (R) protein,
containing coiled-coil nucleotide-binding leucine-rich rich re-
peat domains. Bhattarai et al. [73, 74] used the TOM1 microarray,
which contains 12 860 ESTs, to study transcriptomic changes
occurring during compatible and incompatible interaction be-
tween tomato and RKNs. With particular emphasis on tran-
scription factors that were induced only in the incompatible
interaction at 24 h after challenge, two WRKY genes (SlWRKY72a
and SlWRKY72b) were identified using VIGS. Follow-up experi-
ments suggested that these candidates are additionally
involved in tomato defense against aphids and Pst.

Giant cells (GCs) are vascular root cells that differentiate as a
consequence of the interaction with RKN [75]. Using laser cap-
ture microdissection combined with microarray analysis,
Portillo et al. [76] were able to study transcriptome changes
occurring specifically in GCs. Transcript abundance compari-
sons with uninfected vascular cells, allowed the identification
of a cell wall peroxidase (TPX1; Solyc07g052510) downregulated
in the GCs, that had previously been associated with lignin bio-
synthesis [77]. Overexpression of TPX1 in susceptible tomato
plants impaired nematode infection.

Next-generation sequencing

Next-generation sequencing (NGS) techniques, which produce
massive quantities of sequencing data, have greatly accelerated
research in the biological sciences [78]. In particular, RNA-Seq
methods allow deep sequencing of the transcriptome under
study [79]. Chen et al. [80] used an RNA-Seq approach to com-
pare the response of two tomato lines (susceptible and resist-
ant) with TYLCV. Identification of differentially expressed genes
was done by comparing transcript abundance between a pool of
treated (3, 5 and 7 days postinoculation) and untreated tissues.
Special emphasis on genes whose expression increased in the
resistant line while being decreased or unaffected in the suscep-
tible one, allowed the identification of a gene encoding an
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NBS-LRR protein (Solyc05g009760), whose silencing in the resist-
ant background led to increased TYLCV accumulation.

Tomato terpenes, specialized metabolites that are found in
high concentrations in glandular trichomes, participate in plant
defense [81, 82]. Using NGS, Spyropoulou et al. [83] generated a
trichome-specific transcript database. Mining transcription fac-
tors that are expressed in these structures, SlMYC1 (KF430611)
and SlWRKY73 (Solyc03g113120) were identified and shown to
bind and activate terpene synthase promoters.

The interaction of Pst with tomato was recently studied using
an NGS-based transcriptomic approach [84, 85]. Genes were identi-
fied whose expression was increased upon treatment with
flagellin-derived flgII-28 MAMP [86, 87], but decreased by the activ-
ity of DC3000 effectors AvrPto and AvrPtoB, and termed FIRE genes
(after flagellin increased, repressed by effectors). With a particular
emphasis on genes encoding protein kinases, a subset of FIRE
genes was used in a VIGS-based screen. This strategy led to the
identification of a gene encoding a wall-associated kinase SlWAK1
(Solyc09g014720), whose silencing compromised plant immunity,
leading to increased symptoms and pathogen growth [84].

More recently, using a series of DC3000 mutants and differ-
ent tomato lines with intact or impaired AvrPto and AvrPtoB-
mediated ETI response, a set of genes specifically associated to
this signaling pathway was identified [85]. Silencing one of
these ETI-specific candidates, SlEpk1 (for ETI-specific kinase 1),
reduced cell death symptoms associated to AvrPto/AvrPtoB and
HopQ1-1 recognition pathways.

The availability of NGS techniques opens up the possibility
of not only characterizing tomato transcriptomic response to
different pathogen challenges, but also studying other relevant
features such as the abundance of alternative splicing variants,
microRNA populations and DNA methylation status, which
could lead to the discovery of unexplored immunity-associated
processes. Using a whole-genome bisulfide sequencing ap-
proach [88, 89], the DNA methylation state was recently shown
to be a dynamic process during tomato fruit ripening [90]. Yu
et al. [91] studied DNA methylation during Pst infection in
Arabidopsis and found that this epigenetic modification is part
of the immune response of plants. The use of a similar ap-
proach may shed light into tomato’s defensive mechanisms.

Recently, Ouyang et al. [92] used NGS to identify microRNAs
(slmiR482f and slmiR5300) that were downregulated in a tomato
line resistant to Fusarium oxysporum as compared with the levels
found in a susceptible line. Using in silico prediction of genes
that are targeted by these microRNAs with psRNATarget algo-
rithm [93], four genes with full or partial NBS-containing do-
mains were identified (Table 1). Further experiments using VIGS
in the resistant background implicated these genes in the resist-
ance to F. oxysporum.

RenSeq, for resistance gene enrichment and sequencing [94],
is another example of the use of NGS. Using this approach,
Andolfo et al. [95] identified novel genes encoding NB-LRRs that
were not predicted in the current tomato genome. Custom
probes based on NB-LRR sequences from Solanaceous species
were used to hybridize with tomato DNA fragments, which
were sequenced using NGS. This strategy, which allowed the
identification of 105 novel NB-LRR sequences, could be useful
for identifying members of other gene families.

The use of other species in tomato functional
genomics

As mentioned previously, sequence similarity among Solanaceae
species opens the possibility of use and transference of

information between species. Koening et al. [96] conducted a
transcriptomic-based analysis to study patterns of selection in
domesticated and wild tomato species. The search of genes
with a high non-synonymous to synonymous (dN/dS) substitu-
tion ratio led to the identification of 51 genes with evidence of
positive selection. Most of these have not been characterized
in tomato and include at least two immune-related genes
such as the ortholog of the Arabidopsis ARGONAUTE 2
(Solyc02g069260) [97] and immunity to fusarium wilt-2C4
(Solyc08g007640) [98]. Further study of this set of genes may
contribute to the identification of novel components of the to-
mato immune response.

Another example of the use of wild tomato species is the
work related to the identification of the tomato receptor for the
flgII-28 flagellin epitope. This epitope has been recently identi-
fied and is mainly perceived by a subgroup of solanaceous spe-
cies [86, 87]. Natural variation in flgII-28 perception among
heirloom tomato varieties had been previously reported [99]. A
screen based on the production of reactive oxygen species as a
consequence of flgII-28 perception, identified ‘responsive’ and
‘non-responsive’ accessions [100]. Crosses between accessions
with contrasting responsiveness, followed by genomic DNA
sequencing using NGS led to the identification of a region in
chromosome 4 with high frequency of single-nucleotide poly-
morphism that contained nine predicted LRR-receptor-like kin-
ases (LRR-RLKs). Further experiments allowed the identification
of FLS3 (for FLAGELLIN-SENSITIVE 3; Solyc04g009640) while
conclusively demonstrating that it encoded the flgII-28 receptor
[100].

The use of information generated using species outside the
Solanaceous, such as Arabidopsis, has also proven to be valu-
able in contributing to understanding tomato immunity [101].
The Arabidopsis C repeat/dehydration-responsive element binding
factor 1 (AtCBF1) gene was overexpressed in tomato in an at-
tempt to improve stress tolerance [102, 103]. In addition to
increased resistance to chilling, water-deficit and oxidative
stress, overexpressing lines showed tolerance to bacterial wilt
(Ralstonia solanacearum). Subtractive hybridization and use of a
DNA array allowed the identification of several pathogenesis-
related (PR) encoding genes differentially expressed in the
overexpressing lines [104]. Testing transcription factors that
would mediate the transcriptional activation pathway be-
tween AtCBF1 and PRs, SlRAV1 (for related to ABI3/VP1,
Solyc05g009790) and SlERF5 (for ethylene-responsive factor,
Solyc03g093560) were identified as putative signaling compo-
nents. Further experiments using knockdown and overexpres-
sion lines confirmed their involvement in tomato defense
against R. solanacearum.

Gene silencing in tomato functional genomics

Assessment of gene function in tomato immunity has largely
involved post-transcriptional gene silencing (PTGS) and particu-
larly VIGS (Table 1). The use of differential expression tech-
niques results in the identification of a set of candidate genes
that may be involved in plant immunity. Such downstream ana-
lysis has usually relied on PTGS. In addition, PTGS has been
used in high-throughput screens of random genes to identify
those that participate in plant immunity [105–108]. These tech-
niques depend on the plant silencing machinery targeting an
endogenous gene. Efficient silencing can be achieved by overex-
pression of an intron-spliced hairpin RNA (hpRNA) construct
[109]. Alternatively, in the VIGS approach, silencing is achieved
by overexpressing a fragment with high degree of homology to
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the selected gene, by using virus-derived vectors [110]. VIGS
technique offers a great potential to study gene function not
only in biotic and abiotic stresses, but also in other processes
such as flower and fruit development [111]. Even though tomato
is relatively amiable to VIGS, N. benthamiana shows a higher
silencing efficiency [112, 113] and consequently has been widely
used to investigate gene function. In addition, N. benthamiana
genome has been made publicly available [114–116], further
enhancing its use as a model for plant research.

The SOL Genomics Network (SGN) [117, 118] hosts a Web-
based tool, the SGN VIGS tool, which helps in the selection of re-
gions for VIGS construct design ([119]; http://vigs.solgenomics.
net/). This tool allows the identification of regions with higher
target/off-target ratios and also integrates the results with ex-
pression data to better predict potential silencing.

The current state, challenges and limitations of PTGS are
described elsewhere [110, 120–122]. One of these limitations is
that phenotypic characteristics may not be observable owing to
functional redundancy of members from the same protein fam-
ily, which are not efficiently targeted by the selected construct. A
case of such redundancy was observed in Arabidopsis, in which
progressive knocking-out of members of a calcium-dependent
protein kinase family lead to a decrease in plant defense [123].
Cloning strategies for assembly of multimeric constructs, relying
on type IIS restriction enzymes, have been recently developed for
hpRNA-mediated silencing [124, 125]. We are currently working
on a strategy amenable to VIGS, based on PRIVAS (programmable
or random in vivo assembly shuttle) [126] that will allow concat-
enation of several fragments into a single construct. We believe
this approach will help address gene functional redundancy.

Tools and resources for functional genomics in
tomato and N. Benthamiana

Many ambitious large-scale sequencing projects are currently
underway that will positively impact functional genomics of to-
mato and related species. The 150 Tomato Genome
ReSequencing project (http://www.tomatogenome.net/index.
html), a common effort between the public and private sector,
aims to explore tomato genetic variation. The SOL-100 sequenc-
ing project is planned to gain insight into variation among
Solanaceae species (http://solgenomics.net/organism/sol100/
view). Another project in progress, the Tomato Expression
Atlas, will provide the community with tissue-specific expres-
sion data obtained using laser dissection [118].

Valuable Web resources are available that can assist with the
research in this field: SOL Genomics (SGN, http://solgenomics.
net) [118], Tomato Functional Genomics Database (TFGD, http://
ted.bti.cornell.edu)[72], Tomato Genomics Resources Database
(http://59.163.192.91/tomato2/index.html) [127], Kazusa Tomato
Genomics Database (KaTomicsDB, http://www.kazusa.or.jp/to-
mato), TOMATOMICS (http://bioinf.mind.meiji.ac.jp/tomatomics),
Plant Expression Database (PLEXdb, http://www.plexdb.org/index.
php) [128], Tomato Genetics Resource Center (TGRC, http://tgrc.
ucdavis.edu). In addition, TOMATOMA is a source for mutants of
the dwarf cultivar Micro-Tom (http://tomatoma.nbrp.jp) [129],
and TomExpress (http://gbf.toulouse.inra.fr/tomexpress/www/
welcomeTomExpress.php) is a platform that allows the visualiza-
tion of the RNA-seq data available for tomato.

The model species N. benthamiana has been used frequently,
combined with VIGS, as a first step for dissecting the function of
candidates genes identified in tomato. The community has
benefited from the available draft genome sequence of this

species [114–116] and will certainly take full advantage of this
plant model with future improved genome versions.

Resources have been developed to identify and characterize
R genes in plant species that include tomato and other
Solanaceous species. The plant resistance gene database
(PRGdb; http://prgdb.crg.eu/wiki/Main_Page) that centralizes in-
formation from 233 plant species [130, 131] has been used to
study evolution, spatial and phylogenetic relationships of R
genes [132]. Further putative R genes were identified by inte-
grating the information of candidate R genes with known mo-
lecular markers associated to resistance phenotypes [133].

The availability of the tomato genome sequence also
allowed the identification and analysis of WRKY transcription
factors. Phylogeny-based comparison with WRKYs from other
species allowed the identification of clusters that are species-
specific, which may shed light on differential gene expression
regulation [134].

Conclusion and future prospects

Research has historically focused on genes whose expression is
increased during a specific response (Table 1). As a result, as-
pects of the plant response associated with decreased transcript
abundance have been less explored. We are currently studying
candidate genes whose expression is decreased on treatment
with flgII-28 and is induced by the activities of bacterial ef-
fectors AvrPto and AvrPtoB [84]. Such genes may play a role in
promoting susceptibility of the plant to pathogen attack.

Plant organs are a complex combination of tissues, but are
often regarded as homogeneous material for experimental pur-
poses in the tomato-pathogen research field. As a consequence,
key differentially expressed genes may have been overlooked
when analyzing such complex tissue mixtures. The advent of
NGS and microdissection techniques [135] can help in overcom-
ing this issue.

During the preparation of this review, we identified,
when possible, the accession number of all the described genes
(Table 1), in accordance with current tomato gene models. We
encourage the community to use this unified nomenclature, for
we believe it will help better coordinate research efforts.

Functional genomics research has benefited from numerous
methodologies that were developed for studying differential
gene expression. These technical advances, along with the
availability of the tomato genome sequence, have allowed re-
searchers to go from having <100 differentially expressed genes
[53, 56] to several thousands [84, 85]. This deeper assessment of
the tomato transcriptome presents the challenge of developing
more efficient candidate-screening strategies and novel ways of
data analysis to increase the chance of identifying genes with a
role in plant immunity.

Key points

• Tomato, along with other members of the Solanaceae,
constitutes a group of plants with great economical
value and consequently it is important to understand
the mechanisms underlying their immune responses.

• Current and future knowledge generated using tomato
as a model has the potential of being transferred to
other members of the Solanaceae.

• Differential gene expression approaches have been
fruitful for the identification of novel components of
the tomato immune system. Development of
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next-generation sequencing techniques, along with
the availability of high-quality genomes, has
enhanced the research in this field.

• Virus-induced gene silencing has proven to be a
powerful high-throughput method of assessing the
function of genes in tomato and most importantly
Nicotiana benthamiana, a related model plant species.
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