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Abstract: Past decades have seen the rapid development of microarray technologies making available 
large amounts of gene expression data. Hence, it has become increasingly important to have reliable 
methods to interpret this information in order to discover new biological knowledge. In this review 
paper we aim to describe the main existing evolutionary methods that analyze microarray gene 
expression data by means of biclustering techniques. Strategies will be classified according to the 
evaluation metric used to quantify the quality of the biclusters. In this context, the main evaluation measures, namely 
mean squared residue, virtual error and transposed virtual error, are first presented. Then, the main evolutionary 
algorithms, which find biclusters in gene expression data matrices using those metrics, are described and compared. 
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1. INTRODUCTION 

 Functional genomics is a branch of genomics that aims at 
discovering the biological function of genes and their 
products. In other words, this research area uses the 
emerging knowledge about different genomes in order to 
comprehend the gene and their product functions and 
interactions, and on the whole, how all this affects the 
organisms and their functioning. For this purpose, several 
methods are constantly being developed for the analysis of 
the enormous amounts of information on the genome. 

 Particularly, a common problem being faced in the field 
of functional genomics consists in the analysis of data that 
corresponds to the expression level of some genes under 
different conditions. The main objective in this sense is to 
determine whether those genes are related in some manner, 
thus regulating each other [1, 2]. The information about the 
expression levels is generally obtained through microarray 
experiments. DNA microarray technology provides huge 
amounts of data; therefore, in order to process that kind of 
information, metaheuristics constitute a valuable tool. In the 
remaining of this section, some basic concepts of the 
microarray experiments and the resulting information are 
introduced, and also the core of evolutionary algorithms is 
described. Next, some definitions for the analysis of gene 
expression data are given, including a definition of the 
“bicluster” concept, types, and evaluation metrics. Finally, 
the review of the main evolutionary methods used to analyze  
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gene expression data will be presented, culminating the 
article with a section of conclusions. 

1.1. Gene Expression Data 

 The task of grouping genes that present a related 
behavior can be performed according to the genes’ 
expression levels [3, 4]. As it was aforementioned, the 
success in this labor helps infer the biological role of genes. 
In this context, the microarray technology arose as a central 
tool that provides information about the behavior of thousands 
of genes under several experimental conditions. The 
information provided by a microarray experiment corresponds 
to the relative abundance of the mRNA of genes under a given 
condition. The abundance of the mRNA is a metric that can be 
associated with the expression level of the gene. This 
information can be arranged in a matrix, where rows and 
columns correspond to genes and experiments respectively. 
The mission of finding groups of related genes and conditions 
in the gene expression data matrix is called biclustering [5-9]. 

1.2. Evolutionary Algorithms (EAs) 

 Evolutionary algorithms are meta-heuristic methods inspired 
by biological evolution features such as mutation, 
recombination, reproduction and natural selection. Usually, the 
problem search space is described by a genotype, and operators 
like mutation or reproduction are applied to create new 
candidate solutions. Finally, a cost function (the so-called 
fitness function) determines which solution to preserve. These 
operations are repeated several times and due to natural 
selection, candidate solutions improve over time. According to 
some implementation details, evolutionary algorithms are 
categorized into several types, such as genetic algorithms and 
genetic programming among others [10]. 
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2. BICLUSTERING 

 As it was afore-said, gene expression data can be viewed 
as a matrix that contains expression values, where rows 
correspond to genes and columns to samples or conditions. A 
matrix element eij contains the measured expression value 
for the corresponding gene i in sample (or under condition) j. 
In this context, a bicluster can be defined as a pair (G, C) 
where G is a subset of genes (rows) and C is a subset of 
conditions (columns). In general, the main goal is to find the 
largest bicluster that does not exceed a certain homogeneity 
constrain [5]. 

2.1. Bicluster Types 

 An important issue to be considered when analyzing the 
strategies for biclustering consists in the types of biclusters a 
particular method is able to find. Main biclusters’ classes are 
those with constant values (case 1 in Fig. 1), constant values 
in rows or columns (cases 2 and 3, respectively, in Fig. 1), 
coherent values (case 4 in Fig. 1) and coherent evolution of 
values (case 5 in Fig. 1). 

 
Fig. (1). Bicluster types. 

 Clearly, constant valued biclusters are more easily 
identified by biclustering algorithms. In gene expression data 
matrices, those types of biclusters represent groups of genes 
that during the experimentation exhibited identical 
expression values under some subset of conditions. As to the 
second case, biclusters with constant values in rows indicate 
a subset of genes with unchanging expression levels across a 
subgroup of conditions, regardless of the actual expression 
levels of the individual genes. In relation to biclusters with 
constant values in columns, they isolate a subset of 
conditions for which a subgroup of genes have constant 
expression values that might change from one condition to 
another. Coherent valued biclusters detect subsets of genes 
up-regulated or down-regulated coherently across subgroups 
of conditions, exhibiting in this manner same magnitudes 
and same directions of the values; they will be further 
discussed in the following subsection as they constitute two 
special patterns of interest. Finally, coherent evolution of the 
values in a bicluster identifies the subsets of genes that are 
up-regulated or down-regulated coherently across subgroups 
of conditions notwithstanding of their real values, this 
means, in this case, same directions with different 
magnitudes [11]. 

2.2. Bicluster Patterns 

 The main feature of biclusters with coherent values is 
that the genes follow a similar behavior often called 

“pattern”. Two different patterns can be defined: shifting and 
scaling patterns [12, 13]. A bicluster B follows an additive 
pattern when every value wij can be obtained by adding a 
given value Bi (which remains constant all along the ith 
condition) to a typical value πj for the jth gene. Formally, a 
bicluster exhibits a shifting pattern when its values can be 
described by the following expression: 

wij = πj + Bi + ξij 

where wij denotes the value for gene j under the ith condition; 
Bi is the shifting value for the ith condition and ξij represents 
an error. In Fig. (2), a bicluster that presents an additive 
pattern is shown and illustrated. 

 
Fig. (2). Shifting pattern. 

 Likewise, the definition of a scaling pattern is analogous 
to the previous one one, but a substitution of the additive 
value Bi for a multiplicative ai is needed, as shown in the 
expression: 

wij = πj * αi + ξij 

where wij denotes the value for gene j under the ith condition; 
αi is the scaling value for the ith condition and ξij represents 
an error. In Fig. (3), a bicluster that presents a multiplicative 
pattern is represented. 

 
Fig. (3). Scaling pattern. 

 Under these definitions, when ξij is 0 for all i and j, the 
bicluster is said to be a perfect bicluster. As it can be seen in 
the graphics of Figs. (2, 3), in the case of a shifting pattern, 
the lines that represent the genes have the same shape, 
presenting identical slope in all the stretches, only changing 
the range in which they are situated. On the other hand, for 
scaling patterns, even the shape is shared among the lines, 
the gradients differ. 

2.3. Bicluster Evaluation Metrics 

2.3.1. Variance 

 The variance determines the manner in which the data 
extends around a central value, such as the average of the 
values in the bicluster B. It can be defined as: 

VAR( B ) = (𝑏!" − 𝑏!")!  !∈!,!∈!  
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where bij is the element in the ith row and jth column and bIJ is 
the mean of all the values in the bicluster. The value of this 
equation is 0 whenever B is a perfect bicluster. The variance 
constitutes a homogeneity parameter that is usually 
combined with the analysis of the size of the bicluster in 
almost all of the simplest biclustering methods. In particular, 
row variance is generally used as a part of the objective 
function in many of them. 

2.3.2. Mean Squared Residue (MSR) 

 The MSR [14] quantifies the numeric coherence of the 
values in the bicluster B; the lower the value of residue, the 
stronger the coherence, and the better the quality of B. It can 
be calculated with the following formula: 

MSR( B ) = !
!.!
   (𝑏!" − 𝑏!"−𝑏!" + 𝑏!")!

!
!!!

!
!!!  

where bij is the element in the ith row and jth column, biJ is the 
mean of the jth column, bIj is the mean of the ith row and bIJ is 
the mean of all the values in the bicluster. Then, a small 
value of MSR means a great coherence among the values in 
the bicluster. If all the genes present an identical behavior 
under all the conditions, the value of this residue is 0. 

2.3.3. Virtual Error 

 The virtual error [15] aims at creating a pattern for the 
bicluster so as to represent the general trend of all the genes. 
The idea is to obtain a pattern that properly identifies the 
behavior of the genes throughout all the experimental 
conditions, independently of their numeric values. Some 
previous calculations must be performed before obtaining 
the virtual error. 

 First, given a bicluster B with I conditions and J genes, 
the virtual gene or behavioral pattern P is defined as the 
collection of I elements named Pi with: 

Pi = 
!!"!∈!

!
 

where bij ∈ B, 1 ≤ i ≤ I, 1 ≤ j ≤ J. Then, each point in P 
represents a meaningful value for all the genes under a given 
condition. After the pattern is created, it is necessary to 
quantify the manner in which all the genes can be adjusted to 
P. In order to do that, both, the pattern and the bicluster, 
must be standardized, thus obtaining P’ and B’ in the 
following manner: 

𝑏′!" =
𝑏!" −   𝑏!"
𝜎!!

 

where bij ∈ B, 1 ≤ i ≤ I, 1 ≤ j ≤ J, bIj is the mean of ith row, 
and 𝜎!! is the standard deviation of all the expression values 
for gene j. 

Pi’ = !!  !  !
!!

 

where Pi is the ith value in the pattern (value for condition i), 
𝑃 and 𝜎!stand for the mean and standard deviation of the 
pattern respectively. 

 

 Then, given a bicluster B with I conditions and J genes, 
and a pattern P with I values, the virtual error (VE) of the 
bicluster B is defined as the mean of the numeric differences 
among each standardized gene and each standardized pattern 
value, for every condition: 

VE(B )= !
!.!

(𝑏′!" − 𝑃′!)
!!!
!!!

!!!
!!!  

 A bicluster with a low value of VE is considered better 
than those with a high value of VE, since the value of the VE 
diminishes whenever the values of the genes are more alike. 

2.3.4. Transposed Virtual Error (VEt) 

 VEt [16] constitutes an improvement of its ancestor VE. 
Conceptually, this new measure initially creates a virtual 
condition instead of a virtual gene structure. Then, given a 
bicluster B with I conditions and J genes, the virtual 
condition P is defined as the collection of J elements named 
Pj with: 

Pj = 
!!"!∈!

!
 

where bij ∈ B, 1 ≤ i ≤ I, 1 ≤ j ≤ J. Then, each point in P 
represents a meaningful value of all the conditions for a 
given gene. After this step, the following stages are the same 
as those for obtaining the value of the original virtual error. 
B and P are standardized, and then VEt is calculated 
analogously to VE for B (only in this case the vector P 
represents a virtual condition). 

 In Fig. (4), a brief overview of the relationships between 
biclusters’ patterns and the evaluation measures that are able 
to detect each one of them are depicted. All in all, the main 
idea is that MSR can only detect shifting patterns, VE 
detects whether the bicluster presents a shifting or scaling 
pattern, but separately; and VEt is the only metric that can 
identifies both patterns simultaneously. 

 
Fig. (4). Patterns and evaluation metrics. 

3. EVOLUTIONARY ALGORITHMS FOR 
MICROARRAY BICLUSTERING 

 All along this section, several evolutionary methods will 
be chronologically presented. In all the algorithms, the 
individuals represent biclusters, and they all use some of the 
aforementioned measures in order to compute the fitness 
value. 
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3.1. MSR-Based Methods 

3.1.1. Bleuler et al. [17] 

 In this article, the authors present the first informed 
method that tackles microarray biclustering by means of an 
evolutionary algorithm. A binary representation for the 
individuals is adopted, and independent bit mutation and 
uniform crossover are used. Each individual stands for a given 
bicluster B, represented by a binary string of length I+J (I and 
J denoting the number of genes and conditions respectively). 
A 1-value in the string means that the corresponding value is 
selected for the bicluster. The fitness function F is minimized 
and it is defined in cases as follows: 

F(B) = 

!
! !

  𝑖𝑓  𝑀𝑆𝑅 𝐵 ≤   𝛿
!"#(!)

!
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 For the first situation a better fitness value, calculated 
only by using the size of the bicluster, is assigned to those 
individuals that comply with the residue restriction. If the 
bicluster has a residue from a given threshold, then a value 
greater than 1 is set. For the second case, as the residue 
constraint is considered by the LS strategy, they only look at 
the size of the biclusters for the fitness assignment. 

 Several variants were presented in this work. The use of a 
single-objective EA, an EA combined with a local search 
(LS) strategy [14] and the local search strategy alone are 
analyzed. In the case of the EA, one novelty of the strategy 
consists in a form of diversity maintenance that can be 
applied during the selection procedure. For the case of the 
EA hybridized with a LS strategy, the authors consider 
whether the new individual yielded by the LS procedure 
should replace the original individual (Lamarckian 
approach) or not (Baldwinian approach). As regards the LS 
as a standalone strategy, they propose a non-deterministic 
method, where the decision on the course of execution is 
made according to some probability. 

 For the experiments, two datasets were used: Yeast [18] 
and Arabidopsis thaliana [19, 20]. The study of the results is 
organized considering whether the aim is to get a unique 
bicluster or a set of biclusters. For the analysis of a single 
bicluster, the evaluation is focused on the size of the 
biclusters, and the algorithm that performed better was the 
EA combined with the LS method by means of an updating 
policy. For the second case of analysis, a comparison of the 
results as regards the level of covering of the matrix is 
performed, and the hybridized EA with diversity 
maintenance combined with LS performed better. 

3.1.2. SEBI [21] 

 Another approach, called SEBI for Sequential 
Evolutionary BIclustering, was later proposed by Divina and 
Aguilar-Ruiz [21]. In this work, an EA is presented where 
the individuals also represent biclusters by means of binary 
strings. The main idea is that the EA is sequentially run 
several times. From each run, the EA yields the best bicluster 
according to its size, row variance and overlapping factors. If 
its MSR is lower than a given threshold, then the bicluster is 

added into an archive called Results. Whenever this is the 
case, the method keeps track of the elements of the bicluster 
so as to use this information to minimize overlapping during 
the next run of the EA. Tournament selection is chosen and 
several options for the recombination operators were 
implemented. The fitness function combines the 
aforementioned objectives by means of a non-Pareto 
aggregative function to be minimized as follows: 

F(B) = !"#(!)
!

+ !
!"#$%!&%'()(!)

+ 𝑤! + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

where wd = 𝑤! 𝑤!
!
!
+ 𝑤!

!
!

, having wv, wr and wc as 
weights for the volume, number of rows and number of 
columns in the bicluster B, respectively. 

 Also, penalty = 𝑤!(𝑚!")!∈!,!∈! , where 𝑤!(𝑚!")  is a 
weight associated with each element mij of the bicluster and 
is defined as: 

𝑤! 𝑚!" =   
0  𝑖𝑓   𝐶𝑂𝑉(𝑚!") = 0

𝑒! !"#(!!")!∈!,!∈!

𝑒! !"#(!!")
  𝑖𝑓   𝐶𝑂𝑉(𝑚!") > 0  

 

 Here, 𝐶𝑂𝑉(𝑚!")  denotes the number of biclusters 
containing mij. It is important to note that the weight 
𝑤! 𝑚!"  is used to control the overlapping level among the 
biclusters. 

 For the experimental studies, the EA was executed for 
two datasets: Yeast [18] and Human B-cells [22]. The 
comparison is performed against the biclusters found by 
Chung and Church as regards the covering of the whole gene 
expression matrix E. For the Yeast dataset, SEBI manages to 
cover 38% of E, while Chung and Church’s covers 81%. 
Regarding the Human dataset, SEBI covers 34% while 
Chung and Church’s biclusters cover 37%. The authors 
consider that these results can be explained as a consequence 
of the overlapping factor, since the consideration of this 
objective naturally goes in detriment of the other goals. 

3.1.3. Mitra and Banka [23] 

 Later, Mitra and Banka [23] presented a MOEA 
combined with a LS [14] strategy. This method constitutes 
the first approach that implements a MOEA based on Pareto 
dominancy for this problem. The authors base their work on 
the NSGA-II, and look for biclusters with maximum size and 
homogeneity. The individual representation is the same as in 
the previously introduced methods; and uniform single-point 
crossover, single-bit mutation and crowded tournament 
selection are implemented. The LS strategy is applied to 
every individual under a Lamarkian approach, at the 
beginning of every generational loop. 

 The method is tested on microarray data consisting of 
two benchmark gene expression datasets, Yeast [18] and 
Human B-cell Lymphoma [22]. For the analysis of the 
results, a new measure called Coherence Index (CI) is 
introduced. CI is defined as “the ratio of mean squared 
residue (MSR) score to the size of the formed bicluster”. The 
biclusters are compared to those reported by Chung and 
Church and, in all the cases, Mitra and Banka’s results 
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indicate a better performance in terms of the bicluster size, 
while satisfying the homogeneity criterion. 

3.1.4. BiHEA [24] 

 Afterwards, Gallo et al. [24] implemented an EA 
combined with a LS technique based on Chung and Church’s 
procedure, thus orienting the exploration and speeding up the 
convergence of the evolutionary algorithm by refining the 
chromosomes. The novelty of Gallo’s method is that two 
additional mechanisms were incorporated in the evolutionary 
process in order to avoid the loss of good solutions: an 
elitism procedure that maintains the best biclusters as well as 
the diversity in the genotypic space through the generations, 
and a recovery process that extracts the best solutions of 
each generation and then copies these individuals into an 
archive. This archive is actually the set of biclusters returned 
by the algorithm. Although these two mechanisms appear to 
be similar to each other, there are several differences 
between them. The elitism procedure selects the best 
biclusters that do not overlap in a certain threshold, passing 
them to the next generation. These solutions can be part of 
the selection process of further generations thus allowing the 
production of new solutions by means of the recombination 
operator. However, due to imperfections in the selection 
process and in the fitness function, some good solutions can 
be misplaced through generations. To deal with this issue, 
the archive is incorporated as it keeps the best generated 
biclusters through the entire evolutionary process. It is 
important to remark that this “meta” population is not part of 
the selection process, i.e., the evolution of the population 
after each generation is monitored by the recovery process 
without interfering in the evolutionary process. As regards 
the fitness function, it optimizes the following objectives: 

maximize 

  
g G,C( ) = G C  

  
k G,C( ) =

egc − egC( )2

g∈G ,c∈C∑
G ⋅ C

 

subject to 

  
h G,C( ) ≤ δ  

with 
  

G,C( )∈X ,   X = 2 1,...,m{ } × 2 1,...,n{ }  being the set of all 

biclusters, where 

  
h G,C( ) = 1

G ⋅ C
egc − egC − eGc + eGC( )2

g∈G ,c∈C
∑  

is the mean squared residue score (MSR), and 

  
egC = 1

C
egc

c∈C
∑ , eGc =

1
G

egc
g∈G
∑  

are the mean column and row expression values of (G,C), 
and 

  
eGC = 1

G ⋅ C
egc

g∈G ,c∈C
∑  

is the mean expression value in all the cells that are 
contained in the bicluster (G,C). The user-defined threshold 
δ>0 represents the maximum allowable dissimilarity within 
the cells of a bicluster. In other words, the residue quantifies 
the difference between the actual value of an element and its 
expected value as predicted for the corresponding row mean, 
column mean, and bicluster mean. 

 As for the experimentation, in a first phase on synthetic 
datasets, the results obtained from this method outperform 
the outcomes of several biclustering approaches of the 
literature, especially in the case of coherent biclusters with 
high overlap degrees. Nonetheless, this should not be 
considered as a drawback because, in general, the regulatory 
complexity of an organism is far from the model of non-
overlapped biclusters. Furthermore, an analysis of a real 
dataset (colon cancer data [41]) was performed and, in terms 
of measure in the paper, the quality of the outcomes of 
BiHEA is clearly better than the results of the reference 
methods. In fact, this shows the correctness of the model 
designed to build the biclusters, i.e., coherent biclusters 
following an additive model. 

3.1.5. GABI [25] 

 Another evolutionary approach, called GABI (GA based 
Biclustering), was introduced in Mukhopadhyay et al. [25]. 
The main difference with the rest of the algorithms lays in 
the representation of the biclusters. Here, each string has two 
parts, one for clustering the genes and the other one for 
clustering the conditions. As in the other methods, the fitness 
function uses the MSR. In this case, the calculus is 
performed in the following manner: 

F(B) = !"#(!)
!.(!!!"# ! )

 

 GABI was also tested with the same datasets as the ones 
used in the other methods: Yeast [18] and Lymphoma [22]. 
Regarding the Yeast dataset, the method was able to discover 
interesting biclusters with high row variance. It is important 
to remark that the authors preferred the achievement of non-
trivial and highly coherent biclusters instead of biclusters 
with high volume. As for the second dataset, the results were 
compared to those of Cheng and Church’s algorithm [14] 
and the RWB (Random Walk Biclustering) algorithm [26]. 
According to the experimentation, GABI provides better 
average row variance and average MSR in comparison to the 
aforementioned methods. In addition, a biological 
significance test based on Gene Ontology was performed for 
one of the biclusters, showing that the method is also able to 
identify biological significant biclusters. 

3.1.6. PCOBA [27] 

 Recently, Joung et al. [27] presented a new probabilistic 
evolutionary algorithm, called PCOBA (Probabilistic 
Coevolutionary Biclustering Algorithm). The novelty of this 
method consists in the use of the global statistical 
information of two cooperative populations, so that the 
ability to search biclusters is more effective. The main idea 
is that the strategy coevolves the two populations of 
biclusters for a gene set and a condition set, as one is adapted 
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cooperatively to the other. The fitness function aims at 
minimizing the MSR, whilst maximizing the variance and 
the volume of the bicluster. Also, the fitness of an individual 
is determined by the degree of cooperation between the 
selected one and the individuals of the other population. For 
the experiments, synthetic datasets and Yeast [18] were used. 
The comparison was made with a general GA and two other 
implementations called CGA (Coevolutionary Genetic 
Algorithm) [28] and EDA (Estimation of the Distribution 
Algorithm) [29], obtaining coherent biclusters with higher 
quality as regards all of the objectives. 

3.2. Virtual Error-Based Method 

 As it can be seen, all the aforementioned methods use 
MSR as the main measure of the objective function. 
However, it was also said that even though MSR allows the 
finding of interesting biclusters, some others are left behind, 
such as those exhibiting scaling patterns. As a result, the 
virtual error (VE) arises, which aims at finding both types of 
patterns (shifting and scaling patterns). 

3.2.1. Pontes et al. [15] 

 In this regard, in Pontes et al. [15] a novel method that 
improves the performance of the SEBI by varying the fitness 
function is presented. The strategy implements the objective 
function using the virtual error metric as follows: 

F(B) = VE(B) + wd + penalty 

 In this case, wd and the penalty are the ones defined 
before by the SEBI algorithm. This fitness function also has 
to be minimized. The rest of the algorithm is implemented 
similarly. 

 In order to demonstrate the quality of the new approach, 
two well-known datasets were used: Yeast and human B-
cells. In general terms, the authors show that the new 
implementation could find very interesting biclusters with 
special shapes that were difficult to find using the MSR. 
They also prove that the new version finds biclusters which 
the algorithm that uses MSR would have rejected. It is also 
important to note that VE is not sensitive to the scale or 
magnitude difference in the expression values of the genes, 
as long as they present the same behavior. 

3.3. Transposed Virtual Error-Based Method 

 Still, even though VE succeeds in finding biclusters that 
present shifting or scaling patterns, it is not able to recognize 
both patterns at the same time. Then, as it was 
aforementioned, VEt arises as a new metric that properly 
identifies those features all together. 

3.3.1. Pontes et al. [30] 

 The most innovative evolutionary algorithm using this 
measure in the fitness function is described in Pontes et al. 
[30]. In this article the authors present the Evo-Bexpa 
(Evolutionary Biclustering based in Expression Patterns) that 
constitutes the first biclustering method in which several 
biclusters features can be particularized in terms of different 

objectives, and it is also possible to find biclusters presenting 
both patterns simultaneously. 

 Four different objectives were individualized in this 
approach, attending to the extent to which a bicluster follows 
a perfect correlation pattern, to its size, to the overlapping 
level among different solutions and to the mean gene 
variance. The objectives are considered by means of 
constructing an aggregative objective function. Then, it is 
possible to specify the relative influence of each one during 
the evaluation process, thus allowing the algorithm to be 
configurable. Concerning the first objective, the VEt is 
calculated as it was explained in section 2. In the next lines, 
the other three terms will be described. 

 As regards the bicluster volume, it is defined as follows: 

Vol(B) = ( ! !"( ! )
!" ! !!!

)+(   ! !"( ! )
!" ! !!!

) 

where 𝐼 , 𝐽 , wg and wc are the number of genes, number of 
conditions, and configurable parameters for both dimensions, 
respectively. The main idea of this equation is that it uses 
logarithmic scales so that little changes in the number of 
rows or columns do not have a significant effect, and it 
separates the terms for the number of genes and conditions in 
order to avoid too unbalanced biclusters and to be able to 
configure each dimension size independently. 

 Overlapping is controlled with the next term: 

Overlap(B) = 
!(!!")!∈!,!∈!

! . ! . !!!!
 

 Here, W is a matrix of weights (similar to the one 
presented in [31]), whose size is the same as the size of the 
microarray, initialized with zero values at the beginning of 
the algorithm. Every time a bicluster is found, W is updated 
increasing by 1 those elements that are contained in the 
bicluster. I and J refer to the sets of rows and columns in B, 
respectively, and W(bij) corresponds to the weight of bij in 
W. Also, nb is the order of the solution bicluster. Broadly, 
this term computes how many times the elements of B have 
appeared in any former biclusters, and divides this value by 
the size of B and the order of the solution. 

 As for the gene variance, it is generally used to avoid 
trivial biclusters, preferring those solutions in which genes 
exhibit high fluctuating trends. In accordance with this idea, 
the corresponding term is designed as follows: 

GeneVar(B) = !
! . !

(𝑏!" − 𝜇!!)
!!

!!!
!
!!!  

 As it can be observed, gene variance of a bicluster is 
given by the mean of the variances of all the genes in it. 
Having defined all the terms that are aggregated by means of 
a single objective function, the remaining general features of 
the algorithm will be described. 

 In this approach, a sequential covering strategy is 
followed, where a single bicluster is obtained each time the 
algorithm is executed. Then, if n biclusters are desired, the 
evolutionary algorithm has to be run n times. 
Experimentation was conducted over both synthetic and real 
data sets. Results were compared with those obtained using 
OPSM [32], ISA [33, 34], xMotifs [35] and Bimax [36]; all 
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of them were executed using the BicAT (Biclustering 
Analysis Toolbox) [37]. The new technique outperformed all 
the other methods regarding the match scores’ indexes that 
were used on synthetic data. As for the real datasets, Yeast 
[18], Embryonal [38], Leukemia [39] and Steminal [40] were 
analyzed. Some troublesomeness was found when trying to 
apply the BicAT with certain methods to some of these 
datasets. For example, xMotifs could not be tested for Yeast 
and Steminal datasets, due to unexpected runtime errors. 
xMotifs could not be executed for Leukemia neither, as it 
does not support more than 64 samples. Only OPSM, CC 
and Evo-Bexpa were able to produce results for all of the 
datasets. As a general result, it was proven that VEt values 
for the biclusters found by Evo-Bexpa are smaller than 0.1 
for all of the datasets, whereas no other algorithm finds 
biclusters with such a low level of VEt. Moreover, with the 
new method it is possible to adjust the result characteristics 
to user defined parameters. Regarding the biological 
validation of the results, they were validated using different 
levels in the Gene Ontology hierarchy, exhibiting that 
significant biclusters were obtained by Evo-Bexpa which 
correspond to neither too general nor specific GO terms. 
Therefore, it can be concluded that Evo-Bexpa succeeds in 
finding biclusters whose significant terms have an 
intermediate level of specificity. 

 In Table 1, an overview of all the methods that were 
described in this section is presented. The table summarizes 
information about the metrics that are combined in the 
fitness function, and it also reviews whether a Pareto-based 
approach is used or not, when the method is hybridized with 
a local search strategy, what types of biclusters are found by 
each approach, and some other distinctive considerations for 
the algorithms. 

CONCLUSION 

 Microarray technology arose in the last decades as a tool 
to provide information about the behavior of thousands of 
genes. The data corresponds to the relative amount of the 
mRNA of a gene under a given experimental condition, 
which can be associated to the expression level of the gene. 
This information is arranged into the gene expression data 
matrix, where rows and columns correspond to genes and 
conditions respectively. Each matrix entry is a real number 
that represents the expression level of a given gene under a 
given condition. Several methods have been increasingly 
arisen which analyze this matrix in order to obtain 
significant biological information. 

 In general, those methods intend to recognize relations 
among some genes under certain conditions, thus building 
the so-called biclusters. There are great amounts of strategies 
that aim at finding biclusters in gene expression data 
matrices. In this work we have focused on describing the 
main existing measures for defining the quality of a 
bicluster. We have also presented the most representative 
evolutionary techniques that use those measures in the 
objective function. 

 As it can be observed from the examples found in the 
literature, MSR (Mean Squared Residue) remains as the 
most commonly used measure. However, as for the trends 
that bicluster values follow, it is known that this measure is 
only able to identify shifting patterns. In that context, the VE 
(Virtual Error) that also detects patterns of scaling arises. 
However, although the behavior of VE ensures its value is 
near 0 for biclusters with shifting and scaling patterns, it has 
not been demonstrated analytically that VE allows the 
recognition of both patterns simultaneously. Then, as an 

Table 1. Summary of the revised methods’ main features. 
 

 
Metrics for the Fitness Function Multi-Objective Approach 

Hibridized  
with LS 

Bicluster Type 
Additional  

Considerations 
 

Size rowVAR MSR VE VET Overlap Agregative Pareto Shifting  
Pattern 

Scaling  
Pattern 

Bleuler et al. [16]                         

EA alone X   X       X     X     

Lamarckian X   X       X   X X     

Baldwinian X   X       X   X X     

SEBI [20] X X X     X X     X   Sequential  
covering strategy 

Mitra and Banka [22] X   X         X X X     

BiHEA [23] X X X       X   X X   Elitism to avoid  
overlaping 

GABI [24]   X X       X     X     

PCOBA [26] X X X       X     X   Two cooperative  
populations 

Pontes et al. [14] X     X   X X     X X Sequential covering  
strategy 

Evo-Bexpa [29] X X     X X X     X X Sequential covering  
strategy 
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improvement, the VEt (transposed Virtual Error) is 
presented, which allows finding both patterns simultaneously 
after carrying out several transformations to the data. The 
most recent work which bases the fitness function on the VEt 
quality measure is the Evo-Bexpa. This method not only uses 
the most up-to-date bicluster quality measurement, but also 
allows the user to particularize the preferred objectives in 
terms of other bicluster features. Regarding the experiments, 
meaningful biclusters were found by the Evo-Bexpa along 
both synthetic and real datasets. As for real datasets, the 
method also succeeds in the quality of the results regarding 
the biological significance of the biclusters, according to GO 
terms. 
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