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Abstract The optical extinction spectra of micro- and
nanoparticles made up of high-contrast dielectrics exhibit
a set of very intense peaks due to the excitations of
morphology-dependent resonances (MDRs). These kind of
resonances are well known at the microscopic scale as whis-
pering gallery modes. In this work, we study numerically
the optical spectra corresponding to a core—shell structure
composed by an infinite silicon nanowire coated with a
silver shell. This structure shows a combination of both
excitations: MDRs and the well-known surface plasmon
resonances in dielectric metallic core—shell nanoparticles
(Ekeroth Abraham and Lester, Plasmon 2012). We com-
pute in an exact form the complete electromagnetic response
for both bare and coated silicon nanowires in the range of
24-200 nm of cross-sectional sizes. We take into account
an experimental bulk dielectric function of crystalline sil-
icon and silver by using a correction by size of the metal
dielectric function. In this paper, we consider small silver
shells in the range of 1-10 nm of thickness as coatings.
We analyze the optical response in both the far and near
fields, involving wavelengths in the extended range of 300-
2,400 nm. We show that the MDRs excited at the core
are selectively perturbated by the metallic shell through
the bonding and antibonding surface plasmons (SPs). This
perturbation depends on both the size of the core and the
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thickness of the shell, and, as a consequence, we
get an efficient tuneable and detectable simple sys-
tem. Our calculations apply perfectly to long nanotubes
compared to the wavelength for the two fundamental
polarizations (s, p).

Keywords Core—shell nanowires - Plasmonics -
Morphology-dependent resonances

Introduction

Optical whispering-gallery modes [2, 3], electromagnetic
resonances that can be interpreted by total internal reflec-
tion of the light at the surface inside a micro-scatterer,
are in fact a kind of morphology-dependent resonances
(MDRs), which are showed by micro- and nanoparticles
with high relative dielectric constants, like silicon or semi-
conductor particles in vacuum or in water. From a math-
ematical point of view, optical MDRs can be found as
singularities in the coefficients of Mie series and can be
labeled with integer numbers in a similar form to quan-
tum problem of eigenvalues [4]. MDRs, depending of
the polarization of the excitation, are more or less con-
fined within the particle showing a huge electric near-field
enhancement.

There have been great advances in the synthesis of com-
pounds involving silicon or silica composites with or with-
out plasmonic nanoparticles [5-9], some of them oriented
to some particular applications as batteries and photovoltaic
cells [10-12], plasmonic applications like waveguiding [13]
up to biological tracers [14]. Some applications and stud-
ies try to take advantage from other properties, which,
in addition, has this kind of semiconductor due the pres-
ence of dopants or due the effect of quantum confinement
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(particles with sizes less than 5 nm), like luminescence
[14-16], fluorescence [17], etc.

In this sense, a great effort has been dedicated to under-
stand the optical properties of systems consisting of bare
crystalline silicon structures or composite systems (metama-
terials) like silicon metal core—shell systems [18-21]. Many
of these systems with high-contrast materials show resonant
properties in a wide range of the electromagnetic spectrum.
This possibility of tuning these morphological resonant
modes, in combination with plasmonic ones, makes these
metamaterials very interesting for possible technological
applications [22]. In this work, we propose to analyze the
linear optical response (through the optical efficiencies Q:
absorption, extinction, and scattering, respectively—Q 4ps,
QOext, and Qgca) of long silicon core—silver shell nanowires
(silicon-filled silver nanotubes (nts)), with the aim of char-
acterizing optically such metamaterials (systems). We chose
silver as the plasmonic material because it generates sharper
resonances than gold or other similar real metals. It makes
possible to identify and characterize plasmonic peaks in the
extinction or absorption spectra. In particular, the silicon
core can have absorption peaks in the range of wavelengths
of 600-900 nm, depending on the radius. This optical win-
dows is characteristic of radiation penetration in tissues, and
it is considered for biological applications [23, 24].

In the first part of this paper, we review the main optical
properties of both plasmonic (hollow) nts and bare silicon
nanowires. We derive an analytical expression that real-
izes evolution of plasmonic resonances with the scaled shell
thickness d/ry, r| being the total size of the nt. As we
showed in a previous paper [25], for thin metallic shells
(in the range of 1-10 nm), it is necessary to correct the
dielectric function with d. Next, we briefly review the exper-
imental dielectric function for silicon [26], and we do a
complete analysis of MDRs in nanowires constructed with
this material.

The second part of the paper is dedicated to a numerical
study on the core—shell system. We show that such a kind of
combinations between shells of plasmonic materials and sil-
icon cores (or materials with high dielectric constant) allows
a tuning of plasmonic modes and MDRs by varying d. For
the cases studied in this paper, we found that the plasmonic
and morphology-dependent resonances do not interact each
other, and the system does not show any coupling resonance.

For our calculations, we use an integral method that
solves the Maxwell equations for the imposed geome-
try of the two fundamental polarizations: s (p) electric
(magnetic) field parallel to the cylinder axis. This method
does not require any approximation. It is based on the
well-known extinction theorem and has been used exten-
sively [1, 27, 28]. This method provides some advan-
tages compared, for example, with the calculations by
Mie series, in respect to symmetry breaking or calculating
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the response of other particle shapes. For more details
about this method applied to 2D core—shell structures,
see the work in http://users.exa.unicen.edu.ar/mlester/
764TesisAbraham.pdf (theoretical aspects and numerical
implementation). For the silicon core, we use a realistic bulk
dielectric function, taking special care in the size of the
cores (i.e., for sizes up to 20 nm, the bulk dielectric constant
is valid [15, 29-32]). And for the case of small metallic coat-
ings, we use the corrected function showed in [25, 33]. In
this way, we can obtain numerically realistic optical spectra
for nanowires and nts that are normally illuminated by plane
waves.

Plasmonic Properties of the Nanometer Metallic Shells:
Metallic Nanotubes

In this section, we review the general optical properties
of the nts with thin metallic shells and the dependence of
the dielectric function with the shell thickness. The results
of this section will be useful in understanding the optical
response of core—shell systems with thin shells.

Size Correction of the Dielectric Function

To make a proper description of the electromagnetic inter-
action with the core—shell system, we use a parametric
correction from the complex dielectric function of the bulk
material to consider the finite thickness of the metal layer
[25]. This correction takes into account the interaction of the
conduction electrons with the boundaries of the shell. The
complex dielectric function, € = €’ + i€”, can be decom-
posed in two additive terms, corresponding to bound and
free-electron contributions:

w? + iwYpulk

wz
€bulk(®) = €pound (@) + [1 - r ] : (1

where ), is the bulk plasma frequency and ppyik is the bulk
damping constant. The bound-electron contribution is con-
sidered independent of the radius and can be calculated by
subtracting the free-electron term from epyk (@) [33]. As it
is well known from the literature, w, is assumed to be inde-
pendent of the size for particles with radii smaller than the
mean free path of conduction electrons in the bulk metal.
On the other hand, the damping constant is dominated by
collisions with the particle boundary. To take this fact into
consideration, it may be written as follows:

UF
Vsize(d) = Youk + C d’ (2)
where vr is the electron velocity at the Fermi surface,
d = |r; — rp| is the metallic shell thickness of the cylin-

der, ry(2) are the outer (inner) radius of the structure, and
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C is a constant whose value is typically close to unity and
depends strongly on the geometry and number of dimen-
sions of the scatterer. The real and the imaginary parts of
the free-electron contribution to the dielectric function for a
metallic shell of size d can be rewritten as follows:

2

d=1- , 7 . 3)
w? + [Vsize(d)]2

6;ize, free
Vsize(d) w?y

(@2 + [Vsize ()P
The corrected values of €'(w,d) and €’(w,d), which
include both free and bound-electron contributions, allow
recalculating vgj,e (A, d) and kgjze (X, d) (real and imaginary
parts of complex metal refractive index, respectively) as a
function of thickness. The metal bulk dielectric function
used in this work is calculated from experimental values of
refraction index v and k given by Palik [26](¢’ = vy — kp),
and €’ = 2vk). Values for o, = 1.38 x 10'65~! and
Voulk = 2.7 X 10135~ were taken from Kreibig [34] for sil-
ver. The Fermi velocity at room temperature takes the value
of 1.39 x 103 nmy/s for Ag.

The complete expression for the complex dielectric func-
tion is made up by a free-electron component and a bound
electron component:

"
€size, free (w,d) =

“

€(w) = €free + €pound = 6/(50) + ie”(a)) ()

where €fee can be made size-dependent through the Egs. 3
and 4. In a first approximation, the bound contribution
may be considered nonsize- dependent. Its value may be
determined from subtracting €. from the bulk experimen-
tal data e€(w) taken from Palik [26] such as indicated in
Eq. 5. For shells with a size smaller than 10 nm, the full
complex dielectric function depends on size € (w, d) and can
be written as follows:

€(w, d) = €free(w, d) + €pound(@), (6)

where €fee (0, d) of Eq. 6 can be calculated by Egs. 3 and 4
(for details, see [25]).

In Fig. 1, we show the corrected silver dielectric function
for several shell thicknesses as a function of the wave-
length A. The bulk function has been interpolated from the
experimental data [26].

Figure 1b shows that the main feature of this dielec-
tric function is the strong increment of the imaginary
part (absorption) of the function as the thickness of the
shell is decreased. The range of variation for the relative
real part (Fig. 1a) is shorter with the thickness. The shift
of the values of the curves with the thicknesses implies
that, in a fixed value of the real dielectric function, there
is a red shift of the corresponding values of the curves
that could play a relevant role in a fixed pole of reso-
nance of the system. On the other hand, in the curves

from the real and imaginary parts, we see a change in the
behavior of the curves at wavelengths near 325-330 nm,
these being the effect of the interband transitions in silver
(see, for example, [35]).

In the next subsection, we perform a brief description of
the plasmonic resonances in nts where the variations of the
dielectric function of the metal shell are considered.

Plasmonic Resonances of the Nanotubes

The core—shell structures or nanoshells for 2D and 3D
geometries have been extensively studied [36-38]. In gen-
eral, for metallic shells with a dielectric core, a model for
no retardation problems is used, which involves solutions
of the Laplace equation (electrostatic approximation) and
where the complex Drude dielectric function is considered.
This is usually called the plasmon hybridization model [39]
and concerns an analogy between the plasmonic solutions
of core—shell systems and quantum solutions for molecules
obtained as superposition or hybridization from wave func-
tions of single atoms. For the 2D case, Moradi [40] pre-
dicted the resonances and dispersion curves corresponding
to nanotube structures (i.e., metallic shell with an air core)
by means of the hybridization model. The equation that was
obtained is

2 l
wi(l,q=0)= a;” [1 + <:T> } 7

where [ is the angular momentum number. This equation

in the limit of nonretarded problem seems explicitly inde-
2

pendent of d, as a first approximation, and leaves ZZi =

sp
2

[0}
)4
" ) (see,

I
[1 + (2)} if we take the SP limit w2, =
for instance, [41]), as follows from the Drude dielectric
function.
It is instructive to note that we can obtain the Eq. 7 by
another way that Moradi did. We start from the Eq. 10 in the

paper [42] for surface resonance modes,

21
<Z) (e0 = e)(e1 — £2) + (0 +£1)(e1 +€2) =0, (8)

where ¢ (i = 0,1,2) corresponds to the embed-
ding/shell/core medium, respectively. This equation arises
from considering the poles of Mie coefficients for p
mode under the asymptotic approximation of Bessel and
Hankel functions (for 2D core—shell structures) for small
arguments.

When we consider the Drude model (without losses)
in the dielectric function &; for the metal shell and
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Fig. 1 Bulk and corrected
dielectric function by shell
thickness d for thin silver shells
as a function of the wavelength.
a Real part. b Imaginary part. -50-
The different thicknesses d are

labeled in the respective panels ~1004

Re[€]
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&y = g9 = 1 for the rest of relative permittivities, the Eq. 8
gives

\2 , ,
< ) (I—en"=0U+e)7,

n

2 2
n\* (@p) _ 2_“’%
ri (,()2 B (,()2 ’

equation that generates the two solutions

) @ @)
+ f=(2- 7).
r1 w w
2

. wy, .
extracting the common factor 22 One obtains

1 (,()2
1:|:<r2> =,
rl w

which is the Moradi relation (Eq. 7).

We can see that if rj —> o0, this equation would return
the modes excitable in a surface rounding a semi-infinite
bulk material, and, as the curvature of the particles tends
to zero, the modes consist of those corresponding to flat
surface modes. But if r, — 0, this equation would cor-
respond to the modes of a bare nanoparticle of radius 7.
In this limit, however, Eq. 10 gives again the flat surface
plasmon wgp = iu/pz , a constant value for the same metal. It

€)

(10)

has been shown in previous works [43] that the frequency
or wavelength of excitation of a SP of bare nanoparticle
depends on the radius (r; < 20 nm). This feature indi-
cates the importance of using a size correction for the metal
dielectric function, specially when we observe the optical
spectrum for small particles, and it is the main failure of
taking the above expression.

We understand that this result is due to the approxi-
mations in the used model. The Drude function for the
dielectric constant of a metal does not adjust well to exper-
imental values [35] in the range of short wavelengths
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(UV-visible). This discrepancy is mainly due to the free-
electron model used by Drude to describe the behavior of
the dielectric constant with the frequency. This model does
not take into account the contribution due to bound electrons
to the dielectric function or even the losses in the system.
Our model incorporate the contributions of the interband
transitions and the size dependence of the resonances[25].

The analysis made corresponds to the extreme cases
of Eq. 10. For intermediate cases, relationship 10 offers
an alternative way of explaining the well-known univer-
sal size scaling of the dipolar (i.e., when [ = 1) optical
peaks obtained in the spectra of some plasmonic parti-
cles, as the core—shell system or nts (or 3D nanoshells),
because the position of peaks of the excitations (the real
part of the poles of Mie coefficients) is expected to be
not changed so far. At least, it provides another justified
approach different from that used in previous works in
[44, 45] or in [46], where it is assumed that the scal-
ing laws can be adequately reproduced by exponential
curves. If we express 10 as an adimensional scaled equa-
tion, as typically have appeared, for example, in ref [44], it
follows that

2 1 2 .2 2
w r w ) Aw
—1=%(") > P =+ -y,
w? o) a)szp 2

sp Wgp
where x = d/ri = (r; — r2)/ry is one adequate adimen-
sional parameter that represents the core—shell structure in
our present case of geometry. We can follow one of the two
expected dipolar resonances (the strongest, since we expect
to be able to detect it by far-field measures), then

Aw?

, =0=x, (11)
w5
or equivalently, taking the square root
A

T =a—- 0" (12)
Wsp
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And takingl =1,

Aw _ \/1 —
Wsp

note that this equation is very different of an exponential
behavior.

Unfortunately, as our calculations depend implicitly on
the contribution of bound electrons by means of the bulk
dielectric function, we cannot arrive at an analytical size
scaling law in a way similar to the Eq. 12. In our previous
work, we showed that in the limit of bare particles, we could
obtain a “real” universal law for dipolar excitations, because
the curves reach a common limit independently of the metal
material. That kind of scaling was not obtained before, and,
in the limit of bare particles, it is due to the electromagnetic
similarity [47] that is governed by the conformal symmetry
of the Maxwell equations, independently of the dielectric
functions used.

Analysis of Shell Resonances

As to illustrate how the resonances evolve in silver shells
or hollow nts, we show in Fig. 2 the extinction and
absorption spectra (efficiencies) of a shell for several thick-
nesses. In this case, we fixed the external radius r; of the
structure. Then the two plasmonic peaks show a depen-
dence with d (see the inset in Fig. 2). As predicted in
the Eq. 7 by the hybridization model, two plasmon res-
onances govern these curves: a resonance at short wave-
lengths or antibonding and a second one corresponding to

Qext, Qabs

0+—— ; ; ;
400 500 600 700 800 900 1000
A [nm]

Fig. 2 Optical efficiencies for Ag nts of external fixed radius at 50 nm
for various shell thicknesses. Solid line and solid symbols, the extinc-
tion efficiency; dashed line and hollow symbols, the absorption one.
The inset shows the evolution of the resonant absorption peaks as d
increases. All the cases involve the calculations with the size-corrected
dielectric function

long wavelengths or bonding resonance [40, 48]. As the
thickness d increases, the bonding and antibonding dipo-
lar resonances of the plasmon tend asymptotically to the
unique resonance of a solid particle, with r = 50 nm,
A A~ 340 nm.

As was showed in [25] and previous papers [44, 45], with
an adequate normalization of the geometric parameters, it is
possible to build a universal curve for plasmonic dipolar res-
onances in concentric core—shell structures, independently
of the radii used.

In Fig. 3, we show a universal curve for Ag nanotube:
Aa)z/wszp. vs x = d/ry. In all the cases, solid square
points correspond to the maxima of the resonant excitation
in extinction cross-sectional curves, computed with the inte-
gral method and the size-corrected dielectric function. We
verified the dipole nature of these resonances through the
calculations of Mie coefficients.

In the same figure, we show two different fits for the
computed points. One with the Eq. 11 where [ is the adjust-
ment parameter (solid curve) and the other one with an
exponential fit as Aw? /a)szp = Aebx [44], where A, b are
the adjustment parameters in this case (dashed curves). The
best values for the fits were found to be / = 2.21 + 0.06
(which when compared with Eq. 10 is not dipolar), and
A =1.02+£0.03,b = 3.110.2. The clear discrepancy in the
value of / is due to approximations taken in order to arrive at
an analytical formulation like the Moradi expression, Eq. 7.
Note that for the exponential fit, it has one more adjustment
parameter than the other fit.

1.0

= stronger Peaks
— (1-x) fit (1 = 2.21)
————— exp fit (A=1.02,B=3.1)

Fig. 3 Scaled dipolar resonances for silver nts. The solid squares cor-
respond to the peaks from the spectra calculated by dielectric function
with the size correction. The solid curve represents the fit for com-
paring with the hybridization model. The dashed curve represents the
points computed in Fig. 2. The agreement between the integral method
and Mie’s expansion is less than 0.01 %, within the numerical error
exponential decaying fit. The best values for the fits was found to be
[ =2214+0.06and A =1.024+0.03,b=3.14+0.2
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General Optical Properties of Silicon

In this section, we review some optical properties of the bulk
silicon and what is expected for Si 2D nps. We begin with
a brief discussion about the dielectric function related with
the electronic band structure of pure silicon, and next, we
analyze the excitation of MDR.

Silicon Constitutive Parameters

In the ref. [49], it is possible to find a complete descrip-
tion of the shape of the bulk silicon band structures. From
ref. [49], the silicon has two possible interband transitions.
One of them occurs at 1.1 eV (approx. 1,000-1,100 nm)
which corresponds to an indirect transition. The second one
is a direct transition and occurs at about 3.3 eV (375 nm).
This feature is shown in Fig. 4, where we show the behav-
ior of both the real part and imaginary part of the complex
dielectric function with the wavelength at 25 °C [50].

The complex dielectric function shows a huge increment
in both real and imaginary parts for direct transitions from
the valence band (interband transition) near to 375 nm. The
lower peak at about 1,000 nm (IR) is the provided by the
phonon-assisted transitions inside the silicon. Note that, in
the limit of long wavelengths, the imaginary part goes to
zero and the real part converges to the well-known dielec-
tric constant of silicon used frequently in the electrostatic
approximation [20].

The MDRs of the 2D Silicon nps

From a physical point of view, the MDRs can be under-
stood through a simple model [4, 51]: the corresponding

451 direct transitions

indirect transitions:
phonon asisted

l

10+ \

T T - T T T T T T T T T T T T 1
300 400 500 600 700 800 900 1000 1100 1200

A [nm]

Fig. 4 Bulk silicon dielectric function, interpolation from experimen-
tal values at 25 °C. The solid curve represents the real part, and the
dashed curve, the imaginary part. The electronic transitions are labeled
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Helmbholtz’s equation is compared with a Schodinger equa-
tion for photons. Using the fundamental modes of polariza-
tion of the modes of the problem, one can define “photonic”
wave functions (one for each polarization) and make this
analogy, inserting adequately the boundary conditions. Dif-
ferently from the quantum problem, the electromagnetic
problem possesses an effective potential that changes as
the incident wavelength (plane electromagnetic polarized
wave) varies. This is because, in the electromagnetic prob-
lem, the energies depend on the adimensional parameter
koa = QA” a. In this way, the resonances may be identi-
fied with semi-stationary states (stationary states that lose
their energy by Joule effect, i.e., the refractive index is a
complex function and by tunnel effect). In the same man-
ner to the quantum problem, the quasiparticle obtained by
the analogy may eventually tunnel the barrier and scatter
light [4].

Thus, depending on the relative dielectric function &(r)
of the particle (and supposing wu(r) = 1), we can obtain a
potential well for one photonic wave function that can be
scaled to the incident energy, giving quasi-bounding states.
We only can obtain appreciable bound states if the dielec-
tric function of the particle is high enough, neglecting the
possibility of tunneling (since it is the difference with the
centrifugal term in the effective potential that matters [4]).
It is interesting to note that this model is independent of the
polarization of the electromagnetic waves. The difference
with true bound quantum states is that, in the electromag-
netic case, the internal losses caused by using complex
refractive indexes have to be sustained by the energy of the
incident wave. The complete analogy is found when using
lossless media.

Due to the fact that general solutions of the Helmholtz
equation for particles could be expressed by expansions of
Mie, these series allow identifying the contribution of par-
ticular multipolar orders in resonant excitations. The optical
resonances are related with complex poles in the amplitudes
of the multipole scattering functions. Then, in the same
manner as a quantum mechanical problem, these electro-
magnetic resonances can be identified by a set of integral
numbers [4]. In a 3D problem, two angular momentum [, m
numbers arise. But fixing these [, m, we could find sev-
eral poles for each denominator of the series, depending of
the kefra adimensional parameter (where kefr = 2)7 Ve
is the effective wave number in the particle and a the
radii of the particle). If again we fix another parameter
as a, the poles that appear are radial modes. These could
be called as n,. For the 2D case, the number m can be
ignored since the problem has a one ignorable coordinate
(say, for instance, the z coordinate), and we only retain
the n,, [ numbers for the scattering of a dielectric circular
cylinder.
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MDRs’ Characterization

With the aim to characterize the evolution of the modes cor-
responding to MDRs in the range of 10 to 100 nm of radius,
we have calculated some optical responses (efficiencies) for
silicon nps. In Fig. 5 we show the evolution of the peaks
corresponding to resonances of the absorption or scattering
efficiency (Apeaks) With the radius for the two fundamental
polarizations s and p. The curves of optical efficiencies were
computed from the integral method, and the labels (n,, [) for
each resonant peak were obtained from the calculations of
the Mie coefficients (we only compute up to the / =3 orders).

For the points computed in Fig. [5], the agreement
between the integral method and Mike’s expansion is less
than 0.01 %, within the numerical error.

At the right of each curve, we indicate the labels (n;, [).
The solid (open) symbols correspond to the s (p) polariza-
tion. For the sake of clarity, in the inset panel, we show the
order of the next modes that appear at short wavelengths and
major radii.

In Fig. 5, we can see how the multipolar terms are
entering in the scene, without crossing themselves, at short
wavelengths while the radius increases. On the other hand,
in the limit of small radius, the different multipolar orders
disappear, and the curves seem to converge each other, and
for very small particles, i.e., for a 10-nm radius, the s mode
optical peaks remain relatively strong (because the [ = 0
pole survives). The strong resonances in the limit of small
sizes can only be seen at high-contrast dielectric particles
like silicon or semiconductor nps. It is worth mentioning
that the [ = 0 order is only possible to excite in cylindrical
geometry; for 3D geometry, the lowest orderis [ = 1 [52].

It is interesting to note that the s and p curves for resonant
peaks are, in general, coincident in n,, but with a different

1000  (*) Next Modes: n=11=0s
n=2,1=1p ' 10 p
= = nr: ’ - p
9004 n=3,1=0s
n=2,1=2p
n=2,1=3s
— 800 n=3,1=0p
g n=3,1=1s
— 7004Nn=2, I=1p
% n=3, I=2s
4, ,|1=0
2 600 : s =2 :
y Y= p
< 1=3s
500 "E?Z
=3p
I=2's
4004

r [nm]

Fig. 5 Evolution of the modes in a silicon nanowire for increasing
radius

number /, that is [, = I; — 1 for p mode (note that I; () =
0,1,2,3,..; where [ (pcorresponds to s (p) polarization),
i.e., the p mode “follows” the s mode.

With the aim of showing the relative intensity of the exci-
tations and the rule /[, = [; — 1, we consider in Fig. 6
two characteristic spectra of both scattering (solid lines) and
absorption (dashed lines) efficiencies for silicon nanowires
at 50 nm of radius: the panels a and b correspond to s (p)
polarization. For each polarization, we identify the peaks of
MDRs, and the relationship between Iy = 0 and [, = 1
for n, = 1 is clear . The inserted near-field images cor-
respond to the intensity distribution at wavelengths of the
excitations. In all these cases, the incident wave impinges
from the right at y = 0. We can see clearly from the maps
of relative intensity that, for p polarization, it reaches up to
one order of magnitude greater than the s polarization (see
the scales at the right of the images), and the field is strongly
confined inside the section of the wire for the p mode, while
for the s mode, the intensity distribution spreads out through
the contour.

It is interesting to note that, in the neighborhood of
400 nm, near to the direct transitions (A = 375 nm
for bulk silicon), the efficiency of absorption shows a
peak, while the scattering efficiency shows a minimum for
the s mode of polarization. This peculiar behavior of the
optical response resembles the dark plasmonic modes in
metallic nps [53-55]. We have not observed this behav-
ior for p polarization. One possible explanation of this
fact could be that the MDRs are overlapping in the range
and masking this phenomenon, resulting the absorption
and scattering peaks to be shifted in wavelength (see
panel b).

Another important feature seen in this figure is that
absorption spectrum for s polarization does not contain any
information about the first MDR. There is no monopolar
absorption by the material because this multipolar contribu-
tion cannot prove any internal transition.

Silver-Silicon Structures

In this section, we show the numerical results for the optical
response of silicon core-silver shell systems for p polar-
ization where plasmons are excited. We obtain and analyze
hybridized spectra formed by the excitation of MDRs and
SP resonances.

Optical Response of Small Core—Shell Structures
(r, = 12 nm)

We base our analysis on the results shown in the
Analysis of Shell Resonances and MDRs’ Characterization
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Fig. 6 a, b Scattering (continuous line) and absorption (dashed line)
efficiencies for a silicon nanowire of the radius of 50 nm and identi-
fication of the MDRs. Panels a and b, for s (p) polarization. Inset a:
Relative intensity distributions in the near field around the wires at the
s resonances in the spectrum shown in a. For the mode (n, = 1,/ = 0)

sections. The new hybrid system shows a set of modified
MDRs originated in the silicon core bounded by plasmonic
shell excitations. We begin to study small nps where the
optical response is dominated by the absorption, and in
Fig. 5, we expect only a MDR corresponding to dipolar
excitations.

Figure 7 shows the absorption spectra for a core r; =
12 nm with a silver shell of variable thickness for p polar-
ization. We vary the thicknesses from d = 0 (solid line) to
10 nm (open triangles). The d = 0 curve corresponds to the
absorption spectrum of the bare silicon nanowire. We indi-
cate the SP resonances and the first MDR weakly excited

1.6 antibonding
plasmon — 1800
141 red-shift
' C, 1500 /bonding
1.2 51200
o
o 1.0 ~< 9001 MDR
% 600 l antibonding
g 0.8 300 |
2 4 6.8 10
0.6, d [nm]

bonding plasmon
blue-shift

350 400 450 600 800 1000 1400
A [nm]

Fig. 7 Absorption spectra of Si core r, = 12 nm Ag shell systems of
several metallic shell thicknesses for p polarization. The inset shows
the dispersion behavior of the peaks at wavelength Apeax for different
d. The silicon MDR and the two plasmonic resonances are indicated
in the inset
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at 1,550 nm, for (n, = 1,/ = 1) at 550 nm, for (n, = 1,1 = 2)
at 421 nm; inset b: relative intensity distributions in the near field
around the wires at the p resonances shown in b. For (n, = 1,1 = 0)
at 550 nm, for (n, = 1,1 = 1) at 430 nm, and for mixed mode
(n, = 2,1 =04 1) corresponding to the scattering peak at 378 nm

(n, = 1,1 = 0). This MDR is practically undetectable
even for thin shells due to the enhancement of the bond-
ing and antibonding SP resonances when the metallic shell
d increases. In another way, the bonding SP resonances are
strongly blueshifted, and it makes this structure tuneable
(see the inset). In the inset (Apeak V8. d), we show the disper-
sion of the peaks as d increases. The curve corresponding to
the bonding plasmon shows clearly the blueshift, while the
MDR and antibonding plasmon curves are almost constant.
This behavior is due mainly to the interband transitions [25]
taken into account in the dielectric function of silver, Eqs. 3
and 4. In this case, r» = 12 nm of core radius, the “core
mode” is not modified (almost static in frequency) when d
is increased.

To visualize the behavior of the both plasmonic reso-
nances and MDRs of these nps, we compute the near-field
intensity distributions |H,/H.o|> (Fig. 8) (the different
examples were chosen for a better visualization of the reso-
nant effects). Figure 8a shows the intensity distribution for a
bonding plasmon resonance at A = 875 nm and d = 7 nm;
in Fig. 8b, antibonding plasmon resonance for d = 10 nm
and A = 330 nm; and in Fig. 8c, MDR when d = 1 nm
and A = 365 nm. In all cases, the incidence is from the
right, at y = 0. The resonance shown in panel a is strongly
localized in dielectric core-metal interface (“cavity-like”
SP), whereas the resonance shown in the panel b is strongly
localized in the dielectric host—metal interface (“wire-like”
SP). We observe this behavior even for higher shell thick-
ness d. The first MDR (n = 1, = 0) excited at the silicon
core, is practically unaltered by the metal shell. The ampli-
tude decreases only by 6 % in respect to the bare silicon
analog case. The position of the resonances in wavelength
is practically the same (variation 0.5 %).
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Fig. 8 Relative intensity distribution in the near field around the coated nanowire of Fig. 7 for some characteristic pairs A, d. The contour of the

cylinders of the structure are highlighted for better observation

Intermediate Core—Shell Structures (r; = 50 nm)

For the next example, we consider a core with 50 nm of
radii and variable d thickness. In Fig. 9, we show the evo-
lution of both Qex¢ and Qaps With the shell thickness for a
silicon core of r, = 50 nm. In the inset, we show the optical
efficiencies for the zone of bonding plasmons for this struc-
ture. In all cases, the corrected dielectric function is used
for calculations, except for the case d = 10 nm, where we
use the bulk dielectric function for comparison. If we com-
pare Fig. 9 with Fig. 6, we can identify the set of MDRs
associated to a bare core.

In this example, the Qgc, is not negligible. The main fea-
ture for this variation is again the strong shift of the bonding
plasmonic mode. If we compare qualitatively the absorption
curve with open circles, Fig. 9, with the dashed absorption
curve corresponding to Fig. 2 for hollow nts, we can note

Fig. 9 Optical efficiencies of Si
core (rp = 50 nm) Ag shell
systems vs. the incident
wavelength for several small
shell thicknesses and optical
wavelengths. The solid line
represents a bare core of 50 nm
of the radius. The symbols
represent increasing shells. In
the inset graphic, the same
spectra continue to the far
infrared zone. The solid lines
represent the extinction

bonding

that the relative intensities between bonding and antibond-
ing resonances have switched: the bonding resonances are
damped in intensity, and they are strongly shifted to the far
IR zone, whereas the antibonding resonances are strongly
blueshifted.

At the chosen range of the parameter d, we observe
a small blueshift for the first excited MDR of silicon in
respect to the bare silicon nps (that consists mostly in the
ny 1,/ = 0 MDR). For this mode, the relative inten-
sity of the peaks remains almost constant in absorption, and
it goes diminishing for the Qgc, (or Qext) as d increases.
The next excited mode (n, = 1,/ = 1 MDR) also presents
a small blueshift and small decreasing extinction intensity.
The maximum of the scattering spectra occurs for the mode
n, = 1,1 = 0 for a bare silicon particle (solid curve). This
excitation is really a combination of the / = O and / = 1
modes (for n, = 1). For these sizes, there appears another

. . 0.9
efficiency; dashed lines, the 2]
absorption one: these decreasing '8 064
curves represent 0 )
d=10,9,8,7,6,5, and 4 nm,
respectively. For all the cases 0.3
except d = 10 nm, we use the
size-corrected dielectric 0.0

function where we use the bulk
function for comparison
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mode, i.e., the n, = 1,/ = 2, but it is almost undetectable
due the overlapping of the plasmonic antibonding with the
peaks [ = 1 of MDRs.

In Fig. 10, we show the near-field intensity for four inter-
esting wavelengths: panel a, bonding SP resonance; b, n, =
1,/ =0MDR; ¢, n, =1, =2 MDR; and d, the antibond-
ing SP resonance. The intensity map for the n, = 1,/ =1
excitation is qualitatively similar to that shown in the inset
of Fig. 6b. In all cases, we choose the thickness d according
to the best visualization of the resonances.

The bonding plasmon excitation (that is dipolar in nature,
i.e., [ = 1) is visible in the panel a of Fig. 10. This inten-
sity map corresponds to d = 7 nm and A = 1,550 nm (open
down-pointing triangles in Fig. 9), where a cavity-like plas-
mon resonance is appreciated. The near-field enhancement
occurs at the Si—Ag interface.

In panel b of Fig. 10, the first MDR is very well detected
for a small coating of d = 1 nm for A = 545 nm. The thin
metal layer has a strong absorption for this optical range;
therefore, the resonance / = 0 is affected by the shell. We
can see a decrease in amplitude (17 %) and a slight blueshift
(1 %) in respect to the analog resonances of the bare core.
The near-field intensification is enclosed inside the core
of Si, reaching a maximum value comparable to the bare
nanowire. A similar phenomenon occurs at the near-field
resonance for the n,, = 1, [ = 1 mode: the distribution is the
same as in the bare core for this mode but presents a small
decrease in amplitude (10 %) and a slight blueshift (~ 2 %)

Fig. 10 Near-field images for
the resonances that appear in the
spectra of Fig. 9. The contour of
the cylinders of the structure are
highlighted in black or white for
better observation. The separate
white color in gray scales
indicate the maximum value
reached by the fields (saturation)
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due to the presence of the metal shell, in accordance with
those showed in Fig. 9 for the far field.

The next mode showed, panel c, is a multipolar mode cor-
responding to the far-field peak, positioned at A = 381 nm
for d = 6 nm. For this thickness of the shell (not showed
in Fig. 9 but similar to d = 7 nm, for instance), the reso-
nance of antibonding plasmon shows a broad peak, whose
tail overlaps the n, = 1,/ = 2 mode, and the same occurs
with the n, = 1,1 = 1 mode. The intensity map then shows
this overlapping of three resonances: three lobes of intensity
in the core mainly due to the MDR (n, = 1, = 1+2) com-
bined with a field intensification on the shell, characteristic
of the plasmon resonance.

The last panel shows the intensity map corresponding
to the antibonding SP excitation ford = 7 nm and A =
330 nm. Again, a surface excitation is visible, but it is
mainly confined at the air—Ag interface instead at the inner
surface.

Moderate Core—Shell Structures (r; = 100 nm)

A last interesting example to analyze is a core—shell system
with a silicon core of r, = 100 nm of radius. In Fig. 11, we
show the Qs and Qey; efficiencies for different d in the
UV-visible (panel a) and visible-IR (panel b) zones of the
spectrum. Note in panel a that several MDRs appear, with
n, > 1, in addition to the plasmonic resonance. From the
absorption spectrum, we can identify seven MDRs due to

b
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Fig. 11 Optical efficiencies for
Si core (r, = 100 nm) Ag shell
systems of small metallic shells
with varying d. a Short
wavelengths and b long
wavelengths reaching the
far-infrared zone

antibonding plasmon modes
/

Qext

the core and both bonding and antibonding SP modes. As
in the previous examples, antibonding plasmon peaks (in all
cases) are superposed to the natural Si absorption curve, but
the bonding plasmon mode shows a strong absorption peak
without any influence of the Si absorption. Note in Fig. 11b
that the bonding plasmon peaks for both the absorption and
extinction are qualitatively similar in intensity. The scatter-
ing is negligible for these low-energy resonances as it is
observed in the example of the coated silicon of 50 nm of
radius (see inset in Fig. 9).

In contrast to the previous examples, the absorption spec-
trum of the MDRs are strongly modified by the presence
of the metallic shell. The first two peaks of lower orders
(n, = 1,1 = 0and [ = 1) are strongly perturbed by the
presence of the shell (compared with the MDRs for bare sil-
icon, solid line). The amplitude of resonances are strongly
blue shifted and intensified.

The main difference with previous examples is in the
higher-order peaks. Now, the orders n, = 1,/ = 2 and
n, = 2,1 = 1 also exhibit this blueshift, but it is not
so marked; these modes are slightly perturbed. The whole
spectrum seems “compressed” as the bonding plasmon is
blueshifted, while the antibonding mode is almost fixed.

The behavior observed for absorption in amplitude is
modified by scattering efficiencies in the extinction curves:
the peaks I = 0 and / = 1 decrease rapidly in amplitude
when the thickness of the metallic shell is increased. The
scattering governs the extinction curves.

Summary

In this paper, we show results that illustrate the behavior of
long silicon nanowires (or 2D silicon particles) coated with
a small silver shell. For this purpose, we use a realistic inte-
gral method with a size-dependent dielectric function for
p mode of polarization. For s mode, no size correction is

1.24 bonding plasmon
1.0 modes ~
o 0.8] ~f
8 o6}
O 0.44r
0.2{/
0.0 :
ijg: ——100 nm Si
3.5, d=2nmAg
X 3048
O 2.5
2.0
o 1.54 10
1.04 - .
0.5 e e
0.0 T r v meons ey e
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needed. Our results were supported by a multipolar analy-
sis through calculations of the Mie series, that is, we could
identify the multipolar terms in the spectra in an exact form.

As a brief review, we present a study for silicon particles
for both polarizations without any coating, and we analyze
the MDRs for different radii. We compare both bare silicon
nanowires and core—shell systems when the incident plane
wave is p polarized. We found in all the examples stud-
ied that there is a direct relation between the absorption (or
extinction) spectra between both systems: a set of peaks in
absorption are identified with MDRs excited in the silicon
core, bounded by the bonding and antibonding SPs excited
in the metallic shell. For a fixed core radius, the MDRs
ses mode ems to be “pushed” to short wavelengths by the
bonding plasmon when the thickness shell is increased. The
MDRs identified with / = 0, 1 and n,, = 1, 2 are the most
affected by the blueshift effect.

For the sake of brevity, we do not show results for the
s mode of polarization for the core—shell system in the
SilverSilicon Structures section. We found in the corre-
sponding absorption spectra that the MDRs are excited at
the same wavelengths as those from the case of p mode of
incidence and have intensities of the same order, without
exciting the SPs which are forbidden for this mode. This is
an important feature for applications that are based in the
distinguishability of the polarizations.

We can make an interpretation of our numerical results
within the framework of Johnson’s model [4]. The MDRs
can be thought of as resonances of quasi-bound states in an
asymmetric potential well, governed by a centrifugal term
and a scattering term. The latter functionally depends on the
relative dielectric function, through the wave number and
size of the particle. The adding of a metallic shell to a sil-
icon nanowire increments the potential barrier to the well,
which substantially modifies quasi-bound levels of photonic
waves (see, for instance, Fig. 4 of the paper [4]). Where-
upon, like the quantum states, the lowest energy states are
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more sensible to the relative depth of the well. When the
effective potential is modified by the presence of the metal-
lic shell, the silicon MDRs are then modified, decreasing its
tunneling probability, leading to a higher confinement of the
resonant mode and increasing his relative energy (blueshift).
In that way, the lower multipolar terms (i.e., the monopolar
and dipolar contributions) are those who play an essential
role in the electromagnetic response of these systems.

The response of the core—shell structure can be compared
to the response of a “special” dimer through the framework
of the plasmon hybridization model [44], where the reso-
nances in spectra arise from the SPs’ interactions between
a cavity and a solid particle. These corresponds to “shell”
resonances. The influence of the dielectric core affects the
position and intensity of the resonances from the metallic
shell, without involving another interaction peak between
the shell and the core, at least in the linear regime (for
the importance of nonlinear response, see, for instance, the
work in [56], for a dimer composed by a silicon and a sil-
ver particle). That phenomenon is due to the different nature
of the excitations in the metal shell and in the dielectric
core and provides a rich spectra of well-resolved peaks in an
extended electromagnetic range, easily tuneable through an
adequate design of the structure. This could be exploited for
technological applications as biological tracers, by instance,
using nanowires or nanoparticles that offer an alternative to
use the small nanoparticles in the range of quantum confine-
ment, which optical properties are based in the phenomenon
of luminescence.
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