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The classical long-wave theory (also known as lubrication approximation) applied to
fluid spreading or retracting on a solid substrate is derived under a set of assumptions,
typically including small slopes and negligible inertial effects. In this work, we
compare the results obtained by using the long-wave model and by simulating directly
the full two-phase Navier-Stokes equations employing a volume-of-fluid method. In
order to isolate the influence of the small slope assumption inherent in the long-
wave theory, we present a quantitative comparison between the two methods in the
regime where inertial effects and the influence of gas phase are negligible. The flow
geometries that we consider include wetting and dewetting drops within a broad
range of equilibrium contact angles in planar and axisymmetric geometries, as well
as liquid rings. For perfectly wetting spreading drops we find good quantitative
agreement between the models, with both of them following rather closely Tanner’s
law. For partially wetting drops, while in general we find good agreement between
the two models for small equilibrium contact angles, we also uncover differences
which are particularly evident in the initial stages of evolution, for retracting drops,
and when additional azimuthal curvature is considered. The contracting rings are also
found to evolve differently for the two models, with the main difference being that the
evolution occurs on the faster time scale when the long-wave model is considered,
although the ring shapes are very similar between the two models. C© 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4828721]

I. INTRODUCTION

Wetting and dewetting phenomena involve the displacement of two immiscible fluids in contact
with a solid surface. This problem has been extensively studied both theoretically and experimentally
(see, e.g., Refs. 1–8 for a review). Simulating such phenomena is complicated, in part, by the
presence of the fluid-fluid interface whose evolution must be computed as a part of the solution of
the governing equations. One approach to deal with these complexities is to formulate the problem
within the long-wave (L-W, lubrication) theory that assumes small slopes everywhere, and in addition
is typically derived assuming negligible inertial effects. The L-W approach allows the reduction of
the complicated mathematical description to a simpler problem of a nonlinear 4th order partial
differential equation for the fluid thickness.

Due to its (relative) simplicity, the L-W approach has been extensively used to model wetting and
dewetting phenomena, see Refs. 9 and 10 for reviews. Often, this approach has been implemented to
consider experimental configurations where contact angles are not necessarily small. This extension
of the use of the L-W model outside of its strict range of validity has been in part justified by
comparing the solution profiles close to the contact lines between the L-W model and the solutions
of Stokes equations,11 with only relatively minor differences found. While this is encouraging, we
are unaware of benchmark tests considering the validity of L-W model by comparing its solutions
to direct numerical solutions of the full Navier-Stokes (N-S) system in a fully dynamic setting. One
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example of a problem where such tests are crucial is the evolution of liquid metals on nanoscale
due to large contact angles involved. In Ref. 12, for example, liquid nickel was considered on SiO2

substrate, where contact angle is close to π /2, and therefore the use of the L-W theory is questionable.
To accurately describe the evolution under the given conditions, it is important to consider a more
complete theory, and discuss the degree of agreement. This agreement (or lack of it) is of relevance
also for practical reasons: obtaining direct solutions of N-S equations is computationally demanding,
and knowing precisely when L-W model can be used, and with which degree of accuracy, is needed.

The comparison between the results of N-S equations and the long-wave model is the main
focus of this paper. As will be discussed in detail, carrying out this comparison in a meaningful way
is not trivial, since the models necessarily involve their own sets of definitions of relevant quantities
(such as contact angle). Therefore, comparing “raw” data, such as front positions as a function of
time, for example, turns out not to be always very insightful; instead, we carry out the comparison
by considering the degree of agreement of the two models with asymptotic solutions in the form of
Cox-Voinov (C-V)13 and Tanner’s laws14 for the flow regimes where these laws are expected to be
valid. To facilitate the comparison between the models and the asymptotic solutions, we concentrate
on flow configurations such that inertial effects are not significant (to the degree possible), capillary
numbers are reasonably small, and the effect of the gas phase is minimal. Furthermore, we consider
relatively simple flow geometries, so to be able to focus on the comparison between the models, and
not necessarily on the complexities which may be expected if more complicated flow problems were
treated. First, we consider the classical problem of a wetting or dewetting drop on a substrate in two
and three dimensions. Second, motivated by recent works on liquid metals,15–17 we investigate the
fluid ring geometry.18

The remainder of this paper is organized as follows. In Sec. II, we present the full governing
equations including a Navier slip model19–22 to alleviate the stress singularity at the moving contact
line which occurs when the no-slip condition is applied on the substrate.23 Some details of the
volume-of-fluid (VoF) based numerical solver are given in Appendix A, followed in Appendix B by
a convergence study as well as a comparison with the asymptotic result21 of Hocking-Rivers. We
continue by describing the L-W model which also uses the slip model for consistency with the VoF
based solver, and specifies the contact angle via a disjoining pressure approach, discussed in some
detail in, e.g., Ref. 24. In Sec. III, we systematically investigate the degree of agreement between
the models for both wetting and dewetting problems in two and three (axisymmetric) dimensions.
Section IV considers the problem of a fluid ring structure collapsing into a drop. We conclude in
Sec. V.

II. MODELS

The governing equations are the incompressible two-phase N-S equations. We will generally
refer to one phase of the fluid as the liquid phase, and the other as the gas phase. We nondimensionalize
by choosing the velocity scale to be U = σ 0/μ� and the length scale to be L = μ�/(ρ�U), where ρ�,
μ�, and σ 0 are the (dimensional) liquid phase density, liquid phase viscosity, and liquid-gas surface
tension, respectively. The N-S equations in nondimensional form then become

ρ (∂t u + u · ∇u) = −∇ p + ∇ · [μ (∇u + ∇uT
)] + σκδsn, (1)

∇ · u = 0. (2)

Here, ρ = 1 in the liquid phase and ρ = ρg/ρ� in the gas phase, where ρg is the gas phase density.
Similarly, μ = 1 in the liquid phase and μ = μg/μ� in the gas phase, where μg is the gas phase
viscosity. We have σ that represents a unit surface tension. The surface tension force, σκδsn, has
been included in Eq. (1) as a body force concentrated at the interface;25 here, κ is the curvature of
the interface between the two fluid phases, δs is a delta function centered on the interface, and n is
the unit normal to the interface. The ratios ρg/ρ� and μg/μell are both set to 1/100; for these ratios,
we have found that the influence of the exterior fluid on the results is negligible.
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The solution of N-S equations leads to a stress singularity at a moving contact line. Modeling
dynamics in this context requires some regularizing scheme to deal with the so-called “contact line
singularity,” which manifests itself as an infinite stress at the line where the three phases—liquid,
gas, and solid—meet. Numerous approaches to overcome this difficulty exist, as reviewed recently in
Refs. 8 and 10. In this work, we concentrate on a slip model19–22 where the no-slip boundary condition
at the fluid-solid interface is relaxed. Thus, instead of having vanishing horizontal velocities at the
substrate, we assume the Navier slip condition

u = λ
∂u

∂y
, (3)

where the normal to the substrate is in the y direction, the parameter λ is the (nondimensional) slip
length, and u is the component of u tangential to the substrate.

We use Gerris,26 an open-source solver, implemented in the software package,27 for the solution
of the two-phase N-S equations, in which Eqs. (1) and (2) are solved in an Eulerian frame of reference,
and the VoF method is used to track the interface implicitly. Throughout, we will refer to numerical
results obtained using Ref. 27 as VoF simulations. An overview of the method, as described in more
detail in Ref. 26, as well as the implementation of the contact angle, is given in Appendix A.

A. Long-wave model

The long-wave approach allows for the reduction of the N-S equations to a single nonlinear
partial differential equation for the fluid thickness, h. We note that although this approach is strictly
valid only for fluid configurations characterized by small free surface slopes, it has been commonly
used in partial wetting conditions, i.e., in situations where the contact angle is not necessarily small.
The partial wetting conditions can be considered in the model by accounting for van der Waals
forces between solid and fluid, as briefly described below.

The comparison between the results of L-W approach and solutions of the Stokes or Navier-
Stokes equations has been considered in the literature, but mostly for steady state configurations.
For example, Ref. 28 compares the solutions for the steady cross section of a rivulet flowing down
a plane obtained by solving the complete N-S equation with the predictions of the L-W approach
(see their Table I). For a contact angle of 30◦, they find that the differences between both approaches
related to the shape of the free surface are of the order of a few percent. The appropriateness of the
use of L-W approach was also discussed earlier in Ref. 11. In that work it was shown that there are
some differences in the free surface slope between L-W theory and Stokes formulation, but only
very close to the contact line.

In the present work, the partial wetting conditions are included in the L-W model via the
disjoining pressure 
(h), which represents the effects of the intermolecular forces through the
solid/liquid interface (see, e.g., Ref. 24 and the references therein). Using the time and length scales
defined previously, the resulting (nondimensional) equation for the fluid thickness, h = h(x, y, t),

TABLE I. Values of β resulting from fitting the evolution of planar drops
with a spreading law of the form θ3 − θ3

eq ∝ Caβ , for L-W and VoF
simulations.

VoF L-W

30◦–15◦, slip 0.01 0.92 0.89
30◦–15◦, slip 0.046875 0.96 0.95
45◦–30◦, slip 0.01 0.98 0.82
45◦–30◦, slip 0.046875 0.99 0.87
30◦–45◦, slip 0.01 0.92 1.1
30◦–45◦, slip 0.046875 0.90 1.2
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which also includes the Navier slip boundary condition, Eq. (3), is (see, e.g., Ref. 9)

3
∂h

∂t
+ ∇ · (

H 3∇∇2h
) + ∇ · [

H 3∇
(h)
] = 0, (4)

where H3 = h2(h + 3λ). Here, the first term stands for viscous dissipation and the other two terms
account for the driving forces, which are surface tension and disjoining pressure, respectively. For
disjoining pressure, we use power-law form


(h) = K f (h) = K

[(
h∗
h

)n

−
(

h∗
h

)m]
, (5)

where the exponents satisfy n > m > 1. The first term represents the liquid-solid repulsion, while the
second term stands for the attraction, and when they balance, Eq. (5) predicts a stable film of dimen-
sionless thickness h = h∗. Here, K is a dimensionless pressure scale given by K = AL/(6πσ0h3

∗),
where A is the Hamaker constant for the liquid/solid/gas configuration.29 Instead of characterizing
the interaction by means of A, it is also possible to relate K with the equilibrium contact angle, θ eq, as
discussed in some detail in, e.g., Ref. 24. Briefly, through the “augmented” Young-Laplace condition,
which assumes a local equilibrium of pressures, one obtains K = tan2(θeq )/(2Mh∗), where M =
(n − m)/((m − 1)(n − 1)); we use (n, m) = (3, 2), and h∗ = 10−3 except if specified differently. Note
that here we are assuming a dependence on θ eq in the form of (tan 2θ eq)/2 instead of (1 − cos θ eq)
as usually seen in the literature.24, 30 In fact, the former dependence comes directly from using the
linearized form of the free surface curvature,31 which is consistent with the hypothesis of small slope
in the L-W approximation, while the latter is derived when using the complete (nonlinear) form.
The connection between K and θ eq has been recently discussed in more detail in Ref. 32.

In the present work, we concentrate on one-dimensional solutions of Eq. (4), in both planar and
axial geometry. To consider both cases simultaneously, we write Eq. (4) in the form

3
∂h

∂t
+ 1

xd

∂

∂x

[
xd H 3 ∂

∂x

(
1

xd

∂

∂x

(
xd ∂h

∂x

)
+ 
(h)

)]
= 0, (6)

where d = 0, 1 for planar and axisymmetric cases, respectively. The evolution from a given initial
condition, h(x, 0), towards equilibrium is calculated by solving Eq. (6) using a numerical code
discussed elsewhere.33 It is worth pointing out that inclusion of Navier slip in the present L-W
model is not needed from the computational point of view; we include, however, slip effects anyway
so to facilitate the comparison with the VoF results, where slip is required. One consequence is the
presence of two length scales in the L-W model (the slip length and the thickness of prewetted layer),
increasing the complexity. To simplify, we always use h∗ � λ (for λ �= 0) so that, as discussed in
Sec. III, the results are not influenced by the value given to h∗.

Before proceeding with the comparison of the models, it is worth pointing out their differences:
(i) VoF requires externally imposed contact angle, considers a two fluid problem, and includes inertial
effects, and (ii) the L-W approach requires the presence of a prewetted layer (of the thickness
comparable to h∗), requires disjoining pressure to specify contact angle, and ignores the inertial
effects. While, in principle, non-zero contact angle can be implemented in the L-W approach by
specifying it externally, we consider on the physical grounds that using disjoining pressure for this
purpose is more appropriate. In order to minimize, if not completely remove these differences,
in this work we proceed as follows: (i) consider a low inertia, surface tension dominated regime
(i.e., the Reynolds and capillary numbers are small); (ii) analyze carefully what is the influence,
if any, of the prewetted layer and disjoining pressure on the L-W results; and (iii) concentrate on
the ratio of the fluid densities and viscosities in the VoF simulations such that the gas phase has
no influence on the results. As we will see below, we find that the influence of the thickness of the
prewetted layer and the details of disjoining pressure model are minimal, allowing us to concentrate
on the intrinsic differences between the considered models.
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III. PARTIALLY WETTING DROPS: SPREADING AND RETRACTING

In the simulations that follow, we take as initial configuration a fluid geometry characterized by
an initial contact angle, θ i, different from the equilibrium contact angle, θ eq, so that the imbalance
of forces leads to contact line motion and bulk flow, until θ eq is reached. In particular, we take
the initial fluid profile to be the portion of the circle with radius R and center (0, −Rcos θ i) lying
above the x-axis. In the L-W simulations, the fluid profile is lifted by an amount h∗. An equilibrium
contact angle, θ eq, is specified on the solid substrate, and we consider spreading and retracting of
planar and axisymmetric drops from the initial to the equilibrium configuration using VoF and L-W
simulations.

As we will see below, direct comparison of the two models (e.g., considering front positions as
a function of time) suggests significant differences between the two models; the unifying features
can be extracted by considering the relation between the instantaneous contact angle, θ , θ eq, and the
contact line front velocity, v f , that is expected to be satisfied based on the well known C-V law13

θ3 − θ3
eq = 9Ca log (hc/hm) + O(Ca). (7)

Here we define the capillary number as Ca = μ�Uv f /σ0, hc is a macroscopic length scale, and
hm is a microscopic length scale. With our choice of scales, Ca and the Reynolds number, Re =
ρ�LUv f /μ�, satisfy Ca = Re = v f . Note that the C-V law is derived under the assumptions of
Stokes flow dominated by capillary effects, with the only restriction that θ < 3π /4.

For our purposes, we consider this general form of the C-V law:

θ3 − θ3
eq = αCaβ , (8)

with a prefactor, α, and exponent, β. As we will see, the differences between the two models
will require focusing on β when discussing the agreement of the models between themselves, and
with this generalized form of the C-V law; α is discussed in some more detail in the Remarks
at the end of this section. The exponent β is computed by performing a least squares fit in the
above equation over a representative portion of the spreading process, defined by Ca > 0.001, and
θ3 − θ3

eq < 0.7(θ3
i − θ3

eq ). This choice ensures that the drop is spreading fast enough so that its speed
can be accurately resolved, and removes any transient effects associated with early times. Spreading
speeds of the order of or less than 0.01 are typical; this places us in a viscous, capillary regime
where the C-V and the L-W equations are applicable. Moreover, this choice ignores the early phase
of spreading and retraction, which is not governed by Eq. (8).

For the VoF simulations, the quantities in Eq. (8) are computed in the following way. The
front location, xf, is taken to be the intersection of the reconstructed interface with the x-axis.
The front velocity, v f , is then computed using discrete values of xf by simple finite differences.
Velocities are computed only when the cell which contains the front is of a specified volume
fraction; this ensures that the front velocities are all comparable. To find the contact angle, we
consider the volumes of the drops. In planar geometry the cross-sectional area is given by A = R2(θ
− sin θcos θ ), where R is the radius of the circular cap, while in the axisymmetric case we have
V = (π R3/3)

(
2 − 2 cos θ − sin2 θ cos θ

)
. The front location is given by xf = Rsin θ , so that fixing

the volume V (A in the planar case) yields simple nonlinear equations for the contact angle θ . In
the L-W computations, θ is defined as the slope at the inflection point of the thickness profile h(x, t)
near the contact region, i.e., where h is close to h∗.

To illustrate the differences between the results of the models, and to further motivate the
comparison with the C-V law, Fig. 1 shows θ3 − θ3

eq , Ca, and xf versus time for the planar drop
spreading from 30◦ to 15◦ with λ = 0.01. In Fig. 1(a) we see that θ decreases more rapidly in L-W
for early times, while for intermediate and large times, the trend in both models is similar, although
θ3 − θ3

eq is different in magnitude. The difference in early time behavior is partially explained by
the fact that the initial condition, a circular cap, is also the shape of the quasi-static solution for
the VoF model, while the L-W drop must relax to its quasi-static shape, which is parabolic (except
in the contact line region where it matches smoothly h∗). Another possible reason for the different
behavior for early times may be due to the inertial effects that are not included in the L-W model.
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FIG. 1. Planar drop spreading from an initial contact angle of 30◦ to an equilibrium contact angle of 15◦, with λ = 0.01 for
L-W and VoF simulations, showing, as a function of time: (a) θ3 − θ3

eq , (b) capillary number Ca, and (c) front location xf.
Note different time range in the part (c). Insets plot each quantity for t < 2.

The inset in Fig. 1(b) shows that the behavior of Ca is similar in both models for early times,
and although Ca is somewhat smaller for the L-W model, both evolutions share similar trends.
Figure 1(c) shows the front location as a function of time. As mentioned above, the final equilibrium
shapes are different for L-W and VoF, and consequently, their equilibrium values of xf differ as well.

In order to compare the results with the C-V law, we consider three cases: a small contact angle
drop spreading from θ i = 30◦ to θ eq = 15◦ already considered in Fig. 1; a larger contact angle
drop spreading from θ i = 45◦ to θ eq = 30◦; and a drop retracting from θ i = 30◦ to θ eq = 45◦. For
each case, we consider two slip lengths, one large, λ = 0.046875, and one small, λ = 0.01 (the
former value is chosen for convenience, since it is exactly 12 times the minimum cell size in the VoF
simulations). These cases will be analyzed for both planar and axisymmetric drops. For the planar
drops, the volume per unit length, i.e., area, is held constant at A ≈ 0.21, while for the axisymmetric
case the volume is held at V ≈ 0.15, both corresponding to an initial front location xf = 0.6 for
θ i = 45◦.

Figure 2 shows θ3 − θ3
eq versus Ca for the planar drop. Both models show a similar trend. A

transient initial period where Ca rapidly decreases while θ changes very little is reflected in the
flat regions at the far right of each curve. This is followed by the spreading phase where θ relaxes
to equilibrium and Ca is smaller than approximately 0.1. The most obvious difference between
the curves resulting from the two models is that the L-W curves are generally shifted to the right
(meaning, e.g., that for a given θ , the drops spread or retract faster under the L-W model). This shift
can be traced back to the differences in the initial evolution of θ for the two models.

10−3 10−2 10−1 100
10−3

10−2

10−1

100

θ3
−

θ3 e
q

VoF, λ=0.01

L-W, λ= 0.01

VoF, λ=0.046875

L-W, λ=0.046875

10−3 10−2 10−1 100

Ca
10−3 10−2 10−1 100

(a) (b) (c)

FIG. 2. Planar drop spreading and retracting for the L-W and VoF models for various slip lengths. The following cases were
considered: (a) drop spreading from an initial contact angle of 30◦ to 15◦; (b) drop spreading from 45◦ to 30◦; (c) a drop
retracting from 30◦ to 45◦. The dashed lines show the best fits to the data of the form specified by Eq. (8). The definitions of
the symbols used are given in the part (a) of this figure and that of Figures 4–6.
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q

(a)

(3, 2)

(4, 3)

(9, 3)

Slope 1

10−3 10−2 10−1 100

Ca

(b)

h∗ = 0.5 · 10−3

h∗ = 1.0 · 10−3

h∗ = 5.0 · 10−3

Slope 1

FIG. 3. Effects of h∗ and the exponents (n, m) on the relation between Ca and θ for the planar (30◦, 15◦) spreading drop
with λ = 0.01: (a) for different h∗ and (n, m) = (3, 2); (b) for different pairs (n, m) and h∗ = 10−3.

The dashed lines shown in Fig. 2 are the best fits of the functional form given by Eq. (8). The
resulting exponent, β, is given in Table I; it turns out 0.9 < β < 1.0 for the VoF model. For the L-W
simulations, β ≈ 1 for the (θ i, θ eq) = (30◦, 15◦) and β � 0.9 for the (45◦, 30◦) spreading drop. For
retracting drops, L-W results give 1.1 < β < 1.2, but we also note that the retracting drop is not well
described by the power law prescribed by Eq. (8).

There are two parameters in the L-W model that do not appear in VoF simulations, namely, the
equilibrium thickness, h∗, and the pair of exponents (n, m). It is a natural question to ask whether
these quantities influence the L-W results. Figure 3 shows that their influence is very weak. In
particular, we see that values of h∗ smaller than 10−3 do not affect the presented results; additional
simulations (not shown for brevity) suggest that the exact value given to h∗ is not relevant as long as
h∗ � λ. The influence of the exponents (n, m) is minor as well, although one may note that the pair
(3, 2) gives the slope closer to unity for small Ca than the other two pairs of exponents.

Figure 4 shows θ3 − θ3
eq versus Ca for an axisymmetric drop. The computed exponent, β, is

given in Table II. Similarly to the planar case, we find that the power law behavior with β = 1
describes well the VoF simulations for spreading as well as for retracting drops, and the L-W
simulations for spreading drops. For retracting drops, the L-W curves are not well described by the
power law dependence prescribed by Eq. (8), viz. Fig. 4(c).

Remarks:
• It is appropriate to comment on the value of α in Eq. (8). Recall the rapid reduction in

θ3 − θ3
eq found in the L-W simulations for early times, see Fig. 1(a). This reduction, together with

(approximate) power law behavior for late times (β ≈ 1) requires that Ca is larger in the L-W model,
for equivalent θ . In terms of Eq. (8), α must be smaller for L-W drops, so direct comparison of α
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10−1

100

θ3
−

θ3 e
q

VoF, λ=0.01

L-W, λ= 0.01

VoF, λ=0.046875

L-W, λ=0.046875

10−3 10−2 10−1 100

Ca
10−3 10−2 10−1 100

(a) (b) (c)

FIG. 4. Axisymmetric drop spreading and retracting for the L-W and VoF models for various slip lengths. The following
cases were considered: (a) drop spreading from an initial contact angle of 30◦ to 15◦; (b) drop spreading from 45◦ to 30◦;
(c) a drop retracting from 30◦ to 45◦. The dashed line shows the best fits to the data of the form specified by Eq. (8).
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TABLE II. Values of β resulting from fitting the evolution of axisymmetric
drops with a spreading law of the form θ3 − θ3

eq ∝ Caβ , for L-W and VoF
simulations.

VoF L-W

30◦–15◦, slip 0.01 0.93 0.90
30◦–15◦, slip 0.046875 0.92 0.86
45◦–30◦, slip 0.01 0.98 0.88
45◦–30◦, slip 0.046875 0.99 0.87
30◦–45◦, slip 0.01 0.92 1.13
30◦–45◦, slip 0.046875 0.88 1.18

between the two models is not appropriate. This finding suggests that the interpretation of the length
scales appearing in Eq. (7) has to be different; we further discuss these length scales below. Here we
also note that the exact values of α are difficult to extract accurately from the present data, and this
is one of the reason we have so far concentrated on β, which can be found much more accurately,
and in addition is not influenced by the differences in the early time evolution.

• Recent works8, 34 consider the asymptotic limit of spreading drops in the small slip and
contact angle limit, including discussion of the length scales entering into the C-V law, Eq. (7). The
approach followed suggests that hc ∝ xf and hm ∝ λ/θ eq. As θ → θ eq � 1, volume conservation
gives x f ∝ θ

−1/(d+2)
eq (where again d = 0, 1 for planar and axisymmetric geometry, respectively);

from this one finds that hc/hm ∝ θ
(d+1)/(d+2)
eq /λ. We briefly discuss how our results compare to this

prediction.
(i) Figures 2 and 4 show that increasing λ shifts both L-W and VoF curves downward a similar

amount on the log-log plot, suggesting that both models share similar dependence on λ for both
planar and axisymmetric drops, consistently with Ref. 34.

(ii) For both planar and axisymmetric drops, we observe in Figs. 2 and 4 that for spreading
drops, the difference between the L-W and VoF curves increases for larger θ eq. Careful inspection
of the figures suggests that this increase is due to the fact that the VoF curves shift upwards as θ eq is
increased, while this shift (if any) is less pronounced for the L-W curves. The dependence of VoF
results on θ eq is consistent with Ref. 34.

(iii) Both models are more sensitive to variations of λ than to those of θ eq, again consistently
with the asymptotic results.34

A. Spreading of a perfectly wetting drop

We carry out here a second comparison between VoF and L-W simulations now for perfectly
wetting drops (i.e., θ eq = 0). Under no-slip condition, the spreading drops are expected to follow an
intermediate asymptotic behavior35 for large t represented by a self-similar thickness profile whose
contact line position, xf, obeys the Tanner’s law:14

x f (t) = ξ f t δ. (9)

Here, ξ f is a coefficient related to the thickness profile, and δ = 1/(7 + 3d), so that we have δ = 1/7
for a planar drop, and δ = 1/10 for an axisymmetric one.36 When slip is included, the flow is no
longer strictly self-similar due to the addition of this new length scale to the problem.35 However, it
has been shown that this effect is not strong if λ is much smaller than the average thickness of the
drop, and a quasi self-similar solution can be obtained.37 We will assume that this effect is negligible
here at least for the time scales considered.

The simulations are performed using three different slip lengths (λ = 0, 0.01, 0.046875) for both
planar and axisymmetric drops. Here, we consider λ = 0 in addition to non-zero values so to be able
to see clearly the influence of λ on reaching the asymptotic regime described above. Considering
λ = 0 requires few adjustments in our computations which we now briefly describe. In the L-W
model, we simply put λ = 0 in Eq. (4). Now the only additional length scale introduced in the
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FIG. 5. Front location as a function of time, xf (t), for a perfectly wetting drop (θ eq = 0) in L-W and VoF simulations:
(a) planar case; (b) axisymmetric case. The dashed lines show the exponent, δ, predicted by Tanner’s law for each case.

problem is h∗; the results (weakly) depend on this quantity, as discussed in some details in an earlier
work.38 In VoF simulations, a numerical slip of the order of the mesh size is always present, leading
to a mesh-size prewetting layer ahead of the contact line when θ eq = 0. Clearly, this computational
feature suggests that one may expect an influence of the numerical resolution on the results;39 to
optimize the computational cost, we limit the minimum mesh size to 1/28 units. At this resolution,
the effect of the mesh is found to be negligible on the results we present below. For the remainder
of this section, we will calculate the front location for VoF droplets as the point of inflection of the
fluid profile, rather than as the intersection of the reconstructed interface with the substrate.

Similarly to the calculations carried out for non-zero θ eq, we start with drops of a given initial
contact angle, θ i, and let the drops spread freely. Figure 5 shows the front location as a function of
time, xf (t). For clarity, we show in this figure the results for λ = 0, 0.01 only. Dashed lines show
profiles proportional to t1/7 (Fig. 5(a)) and t1/10 (Fig. 5(b)); the behavior of no-slip simulations is
seen to agree with these powers reasonably well for large times. To go beyond visual comparison,
we compute the value of δ in Eq. (9) from both models by a least squares fitting over a range of
times when δ is approximately constant. Table III shows the values of δ obtained. The L-W and VoF
calculations yield similar exponents for all slip lengths considered, and both show that δ decreases
for smaller λ, approaching the asymptotic values.

IV. COLLAPSE OF LIQUID RINGS

As a final comparison, we consider the problem of a collapsing ring, motivated by our desire to
consider a geometry that is more complex than the one of a drop, but that still allows for identifying
clearly the differences between the models. In addition, we will use this problem to more explicitly
demonstrate the influence of slip on the dynamics.

TABLE III. Exponents for the power law of the front position, xf(t), in the
perfectly wetting case (θ eq = 0). The results are given in fractional form to
help comparison with Tanner’s law exponent δ, 1/7 and 1/10, for the planar
and axisymmetric cases, respectively.

Case δV oF δL−W

Planar, slip 0.046875 1/6.0 1/6.0
Planar, slip 0.01 1/6.3 1/6.2
Planar, no-slip 1/6.2 1/6.6
Axisymmetric, slip 0.046875 1/7.2 1/7.7
Axisymmetric, slip 0.01 1/8.5 1/8.1
Axisymmetric, no-slip 1/9.4 1/9.0
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FIG. 6. Inner radius, rint(t), for L-W and VoF simulations of a collapsing ring: (a) θeq = 15◦; (b) θ eq = 30◦; (c) θ eq = 45◦.

The ring is defined by its internal and external radii, rint and rext, respectively, as well as by the
radius, R, of its circular cross section. Thus, the liquid is initially inside the region described by

0 ≤ y ≤ −R cos θ +
√

R2 − (r − r0)2, (10)

where r0 = (rext + rint)/2 is the mean radius, r2 = x2 + z2 with rintcos φ ≤ x ≤ rextcos φ and rintsin φ

≤ y ≤ rextsin φ (0 < φ < 2π ), and θ is the contact angle.
The radius, R, is chosen to be the same as that in previously considered axisymmetric drops (R

≈ 3.5, 1.4, 0.8, for θ eq = 15◦, 30◦, and 45◦, respectively), and the mean radius, r0, is held constant
at r0 = 1.8. In our setup, we consider rings with equal initial contact angles, θ i, at the internal and
external radii, and both equal to the equilibrium angle for static axisymmetric drops, θ eq. However,
the ring is not in equilibrium since the curvatures, 1/rint and 1/rext, yield different capillary pressures
which cannot be balanced by the same contact angle.18 Consequently, the ring develops an inward
flow which eventually leads to a collapse into a single central axisymmetric drop. In the present
work, we assume azimuthal symmetry and do not consider fully three-dimensional features of the
dynamics, which may lead to instabilities and breakup.18

Figure 6 shows the time evolution of the inner radius of the ring for both VoF and L-W
simulations. In particular, we will be interested in the time, τ , the collapse takes, defined as the time
when the interior radius vanishes. Table IV shows the resulting values of τ , together with the ratio
between the results of the two models. We note that this ratio decreases for smaller θ eq, suggesting
that the both models predict increasingly similar dynamics for small contact angles. For large θ eq

there are, however, significant differences, as can be seen explicitly in Figs. 6(a)–6(c). We point
out that these differences in dynamics cannot be predicted based simply on the thickness profiles.
To illustrate this point, Fig. 7 shows the profiles resulting from the two models at the times when
the inner ring radii are at the same location (Figs. 7(a) and 7(b)), in addition to the equilibrium
(long-time) result (Fig. 7(c)). We see that the corresponding shapes barely differ, but still lead to
considerably different dynamics.

TABLE IV. Ring collapse times, τV oF and τL−W , and their ratio,
τV oF /τL−W . The first column specifies the equilibrium contact angle, θeq,
and the slip length, λ.

Case τV oF τL−W τV oF /τL−W

15◦, slip 0.01 733 641 1.1
15◦, slip 0.046875 337 294 1.1
30◦, slip 0.01 194 142 1.4
30◦, slip 0.046875 102 74 1.4
45◦, slip 0.01 84 44 1.9
45◦, slip 0.046875 48 25 1.9
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FIG. 7. Ring profiles resulting from VoF and L-W simulations. (a) and (b) show the profiles at the times when the inner radii
are at the same location for both models, and (c) shows the equilibrium solution.
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FIG. 8. Collapse times, τ , of rings. Solid, dashed, and dash-dotted lines show the inverse of the growth rate, ω0, of
the azimuthally symmetric mode obtained from the linear stability analysis; filled/hollow circles show τV oF and τL−W ,
respectively.

Regarding the influence of slip length, note that Fig. 6 shows that a smaller λ leads to a larger
collapse time, with slip playing a similar role in both models. Additional more precise observations
can be made: for both VoF and L-W simulations, τ approximately halves when λ increases by a
factor close to four, viz. Table IV. This would suggest that a dependence τ ∼ λ−0.5 could be expected
(see dashed line in Fig. 8). In fact, a similar behavior is obtained when we consider the linear
stability analysis (LSA) of a contracting ring within L-W approach,18 by recalling that the collapse
time, τ , can be related to the inverse of the growth rate for the azimuthally symmetric mode, ω0.
Figure 8 shows that the LSA predicts a dependence of τ on λ that is not too far from what is found
in simulations. The overestimate of τ computed using the LSA is as expected, since the presented
estimate is based on the value of ω0 computed at t = 0 and therefore does not include an increase of
collapse speed as the ring decreases in size.

V. CONCLUSIONS

In this work, we report on comparison between direct solutions of Navier-Stokes equations
computed using a volume-of-fluid method, and the long-wave based simulations. We consider two
simple geometries, drops and rings, with the goal of avoiding complexities that are associated with
more complicated geometries. To further facilitate the comparison, we consider the flow regime
characterized by low Reynolds and capillary numbers, where L-W theory is expected to apply, and
implement Navier slip condition in both models with the same goal.

For partially wetting drops, characterized by non-zero equilibrium contact angle, θ eq, the com-
parison is carried out by considering consistency with the asymptotic C-V law. While in general our
findings are as expected – that L-W theory agrees well with the VoF results and the C-V law for
small θ eq – we also uncover additional features of the results, summarized here: (i) the deviations of
L-W results from the behavior expected based on the C-V law and VoF simulations is particularly
strong for retracting drops, and in azimuthal geometry; (ii) the initial stages of spreading or retracting
differ significantly between the models, for all considered θ eq; (iii) the degree of agreement between
the two models is not influenced by the values assigned to the slip length, λ—in other words, slip
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influences both models in a similar manner. To our knowledge, these findings have not been reported
in the literature.

For perfectly wetting drops, with θ eq = 0, both models are found to agree well with the
predictions of Tanner’s law in the case of no-slip. Non-zero slip length modifies the results and
introduces deviations from Tanner’s law as expected; an important finding here is that the two
models agree well with each other for non-vanishing slip.

When the two models are applied to collapse of a liquid ring, the results are found to be in good
agreement for small θ eq, while for larger θ eq, the collapse time under L-W simulations is as much as
twice as fast relative to the one found using VoF simulations. Again, the slip length has little effect
on the degree of comparison of the two models.

While in the present work we have considered only a classical L-W formulation, it would be
of interest to explore whether the recently proposed improvements of this formulation (see, e.g.,
Ref. 40), lead to significant differences; in addition, one wonders what is the influence of the
uncovered differences when more complex evolution is expected, such as in the problems where
various types of instabilities are relevant. These questions will be considered in our future work.
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APPENDIX A: NAVIER-STOKES SIMULATIONS

What follows, unless otherwise specified, is an overview of the method given in Ref. 26. Spatial
discretization is accomplished through a quad-tree in two dimensions; the domain is decomposed
into discrete square volumes, referred to as cells. All variables are defined at cell centers, and are
interpreted as their average over the cell. This mesh is adaptive, allowing to effectively treat regions of
very different interface curvatures and spatial scales. The interface between the two fluids is tracked
using an implementation of the VoF method. The VoF method tracks the interface by introducing a
volume fraction function, T, which is equal to the fraction of the cell occupied by the fluid phase.
The volume fraction is advected with the fluid flow, obeying the transport equation:

∂T

∂t
+ ∇ · (uT ) = 0 .

The interface in a cell is reconstructed as the linear function of the position x: m · x = α, where m is
the interface normal computed as ∇T by a finite difference stencil. The right-hand side α is solved
for using the normal and volume fraction (see Ref. 41).

The solution of the N-S equations is accomplished through a time-splitting projection method.
First, a predictor step calculates the auxiliary velocity field u∗ by applying the advection terms
and viscous forcing (note that in what follows a subscripted asterisk will indicate that the term is
evaluated on the auxiliary field):

ρn+1/2

[
u∗ − un

�t
+ un+1/2 · ∇un+1/2

]
= ∇ · [2μn+1/2((1 − η)Dn + ηD∗)] , (A1)

where D = 1
2 (∇u + ∇uT ) is the rate of deformation tensor. The parameter η characterizes the

implicitness of the method; η = 1/2 yields a Crank-Nicholson, second order scheme, and η = 1
yields first-order accurate, fully implicit scheme. The time step is variable, and the explicit treatment
of the surface tension requires26 that the time step satisfies �t ≤

√
ρ�3/(πσ ), where � is the width

of the smallest computational cell. In our surface tension driven flows, this constraint dominates the
time-stepping restrictions. The advection term un+1/2 · ∇un+1/2 is estimated using a conservative
Godunov method proposed in Ref. 42. The discrete equation is solved using a multigrid method
with Jacobi iteration scheme.
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The surface tension is added to u∗ in the next step, and is computed as a modification of the
continuum surface force implementation of the surface tension proposed in Ref. 25, where ∇T is
used to approximate the δsn in Eq. (1):

u∗ ← u∗ + �tσκn+1/2

ρn+1/2
∇Tn+1/2 . (A2)

Interface curvature, κ , is estimated using a modification of the height function method43–45 first
proposed in Ref. 46 and described in detail in Ref. 26. In this method, the “height” of the fluid
interface in a computational cell is calculated above a reference axis (e.g., the x axis). If we refer
to the height function as f, then the curvature of the interface in two dimensions is given by the
standard formula κ = f′′/(1 + f′2)3/2, so that three fluid heights are required for a finite difference
approximation of this curvature in each cell. The height functions are also used to impose the contact
angle, as described below.

Since the velocity field must be incompressible, the auxiliary field is written, using the Helmholtz
decomposition, as

u∗ = un+1 + �t

ρn+1/2
∇ pn+1/2 , (A3)

where again p is the pressure. Taking the divergence of both sides leads to a Poisson equation:

∇ ·
(

�t

ρn+1/2
∇ pn+1/2

)
= ∇ · u∗ . (A4)

The divergence-free velocity field is finally given by

un+1 = u∗ − �t

ρn+1/2
∇ pn+1/2. (A5)

The volume fraction T is solved for at half timesteps by a conservative method; the variables μn+1/2

and ρn+1/2 are thus known through their functional dependence on the volume fraction function.
Finally, the contact angle in the VoF code is implemented as described in Ref. 44. In this method,

the slope of the interface in the contact line cell is imposed so that the angle formed by the interface
with the substrate is θ eq, and the forcing due to the contact angle enters into Eq. (1) through the
surface tension term. It is thus sufficient to modify the computation of the curvature term to take
this into account. The height of the fluid in the contact line cell is found from a linear reconstruction
of the interface in that cell, using the value of the volume fraction T and the slope determined by
θ eq. In order to have a large enough stencil of heights to compute the curvature, “ghost cells” are
introduced, which are cells outside the domain where the height function and T are defined. The
height function in the ghost cells is found by extending the linear reconstruction in the contact line
cell into the ghost cells. The same method as above is used for θ eq = 0, and is equivalent to setting
T = 1 in the ghost cells.

APPENDIX B: NUMERICAL VALIDATION

In our VoF simulations, the solution was calculated on an adaptive mesh refined on the drop
surface to a resolution of � = 1/28, while parts of the domain far from the surface were refined to
1/24. To test the convergence of the method, we present the case when the planar drop spreads from
θ i = 30◦ to θ eq = 15◦. The average relative difference is calculated as

Avg� = 1

tmax

∫ tmax

0

|x f (t) − xre f (t)|
xre f (t)

dt ,

where xref is the drop radius computed with � = 1/28, and xf is computed with � = 1/25, 1/26, and
1/27. We restrict our attention to a representative portion of the drop spreading, so that tmax is the
time it takes for the drop radius to be within 1% of its equilibrium value, as computed using � =
1/28. Figure 9 plots Avg� and shows that mesh effects are negligible when compared to the drop
radius.
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FIG. 9. Relative error for planar spreading drop. The error is computed as the average relative difference between the front
location compared to the one found using � = 1/28.

Hocking and Rivers21 derived an asymptotic solution for the radius of a spreading drop. In
their derivation, the flow is governed by the Stokes equations, and the effects of gravity are ignored.
Additionally, the condition on the solid substrate is assumed to be the Navier slip condition (see
Eq. (3)), where the slip length is taken to be small relative to the drop size. No limitations on the
contact angle are imposed. Their solution yields the following ordinary different equation (ODE)
for the drop radius, xf

2
dx fa

dt
= G(θ ) − G(θeq )

ln(x f ) − ln(λ) − QO (θ ) + Qi (θeq )
, (B1)

where

G(θ ) =
∫ θ

0

ϑ − sin ϑ cos ϑ

sin ϑ
dϑ .

The functions QO and Qi were computed by interpolating Table 1 in Ref. 21. The contact angle, θ ,
is related to the drop volume and front location through conservation of volume, so that Eq. (B1)
can be solved using standard ODE solvers.

We present the case of the axisymmetric drop spreading from 45◦ to 30◦. In order for Eq. (B1)
to apply, the denominator must be greater than 0, so for our parameters we find the condition that
λ � 0.03. We thus choose λ = (0.028, 0.016, 0.008, 0.004). The drop radius was computed using
the VoF solver, x fV oF , and the asymptotic solution, x fa , for each slip length. The average relative
difference between numerical and asymptotic solution was computed by the integration

Avg
|x fV oF − x fa |

x fV oF

= 1

tmax

∫ tmax

0

|x fV oF − x fa |
x fV oF

dt ,

where tmax is again chosen so that x fV oF is within 1% of its equilibrium value. Note that the time it
takes for the VoF solution to reach equilibrium is λ-dependent, so that the comparison is carried out
over appropriate ranges for each λ considered.

Figure 10(a) shows the relative difference between the two results. We see that the front locations
agree well in the limit of small λ. Another comparison that can be carried out involves considering
the difference in the time scales. We compute the spread times as the time it takes the VoF solution
and the asymptotic solution to reach 1% of the respective equilibrium values; denote these τV oF and
τ a. The relative difference between the two is computed as |τV oF − τa|/τV oF . Figure 10(b) shows
the relative difference of the spread times. For larger λ, the asymptotic solution predicts that a drop
spreads much faster, compared to the simulation results. However, for small λ, the difference in
spreading times is less than 10% of τV oF , and on average the relative difference in the computed
front locations is of the order of 10−3.

To conclude, we find that the results of the simulations are fully converged for the grid resolutions
implemented. Furthermore, the location of the front as a function of time agrees very well with
existing asymptotic results for a spreading drop. The VoF based solver thus allows for accurate
simulations of contact angle driven spreading phenomena.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.5.106.13 On: Thu, 07 Nov 2013 14:35:23



112103-15 Mahady et al. Phys. Fluids 25, 112103 (2013)

10−3 10−2 10−1

λ

10−3

10−2

10−1

A
vg

.
|x

V
o

F
−

x
f

a
|

x
V

o
F

(a)

10−3 10−2 10−1

λ

10−2

10−1

100

|τ
V

o
F
−

τ
a
|

τ
V

o
F

(b)

FIG. 10. Comparison of VoF simulations with asymptotic solution21 for a drop spreading from 30◦ to 15◦ as a function of
the slip length: (a) the average relative difference between the front locations; (b) the relative difference in spread times.
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3563 (1996).
38 J. Diez, L. Kondic, and A. L. Bertozzi, “Global models for moving contact lines,” Phys. Rev. E 63, 011208 (2000).
39 M. Renardy, Y. Renardy, and J. Li, “Numerical simulation of moving contact line problems using a volume-of-fluid

method,” J. Comput. Phys. 171, 243 (2001).
40 J. Snoeijer, “Free-surface flows with large slope: beyond lubrication theory,” Phys. Fluids 18, 021701 (2006).
41 R. Scardovelli and S. Zaleski, “Analytical relations connecting linear interfaces and volume fractions in rectangular grids,”

J. Comput. Phys. 164, 228 (2000).
42 J. Bell, P. Colella, and H. Glaz, “A second-order projection method for the incompressible Navier-Stokes equations,” J.

Comput. Phys. 85, 257 (1989).
43 M. Francois, S. Cummins, E. Dendy, D. Kothe, J. Sicilian, and M. Williams, “A balanced-force algorithm for continuous

and sharp interfacial surface tension models within a volume tracking framework,” J. Comput. Phys. 213, 141 (2006).
44 S. Afkhami and M. Bussmann, “Height functions for applying contact angles to 2D VOF simulations,” Int. J. Numer.

Methods Fluids 57, 453 (2008).
45 M. Sussman, “A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor

bubbles,” J. Comput. Phys. 187, 110 (2003).
46 M. Torrey, L. Cloutman, R. Mjolsness, and C. Hirt, “NASA-VOF2D: a computer program for incompressible flows with

free surfaces,” NASA STI/Recon Technical Report N (1985), Vol. 86, p. 30116.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.5.106.13 On: Thu, 07 Nov 2013 14:35:23

http://dx.doi.org/10.1063/1.1776071
http://dx.doi.org/10.1063/1.868072
http://dx.doi.org/10.1103/PhysRevE.53.3563
http://dx.doi.org/10.1103/PhysRevE.63.011208
http://dx.doi.org/10.1006/jcph.2001.6785
http://dx.doi.org/10.1063/1.2171190
http://dx.doi.org/10.1006/jcph.2000.6567
http://dx.doi.org/10.1016/0021-9991(89)90151-4
http://dx.doi.org/10.1016/0021-9991(89)90151-4
http://dx.doi.org/10.1016/j.jcp.2005.08.004
http://dx.doi.org/10.1002/fld.1651
http://dx.doi.org/10.1002/fld.1651
http://dx.doi.org/10.1016/S0021-9991(03)00087-1

