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ABSTRACT
Terrestrial eggs have evolved repeatedly in tropical anurans exposing embryos to the
new threat of dehydration. Red-eyed treefrogs, Agalychnis callidryas, lay eggs on plants
over water. Maternally provided water allows shaded eggs in humid sites to develop
to hatching without rainfall, but unshaded eggs and those in less humid sites can die
from dehydration. Hatching responses of amphibian eggs to dry conditions are known
from two lineages with independent origins of terrestrial eggs. Here, we experimentally
tested for dehydration-induced early hatching in another lineage (Agalychnis callidryas,
Phyllomedusidae), representing a third independent origin of terrestrial eggs. We also
investigated how dehydration affected egg and clutch structure, and egg mortality. We
collected clutches from a pond in Gamboa, Panama, and randomly allocated them to
wet or dry treatments at age 1 day. Embryos hatched earlier from dry clutches than
from wet clutches, accelerating hatching by ∼11%. Clutch thickness and egg diameter
were affected by dehydration, diverging between treatments over time. Meanwhile,
mortality in dry clutches was six-fold higher than in control clutches. With this study,
early hatching responses to escapemortality from egg dehydration are now known from
three anuran lineages with independent origins of terrestrial eggs, suggesting they may
bewidespread. Further studies are needed to understand how terrestrial amphibian eggs
can respond to, or will be affected by, rapid changes in climate over the next decades.

Subjects Developmental Biology, Ecology, Zoology
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INTRODUCTION
Terrestrial eggs have evolved repeatedly in many species of teleost fishes and amphibians
(Martin & Carter, 2013). In tropical anurans, Gomez-Mestre, Pyron & Wiens (2012) found
48 independent origins of terrestrial reproduction. The evolution of terrestrial breeding
may be driven by the risk of aquatic predation in early life stages (Duellman & Trueb, 1986;
Touchon, 2012). However, nonaquatic reproduction also entails risks. Terrestrial eggs are
exposed to different threats than those affecting aquatic eggs, including terrestrial predators
(Warkentin, 1995; Warkentin, 2000), pathogens (Warkentin, Currie & Rehner, 2001), and
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the novel threat of dehydration (Mitchell, 2002; Touchon & Warkentin, 2009). The risk of
egg dehydrationmost strongly affects species without parental care, and this threat could be
exacerbated by climate change (Donnelly & Crump, 1998). As well as temperature, rainfall
patterns are changing in the tropics. Specifically, even if overall rainfall remains similar,
in the Neotropics rainfall events are becoming less frequent, resulting in an increase in
dry spells during the rainy season (Hulme & Viner, 1998; Christensen et al., 2007; Allan &
Soden, 2008). Therefore, it is important to understand the potential responses of vulnerable
life stages to such climate variations.

Environmentally cued variation in hatching time is widespread in many taxa
(Warkentin, 2011a) and serves as an important defense mechanism against egg-stage
risks. Environmentally cued hatching (ECH) is well documented in anurans (Warkentin,
2011b); much of this research addresses biotic threats to eggs and larvae, and a substantial
subset addresses responses of embryos to hypoxia. The terrestrial eggs of red-eyed
treefrogs, Agalychnis callidryas, one of the most studied species, hatch early in response to
multiple environmental threats, including predator attack (snakes,Warkentin, 1995; wasps,
Warkentin, 2000), fungal infection (Warkentin, Currie & Rehner, 2001) and flooding, which
can kill embryos too young to hatch (Warkentin, 2002). Embryos presumably use some of
the same mechanisms to respond to these different risks. For instance, all responses require
a means to exit from the egg and the ability to regulate expression of this process (Cohen,
Seid & Warkentin, 2016). Nonetheless, different types of threat provide very different types
of cues. Their detection requires different sensors, and assessing different risks may require
different cognitive mechanisms. Thus, embryos that respond to one threat, using one type
of cue, may be insensitive to other cues and unresponsive to other threats.

Only a few studies of ECH have examined how amphibian eggs respond to drying
conditions (Warkentin, 2011b); thus, it is unclear how widespread hatching responses to
egg dehydration might be. To date, such responses are known from two lineages with
independent origins of terrestrial eggs deposited on vegetation above water in rainforest
environments. In the treefrogDendropsophus ebraccatus (Hylidae: Dendropsophinae), eggs
exposed to dehydration hatch earlier and more synchronously than well-hydrated clutches
(Touchon & Warkentin, 2010; Touchon, Urbina & Warkentin, 2011). In the glassfrog
Hyalinobatrachium fleischmanni (Centrolenidae:Hyalinobatrachinae), fathers hydrate their
developing embryos during dry weather.When the caring parent is removed, increasing risk
of egg dehydration, the embryos also respond by hatching earlier and more synchronously
(Delia, Ramírez-Bautista & Summers, 2014). Here, we tested for dehydration-induced early
hatching in another lineage (Agalychnis callidryas, Phyllomedusidae), representing a third
independent origin of terrestrial eggs. We also investigated how dehydration affected egg
and clutch structure, and egg mortality.

MATERIALS & METHODS
Study system
The recently redescribed family Phyllomedusidae (Amphibia: Anura: Arboranae,Duellman,
Marion & Hedges, 2016) are uniformly terrestrial egg layers. They place eggs on vegetation
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over water, into which tadpoles fall upon hatching. These treefrogs have evolved several
strategies to avoid egg dehydration. Females absorb water from their environment before
oviposition and deposit eggs surrounded by well hydrated jelly (Pyburn, 1970; Pyburn,
1980). In addition, some species wrap eggs in a funnel-shaped nest of leaves, and surround
their eggs with eggless jelly capsules as water reservoirs (Faivovich et al., 2010). Nonetheless,
after the eggs are deposited, embryos must face dehydration and other risks with no further
parental assistance. Agalychnis callidryas inhabits lowland wet forest from the Yucatan
through Panama (Frost, 2016), breeding in seasonal ponds and swamps. This species
lays their gelatinous egg masses exposed on vegetation, without wrapping them in leaves.
Maternally provided water allows shaded eggs in humid sites to develop to hatching without
rainfall. However, unshaded eggs and those in less humid sites can die from dehydration.
We studied them at the Smithsonian Tropical Research Institute in Gamboa, Panama.
At this locality egg mortality from dehydration has historically been low but detectable
(e.g., 3% in 1998, vs. zero at a pond in Corcovado Park, Costa Rica, in 1993 and 1994;
Warkentin, 2000; Gomez-Mestre & Warkentin, 2007). However, in the extremely dry El
Niño of 2015 many entire egg cohorts laid in Gamboa perished from dehydration (K
Warkentin, pers. obs., 2015).

Experimental design
We collected 30 healthy egg clutches (38.8± 3.6 eggs (mean± SE)) laid on the night of 24
July 2011 from the Experimental Pond in Gamboa, Panama (9◦07′15′N, 79◦42′14′W). All
clutches were collected with the leaves on which they were laid, mounted on plastic cards
for support and attached to the sides of plastic cups in a vertical orientation. Each cup
contained aged tap water to catch hatched tadpoles. Eggs in each clutch were counted, and
any dead or undeveloped eggs (possibly unfertilized) were noted. Clutches were randomly
allocated to a wet treatment or a dry treatment starting at age 1 day. Wet clutches were
heavily sprayed with aged tap water multiple times daily, taking care not to overspray onto
dry clutches. Dry clutches were unsprayed or minimally sprayed in some cases where eggs
were dying from dehydration. Clutches were located on the same table in a laboratory
with a mean temperature of 26.8 ◦C (range: 25.5–28.5 ◦C), and mean humidity of 82.4%
(range: 78–88%); nearby ponds under rainforest canopy cover are usually slightly cooler
and more humid. Clutches were maintained on a 12:12 light: dark photoperiod, based
on local sunrise/sunset times. All clutches were checked for hatching at least five times
daily. Clutches were photographed daily with a ruler for egg size measurements, from age
1 to 4 days. At each age, for each clutch, we measured two orthogonal diameters for each
of 10 eggs from the photographs, using ImageJ (NIH); for analysis, we used the average
of the two diameters. We also measured the thickness of each clutch when it entered the
experiment at 1 day old and after two days in the treatments, at 3 days old, by inserting a
fine probe orthogonally through the thickest part of the clutch, between eggs, to the leaf
surface. This measurement included both eggs and associated jelly thickness.

Statistical analysis
Analyses were conducted using generalized linear models followed by likelihood ratio or F
tests implemented using R v. 3.3.1 (2016-06-21; R Development Core Team, 2011). We used
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Figure 1 Hatching success of well-hydrated Agalychnis callidryas embryos was significantly higher
than that of drying embryos. Data are mean percent of embryos that hatched successfully (±SE across 15
clutches per treatment).

logistic regression with binomial errors to test whether the hydration treatment altered the
proportion of embryos that survived to hatching. As we focused on embryonic mortality
from desiccation, this analysis excluded embryos that showed no initial development
(e.g., presumed unfertilized). We used linear models with normally distributed errors to
test for the independent and interactive effects of the hydration treatment and clutch size
on time to hatching (h) and of hydration treatment and days post-oviposition (dpo) on
egg diameter (mm) and clutch thickness (mm).

RESULTS
Mean survival was significantly lower in clutches from the dry treatment compared to the
wet treatment (X 2

= 6.86, df = 1, 28, P = 0.009, dispersion parameter = 15.2; Fig. 1).
Embryonic mortality averaged 24.0 ± 0.9% (mean ± SE, here and throughout) in the dry
treatment compared to only 4.0± 0.1% in the wet treatment.Mortality in the dry treatment
was also more variable, ranging from zero to 100%. Desiccation mortality occurred early in
development; embryos that achieved hatching competence prior to desiccation were able
to hatch and escape further drying.

We assessed timing of hatching at three time points along the hatching curve; (1)
initiation of hatching, (2) half of the clutch hatched, and (3) completed hatching. Initiation
of hatching depended only on hydration treatment (hydration: F1,24 = 9.76, P < 0.01,
clutch size: F1,24= 2.04, P = 0.16, hydration× clutch size: F1,24= 0.08, P = 0.8). Embryos
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Figure 2 Agalychnis callidryas embryos in dry clutches hatched earlier than did those in wet clutches.
Data shown are the mean age when clutches started hatching,±SE across 15 clutches per treatment.

from the dry treatments started hatching 10.73 ± 3.4 h earlier than the wet treatment
(Fig. 2). Time for half of the embryos to hatch depended on both hydration and clutch size
(hydration: F1,24= 14.1, P < 0.001, clutch size: F1,24= 6.05, P = 0.02, hydration × clutch
size: F1,24= 0.08, P = 0.78). Wet clutches reached the 50% hatch point 16.3 ± 10.3 h later
than dry clutches and each additional egg in a clutch increased time to half hatch by 0.29
± 0.14 h. Time to hatch completely was similarly dependent on hydration and clutch size
(hydration: F1,24= 12.7, P = 0.0015, clutch size F1,24= 5.64, P = 0.026, hydration× clutch
size interaction: F1,26= 0.34, P = 0.57). Wet clutches finished hatching 19.9 ± 11.1 h later
than dry clutches and each additional egg increased time to complete hatching by 0.33 ±
0.15 h. In both treatments, hatching was gradual and asynchronous, but the entire hatching
curve was earlier in the dry treatment (Fig. 3).

Mean egg diameter was a function of the interaction between hydration and days
post-oviposition (hydration: X 2

= 33.93, df = 1, P < 0.001; dpo: X 2
= 12.26, df = 1,

P < 0.0004; hydration × dpo: X 2
= 15.91, df = 1, P < 0.001, Fig. 4). Initially, in both dry

and wet clutches, egg diameters increased due to absorption of water from the egg jelly
into the perivitelline space; however, wet eggs swelled more rapidly. Eggs in wet clutches
continued to swell, then stabilized in diameter at age 3 days. By contrast, from 2 days eggs
in dry clutches shrank, with the difference between treatments increasing over time.

Mean clutch thickness also was a function of the interaction between hydration and
days post-oviposition (hydration: X 2

= 3.12, df = 1, P = 0.077; dpo: X 2
= 0.48, df = 1,
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Figure 3 Agalychnis callidryas embryos hatched≈11% earlier from drying vs. wet clutches. Data
are mean proportion hatched at each age (±SE across 15 clutches per treatment), of all that eventually
hatched. Dark and light shading along the x-axis indicates photoperiod.

P = 0.49; hydration× dpo:X 2
= 6.05, df = 1, P = 0.014, Fig. 5). At the beginning of the ex-

periment, at age 1 day, there was no difference in thickness between clutches assigned to dif-
ferent treatments (dry: 7.03± 1.70 mm, wet: 6.73± 1.53 mm). However, two days later wet
clutches were much thicker than dry clutches (dry: 5.67±1.63 mm, wet: 7.50± 1.84 mm).

DISCUSSION
Our results show that red-eyed treefrogs can accelerate hatching when exposed to the
gradual threat of dehydration over embryonic development. In this study, the acceleration
in hatching timing (11%) was less than that reported for other frogs (Dendrosophus
ebraccatus: 17%, Touchon & Warkentin, 2010; Hyalinobatrachium fleishmanni: 59%,
Delia, Ramírez-Bautista & Summers, 2014). It may be that, compared with those species,
A. callidryas has a relatively limited capacity to accelerate hatching under the threat of
drying. Indeed, based on field monitoring of eggs, both D. ebraccatus and H. fleishmanni
both appear at higher risk of mortality from dehydration than does A. callidryas.
Dehydration led to 98% mortality in terrestrial eggs of D. ebraccatus exposed to lack of
rainfall during the first 48 h post-oviposition (Touchon & Warkentin, 2009). Similarly,
in male removal experiments generating ‘‘orphan’’ clutches of H. fleishmanni, 78%
of total mortality was due to dehydration (Delia, Ramírez-Bautista & Summers, 2013).
Alternatively, because the mortality imposed by our drying treatment was moderate (24%),
compared with the possible risk of mortality under more extreme weather conditions, it
may not have tested the limits of A. callidryas capacity to accelerate hatching.
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Figure 4 Effect of development and hydration treatment on Agalychnis callidryas egg diameter. Data
are mean± SE across 15 clutches per treatment. Egg diameter was a function of the interaction between
hydration treatment and age.

The hatching pattern of drying clutches—accelerated but gradual hatching, over a period
of days—was very similar to the hatching pattern of clutches infected by a pathogenic fungus
which caused about 40% mortality and 17% acceleration of hatching (Warkentin, Currie
& Rehner, 2001; Warkentin, 2011b). Both fungus and dehydration are chronic threats
that affect egg clutches gradually and potentially provide cues over extended periods of
development. However, what those cues are, or how embryos detect them, is in both cases
unknown. Red-eyed treefrog embryos use physical disturbance or vibrations to assess
danger in predator attacks (Warkentin, 2005) and respond by hatching very rapidly, within
seconds (Cohen, Seid & Warkentin, 2016;Warkentin et al., 2007). They also use hypoxia as a
cue to hatch from eggs that are flooded, responding to submergence inminutes (Warkentin,
2002). Like fungus infection, dehydration does not move eggs, and neither threat has a
sudden, acute onset. Either vibrational cues or another sudden change in clutch conditions
may be necessary to induce rapid or synchronous hatching.

Both clutch thickness and egg diameter were affected by dehydration, diverging between
treatments over time. Dehydration began to affect these variables from age 3 days, when
both clutch thickness and egg diameter decreased in dry treatment eggs. Our results
suggest that during early developmental stages water moves from the jelly layers into the
perivitelline space, enlarging the eggs (Salthe, 1965), as diameter of the vitelline chamber
increased even in the dry treatment. Later in embryonic development (from three days),
after available water from jelly layers has been absorbed, the eggs can absorb additional
water from external sources, such as rainfall. Without external sources of water, egg
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Figure 5 Thickness of Agalychnis callidryas egg clutches before (age 1 d) and two days after (age 3 d)
the imposition of different hydration treatments. Data are means± SE across 15 clutches per treatment.
Mean clutch thickness was a function of the interaction between hydration treatment and age.

diameter then begins to decrease, constricting the perivitelline space. Egg diameter of
terrestrial breeding frogs usually decreases when they are exposed to dry conditions (e.g.,
Kurixalus eiffinger, Kam, Yen & Hsu, 1998; Bryobatrachus nimbus, Mitchell, 2002), due to
the semipermeable nature of their vitelline membrane (Salthe, 1965).

With this study, early hatching responses to escape mortality from egg dehydration
are now known from three anuran lineages with independent origins of terrestrial eggs
(Hylidae: Dendropsophinae; Centrolenidae; Phyllomedusidae). Other responses to, and
effects of, dehydration on terrestrial frog eggs have been explored in other lineages.
For example, Kam, Yen & Hsu (1998) found the opposite response in Kurixalus eiffinger
(Rhacophoridae: Rhacophorinae); well-hydrated eggs hatched earlier than drier eggs.
In this species, accelerating the time of hatching under wetter conditions has a clear
adaptive significance. Tadpoles of K. eiffinger are oophagous. Females lay their first
batch of trophic eggs before all the fertilized eggs have hatched, then return eight days
later to feed the tadpoles again (Kam et al., 1998). Tadpoles that hatch earlier obtain
more trophic eggs, grow faster and reach metamorphosis earlier. Other studies have
been conducted on terrestrial anuran embryos with a similar approach. Most of this
research has focused on effects of different moisture conditions on phenotypic traits
(Taigen, Pough & Stewart, 1984; Bradford & Seymour, 1988; Seymour, Geiser & Bradford,
1991a; Seymour, Geiser & Bradford, 1991b; Kam, Yen & Hsu, 1998; Mitchell, 2002). Anuran
embryos exposed to dry conditions grow more slowly (Pseudophryne bibroni, Bradford
& Seymour, 1988), have lower hatching success (e.g., Kurixalus eiffingeri, Kam, Yen
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& Hsu, 1998; Bryobatrachus nimbus, Mitchell, 2002), produce smaller hatchlings (e.g.,
Eleutherodactylus coqui, Taigen, Pough & Stewart, 1984; Kam, Yen & Hsu, 1998; Mitchell,
2002 and generate stunted and asymmetric morphologies at hatching (Mitchell, 2002). In
A. callidryas, early-induced hatchlings are generally smaller and less developed than full
term hatchlings (Warkentin, 1995; Warkentin, 1999; Gomez-Mestre, Wiens & Warkentin,
2008). Such differences, however, appear simply to be caused by differences in the period
of embryonic development, not by differences in embryonic developmental trajectories,
and there is no evidence to date that hatching plasticity in this species occurs by altering
the rate of embryo development (Warkentin, 2011a). Nonetheless, in this study we did not
collect the detailed morphological data that would be necessary to test for subtle effects of
drying on development rate.

The anuran lineages now demonstrated to hatch early in response to drying vary in their
degree of egg and clutch adaptation to terrestrial development. Dendropsophus ebraccatus
egg size and clutch morphology are much like those of aquatic breeding congeners;
they appear not to be strongly adapted to terrestrial development, and indeed can also
develop aquatically (Touchon & Warkentin, 2008). In contrast, phyllomedusids have a
long (34–50 million years) evolutionary history of terrestrial eggs (Gomez-Mestre, Pyron
& Wiens, 2012) and A. callidryas eggs do not survive prolonged submergence (Pyburn,
1970). Considering that these highly adapted terrestrial eggs, which typically do not suffer
high dehydration mortality, can show adaptive plastic responses to reduce mortality from
this occasional threat, drying-induced early hatching may be a more general, broadly
distributed phenomenon.

The risk of dehydration as a source of mortality for terrestrial-breeding frogs is
particularly important in the context of global climate change. Local changes in weather and
climate can affect the hydration of terrestrial embryos. In D. ebraccatus living in sympatry
with A. callidryas, the survival of terrestrial eggs is affected both directly and indirectly
by the amount of rainfall (Touchon & Warkentin, 2009). Directly, rain hydrates eggs and
prevents mortality from drying. Indirectly, because the jelly surrounding eggs swells with
hydration, rain decreases the risk of predation; dehydrated eggs are more susceptible to
predation by ants and wasps. In Phyllomedusa hypochondrialis, which normally wraps
its eggs in leaves, the mortality of embryos exposed directly to the air decreased during
rainy periods (Pyburn, 1980). The tropics, where the highest biodiversity of amphibians
is concentrated, are expected to become warmer and drier, and many tropical anuran
lineages have evolved terrestrial eggs. Therefore, to understand how these terrestrial eggs
can respond to, or will be affected by, rapid changes in climate over the next decades is
relevant for conservation planning.
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