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Analytic Representation of Bayes Labeling
and Bayes Clustering Operators for
Random Labeled Point Processes

Lori A. Dalton, Member, IEEE, Marco E. Benalcazar, Marcel Brun, and Edward R. Dougherty, Fellow, [EEE

Abstract—Clustering algorithms typically group points based on
some similarity criterion, but without reference to an underlying
random process to make clustering algorithms rigorously predic-
tive. In fact, there exists a probabilistic theory of clustering in the
context of random labeled point sets in which clustering error is
defined in terms of the process. In the present paper, given an un-
derlying point process we develop a general analytic procedure for
finding an optimal clustering operator, the Bayes clusterer, that
corresponds to the Bayes classifier in classification theory. We pro-
vide detailed solutions under Gaussian models. Owing to compu-
tational complexity we also develop approximations of the Bayes
clusterer.

Index Terms—Bayes classification, Bayesian estimation, clus-
tering, pattern recognition, small samples.

I. INTRODUCTION

LUSTERING algorithms typically group objects based
C on some notion of similarity with the hope of gaining
knowledge about the underlying classes in a problem. Clus-
tering is ubiquitous in genomics, where it has been employed
since the earliest days of expression microarrays [1]. For in-
stance, time-series clustering can be used to group genes whose
expression levels exhibit similar behavior through time, simi-
larity indicating possible co-regulation. But only a few years
after the first use of clustering in the microarray era, the ques-
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tion of its scientific content was raised by Kerr and Churchill
[2] when they asked, “How does one make statistical inferences
based on the results of clustering?” Indeed, how do we math-
ematically interpret a data partition created by a clustering al-
gorithm? Jain, et al. [3] go so far as to say that “clustering is a
subjective process.” For scientific knowledge, subjective inter-
pretations are unacceptable.

Our interest in this paper is the characterization of optimal
clustering algorithms. As such, we confront the most basic
problem of signal processing: a signal (random process) is
observed and the aim is to find an operator that optimally pre-
dicts a desired signal based on some objective criterion. This
optimization takes place within the context of a random-process
model that must relate joint characteristics of the observed and
true signals, such as the covariance function in the case of
optimal linear filtering. In classification, the process consists of
random vectors, the process model is the feature-label distribu-
tion, operators predict labels, and the objective criterion is the
misclassification rate. Clustering algorithms operate on random
labeled point sets. Thus, the process consists of random labeled
point sets, the process model is the probabilistic structure of
these random labeled point sets, operators predict partitions
of the point sets, and the objective criterion is the number of
errors in the partitioning [4]. As in the case of Wiener filtering,
classification and other signal optimization paradigms, the
structure of the clustering problem is dictated by the underlying
random process, operator class and signal model.

Clustering theory is inherently more difficult than classifica-
tion because clusterers operate on random point sets instead of
random vectors. Whereas a random vector is fully character-
ized by a probability distribution function, which may be sta-
tistically estimated from realizations, in general characteriza-
tion of random sets requires Choquet capacities via the Cho-
quet-Matheron-Kendall Theorem (see [5]). In one dimension,
a probability distribution function involves probabilities of the
half-infinite intervals, (—oc, b] for b € R, while a capacity func-
tional involves probabilities for all compact sets in R [5]-[7],
thus making modeling and parameter estimation much more dif-
ficult. Nevertheless, one has no option other than to study clus-
tering in the framework of random sets if the aim is a general
characterization of clustering performance and the subsequent
discovery of optimal clustering algorithms. This is not to say
that principled formulations of clustering outside the general
framework of random sets have not been proposed (we will dis-
cuss some of these shortly); however, while these may indeed
be useful in particular settings, they do not address the general
theory of optimization in the context of random processes.
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Proceeding from the underlying probability structure and
error definition, the most basic issue in classification theory is
the existence of an optimal (minimal-error) classifier, called
a “Bayes classifier,” along with its error, called the “Bayes
error.” The salient role of a Bayes classifier in the development
of classification theory is evident when one opens the pages of
A Probabilistic Theory of Pattern Recognition, by Devroye, et
al. [8]. The first section following the Introduction has the title,
“The Bayes Problem,” and in less than a page of text the authors
provide an expression for a Bayes classifier. One cannot get
off the ground without it. Not only are basic classifiers such as
linear and quadratic discriminant analysis obtained by plugging
sample statistics into the Bayes classifier, the overall analysis
of design cost is framed in terms of increased error above
the Bayes error. Specifically, the expected error of a designed
classifier chosen from a class C of classifiers is decomposed
according to

E[En] = E€Baycs + AC + E[A”HC]* (l)
where g,,, €Bayes, Ac, and A,, ¢ are the error of the classifier
designed from a sample of size n, the Bayes error, the cost of
constraint (difference between the error of the optimal classi-
fier in class C and the Bayes error), and the design cost (differ-
ence between the errors of the designed classifier and the op-
timal classifier in C) [9]. The trade-off between constraint and
sample size is expressed in the decomposition. Extending these
ideas to clustering, we build on the probabilistic framework in-
troduced in [4] by developing an analytical representation of
the Bayes (optimal) clusterer given a random-labeled-point-set
(signal) model. Further, we present solutions for optimal oper-
ators and their errors for several classes of Gaussian models,
which provide the first fundamental limits of performance in
clustering under known models.

We will show that the Bayes clusterer can be formulated as
a discrete optimization problem among all partitions of the data
set, where, given a finite set of sample points, the objective
is to find the best partition according to some quality metric.
This idea is not entirely new, for instance the %k-means objec-
tive function aims to find the best partition based on the ge-
ometry of points. This optimization problem is in general NP
hard, thus it is common to resort to suboptimal partition search
algorithms, either by constraining the space of the search, as
in the standard iterative k-means algorithm, or by constructing
a relaxation of the original problem as in spectral clustering
[10]. Whereas prior works based on combinatorial optimiza-
tion essentially start with some intuitive ad-hoc optimization
function and focus on devising suboptimal algorithmic methods
to optimize this function, our approach first defines a proba-
bilistic model (a point generating stochastic process) and a def-
inition of error. We then show that the optimal clustering op-
erator is equivalent to a combinatorial optimization problem
with a specified form. By stepping back and explicitly stating
basic assumptions about the point process itself and how clus-
tering performance should be evaluated, clustering transforms
from a subjective activity to an objective operation. Further-
more, the Bayes clusterer can illuminate implicit assumptions
that are made when applying an objective function.

Mixture models assume observations are drawn from a mix-
ture distribution, representing the presence of sub-populations
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within an overall population. Mixture models can be used to
make inferences about sub-populations given only unlabeled
observations of the pooled population by estimating model pa-
rameters, for instance by estimating the parameters of Gaussian
mixture densities via the expectation-maximization (EM) algo-
rithm [11], [12]. Although these works are based on principled
modeling, estimation and optimization methods, they do not op-
timize clustering relative to clustering error. Rather, inferences
based on these methods have been limited to fitting models and
evaluating performance using heuristic metrics. In contrast, the
Bayes clusterer defines a clustering error, finds the optimal par-
tition that minimizes this error, and reports the optimal error it-
self. Although the Gaussian models we propose are essentially
Bayesian Gaussian mixture models, we have developed a theory
that not only provides an optimal clusterer with performance su-
perior to the EM algorithm, but also, for the first time, provides
the clustering error itself.

Dirichlet processes (DP) are nonparametric Bayesian models
for grouped data that essentially define a probability distribu-
tion over (almost surely discrete) probability distributions [13].
When used in clustering, the main advantage of a DP is that it
does not require one to specify the number of clusters. As with
mixture models, approaches based on DP focus on modeling,
with inference limited to fitting models using Markov-Chain
Monte-Carlo (MCMC) sampling and evaluating performance
using heuristic metrics. Optimal clustering algorithms relative
to a clustering error have not been studied for these models, and
there is almost no work on directly evaluating the error rate. In
contrast, our interest is in finding optimal clustering algorithms
that minimize clustering error, and evaluating the error itself.
Furthermore, our work is based on a very general point process
model, which includes DP models as special cases. While in
this paper we have developed optimal clusterers for only a few
simple Gaussian models to illustrate our methods, future work
will focus on the important and practical problem of modeling.

There has been some work on PAC-Bayesian generalization
bounds for several types of clustering problems, see for instance
[14]. There are important distinctions between Bayes clustering
and a PAC-based approach, most notably: (1) PAC bounds are
based on a heuristic objective function (e.g., KL divergence)
whereas Bayes clustering is based on a natural definition of
clustering error, and (2) PAC-based analysis and optimization
is relative to distribution free bounds on the objective function,
with no guarantee that these bounds are tight. On the other hand,
Bayes clustering is relative to the exact error under a specified
random labeled point process.

There have been attempts to address the subjectivity of
clustering by cataloging clustering methods for different appli-
cations and settings. For instance, [15] points out, “clustering
should not be treated as an application-independent mathemat-
ical problem, but should always be studied in the context of its
end-use. Different techniques to evaluate clustering algorithms
have to be developed for different uses of clustering.” This does
not contradict the main conclusions of our paper. However,
rather than heuristically building a “taxonomy” of clustering
problems and corresponding evaluation procedures, we argue
that one should specify a random labeled point process de-
pending on the application and purpose, and optimize the
clustering error with respect to this process. Different random
labeled point processes should be developed for different uses
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of clustering, but once the model is specified, the clustering
procedure is optimized. The current work addresses the opti-
mization problem itself; future work will address the issue of
robust model selection and learning models from examples.

Although we have omitted detailed discussions on many
other methods, for instance hierarchical clustering, graph-based
algorithms [16]-[18], non-negative matrix factorization [19],
and others [20], the issues discussed above are ubiquitous
throughout the literature.

II. THE PROBABILISTIC FRAMEWORK

The probabilistic theory of clustering introduced in [4] for-
malizes how point sets are generated, the definition of label and
clustering operators, and the definition of errors. The goal is to
find a clustering operator that will assign a partition (or labels)
to an observed point set with minimal expected error. We begin
by reviewing theory in [4].

Given a point set S C R?, where d is the dimension of the
space, let 77(.S) denote the number of points in S. A random la-
beled point process (RLPP) is a pair (2, A), where = is a point
process generating a point set .S and A generates random la-
bels on points in S. = maps from a probability space to [N; A,
where N is the family of finite sequences in R% and A" is the
smallest o-algebra on N such that for any Borel set I3 in R?, the
mapping S — n(SNB) is measurable. The probability measure,
v, of 2 is determined by the probabilities v(Y) for Y € A/, or
(thanks to the Choquet-Matheron-Kendall theorem), the system
of probabilities P(Z N K # (}) over all compact sets, K, in R?.
A random labeling is a family, A = {®5 : S € N}, where ®5
is a random label function on the point set S in IN. Denoting the
set of labels on individual points by L = {1,2,...,1}, $g has
a probability mass function Ps on L* defined by Ps(¢s) =
P(®g = ¢g|E = §), where ¢pg : S — L is a deterministic
label function assigning a label to each point in S.

A label operator A maps point sets to label functions, A(S) =
dsy € L. For any set S, label function ¢ and label operator
A, define the label mismatch error by

1
ex(S, ¢s) = 705) Z Ly ()25 (x)s 2

XES

where I4 is an indicator function equal to 1 if A is true and 0
otherwise. In the notation of the original paper [4], the error of
label function A(S) is given by

ex(S) = Eoy [ex(S, @5)15]

— 77(15) Z P(®5(x) # ¢s2(x)]5),
XES

3

and the error of label operator X is then defined by

e[ = E=FEg._ [eA(E, ®=)]. )

It was shown in [4] that the Bayes label operator, A*, mini-
mizing both £, (S) and €[], is given by:

Ps.a(x) = argmax P (Pg(x) = j|5). %)
JjeL

That is, we minimize labeling error by assigning each point the
label corresponding to the maximum marginal probability.
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Clustering involves identifying partitions of a point set rather
than the actual labeling, where a partition of S into / clusters
has the form Pg = {57, .5,...,5;} such that the S; are dis-
joint and S = Ui:l S;. A cluster operator { maps point sets
to partitions, ((S) = Ps.. Clustering is affected by a label
switching problem: every clustering operator, ¢, has associated
with it a family, F¢, of label operators that all always induce
the same partitions as ¢. That is, A € F if and only if ¢g
induces the same partition as ((S) for all S € N, where a
label function ¢g induces partition Pg = {51, S2,..., 5} if
S, ={x € 8 : ¢ps(x) = l;} for distinct /; € L. For any set
S, label function ¢g and cluster operator (, define the cluster
mismatch error by

6((574)5) = )I\IEHI}‘E&A(S/ ¢S)a (6)

the error of partition ((S) by
co(S) = Ea, [e:(5, ®5)|S] = Eq, |:>I\Ieli}1 ex(S, @S)’S] )
¢
and the error of cluster operator by

c[cl=B=Fus [5(2, 02)]=E=Eus | ip x(2.02)] . ®)

In [4], the expectations, FzFg_, in (8) were inadvertently
brought inside the minimum; however, all simulations in both
[4] and [21] were done correctly with the expectations outside
the minimum. A theoretical consequence of this correction is
that an optimal label operator does not induce an optimal clus-
tering operator, a point we will expand on later.

III. THE BAYES CLUSTERER

This section contains the main contribution of the paper: rep-
resentation of the Bayes clusterer. We begin by showing how
the error definitions in Section II can be represented in terms
of risk with intuitive cost functions. Although we will focus on
the cost functions that fall out of the original definitions of error
put forth in [4] (we call these “natural cost functions”), this new
formulation illuminates how one might generalize definitions of
performance by using different cost functions. A practical form
for the Bayes clusterer and Bayes error, which could only be
defined abstractly in [4], then falls out naturally from these rep-
resentations.

A. Error of a Label Function A(S) in Terms of Risk

Via the probability mass function, Ps, (3) becomes

ex(8) = > cslsa ¢s)Ps(ds), )
ps€L®
where we define the label cost function by
; 1
cs (¢5, 9%) = S Z Tg2 (x)20L (x) (10)
xcS

which defines the cost in assigning labeling ¢} when the true
label is ¢% as the proportion of mislabeled points in S. Thus,
ea(\9), the error of A(S), may be viewed as the average risk
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of assigning labeling ¢ » under the label cost function. cg de-
pends on neither the model, which only affects the probabilities
Pg, nor the actual points in S. It depends only on the relative
labels ¢+ (x) and ¢Z%(x) for each point x € S. That is, given
asetS = {x1,.... Xnes)y and letting J = {1,2,...,n(S)},
for a labeling ¢ of S define a corresponding labeling ¢ 5 on J
where ¢ (j) = ¢s(x;). Then cs (¢}, ¢7) = cs(ds, #%).

The error of a label function may also be viewed as average
risk over all points in S. This view utilizes a more intuitive cost
function and is computationally more tractable. From (3),

HY Y X ples)

xES =l b g
iFog A} q(x) i
1
=— Ehg 5 (X (11)
’/(S) )Z; Os,x( )

where for any label function ¢g,

o (%) = 3 ex (95().)

ex(4,7) is a 0-1 cost function, i.e., ¢x(é,7) = 0ifi = j and

P (i),

ex(i,j) = 1ifi # 4, and
Pe(i)= Y Ps(¢s)
tPsELS
s (x)=

is the probability that point x has label # € L. In other words,
£4, . (X) is the average risk in assigning label ¢ \(x) to point
x under 0-1 label cost, and the error of label function A(S) is
the average of these risks over all points x € S.

Under either interpretation, the cost functions may be pre-
computed independently of the model and the actual points of
S, while the probabilities, Ps(¢s), determine the labeling error
for a given S.

B. Error of a Partition ((S) in Terms of Risk
For a given point set, S, and labeling, ¢g, following (6),

Z o5 ()5 ()
x€S

n(S) AeF:

EC(Sv ¢S) =

(12)

The minimum above, and also in (6), (7) and (8), appears to
be taken over the infinite set I, (the family of label operators
inducing clusterer ¢), while in fact all that is needed is to min-
imize over the finite set {¢s |\ € Fy} C L° (the family of
label functions inducing partition {S)). Define G, such that
s € Gp, if and only if ¢g induces Ps. Then,

1
min
1(S) ¢s.c€Gus) £

(S, ¢s) = Z loszosc-  (13)

The error of partition ((.5) under probability mass Pg on the
set, L5, of all labels is

b

¢pseLS

ec(8)=

min

1
(m ¢s, CEGC(5> Z Iwé (x)#ds, c(x)> Ps‘((/)g)
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Letting K g be the set of all possible partitions of S,

IO

PseKs ¢s€Gpg

min

1
( (9) e § Iﬂ)s(x)#és,g(x)) PS(¢S) (14)
2 $.¢ ¢(s) x€S

The term inside the parentheses is constant for all ¢g € Gp,
since the minimum essentially resolves the label switching
problem relative to ¢g, and the ¢g in G'p, are all identical
except for permutations of the labels. Hence,

e(S)= > Z mmx)#obg(x))
PseKs
x Y. Ps(gs),

Ps€EGPg

min

1
(U(S) b5.c €G3 ©
(15)

where ¢s p, is any fixed member of G'p, . Finally, we write

e(S)=

PseKs

cs(C(S), Ps)Ps(Ps), (16)

where we define the partition cost function,

min

CS(QSvPS) = 77(5’) Ps. OSEC’Oq

Z s, ps (X)FPs, 04 (%)

with ¢g p, being any member of Gp,, and

> Ps(¢s)

PsEGPg

Ps(Ps) = (17)

is the probability mass function on partitions Ps € Ks of 5. As
in the case of label functions, the cost ¢s between two partitions
depends on neither the model nor the actual points in S or their
order. To illustrate, given a set S = {x,... ,7(5)} let J =

{1,2,...,9(S)} and for any partition Ps = { 1,59, ...,5}
of S define a corresponding partition Py = {.J1, .J2,...,.J;} on
J, where j € J; if and only if x; € ;. Then

ci(Qr, Pr) =cs(Qs.Ps). (18)

Hence, ¢; may be pre-computed as a matrix and utilized for
any model or point set .S, each row, say, corresponding to a
candidate partition, Qg, and each column corresponding to a
reference partition, Pg, to which the candidates are compared.

¢g is also a metric on Kg. That is, ¢ has the following prop-
erties for all P, P2, P? € Ks: (i) cs(P*, P?) > 0 (in partic-
ular, 7(S)es(P!, P?) is an integer between 0 and 7(S) — 1);
(i) cs (P, P?) = 0 ifand only if P! = P?; (iii) cs (P!, P?) =
cs(P?,Pl);and (iv) es(PL, P?) < cs(PL, P?) +cs(P?, P3).
Regarding property (iv), the triangle inequality, for any fixed
¢* € Gpz,

n(S) (es(P.P?) + es(P?P?))

min  min
PLEG L1 PPEG p3

(T4 0202 0 + Lo2 (028 ()
xES

> Z I¢1(X)7§¢3 (x) = 77(5)(35(7)1, 733).,
x€S

> min  min
PLEG L1 $PEG s
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where the inequality holds since for any a,b,¢ € L, I, +
[b#c 2 Ia,;éc-

C. Bayes Clusterer and Bayes Clustering Error

A Bayes cluster operator, (*, is a clusterer with minimal
error, €[¢*]. Since ¢[¢] = E=[ec(=)] and £, (S) depends on the
clusterer ¢ only at the point ¢{S), minimization of €[¢] can be
achieved by minimizing £-(5) for every S € N separately.
Hence, a Bayes cluster operator is defined by a Bayes partition,
¢*(S), for each set S € N. By (16),

¢*(S) = arg (min ec(5)
<

S)EK s
> s (¢(S), Ps) Ps(Ps). (19)

PseK s

min
((S)EKs

= arg
Provided that Ps{Ps) can be found in a given model and the
size of KCg is feasible, by (19) it is now possible to find a Bayes
clusterer. Furthermore, we call e;+(S) the Bayes partitioning
error and e[C*] = E=[ec+(E)] the Bayes clustering error. This
is all parallel to classification: a RLPP corresponds to a feature-
label distribution, {* corresponds to a Bayes classifier, ¢ (.5)
corresponds the true error for an arbitrary classifier at a fixed
point, and £[(] corresponds to the true error for an arbitrary clas-
sifier. Since the Bayes clusterer may be solved for each fixed
S individually, from here forward we sometimes write parti-
tions and label functions without a subscript S, with the under-
standing that they are relative to a fixed point set .5. We also
write expectations and probabilities without conditioning on S,
with the understanding that conditioning on the sample is im-
plicit throughout.

Consider identifying the best partition of a point set S
consisting of n = n(S) points among all possible partitions
given known probabilities for each partition. Let Cs C Kg
be the set of candidate partitions, which comprise the search
space, and Rg C Kg be the set of reference partitions, which
have known probabilities. Suppose that Cs is indexed such
that Cs = {Q%,..., Qs '} and that R is indexed such that
Rs = {PL,..., ,PIRs] }. Then the optimal clustering problem
can be formulated relative to a column vector of probabili-
ties, p = {p;}, where p; = Ps(P?) forj = 1,...,|Rs|,
a cost matrix, C = {c;;}, where ¢;; = cs(Q%PY) for
it =1,....|Cs|and § = 1,...,|Rg|, and a column vector
of the candidate partition errors, e = {ei}, where ¢; is the
error of candidate partition Q° fori = 1,...,|Cs|. From (16),
e = C'p. The Bayes partition for S is then given by Q' , where
i* = argmin;—; _|c| €, and the Bayes partltlonlng errot,
equlvalent to the error of the Bayes partition, Q' is simply
e;+. Interestingly, Q' can be a partition with probability zero
(pi~ = 0), provided ¢;+ is minimal.

IV. OPTIMAL COMPUTATION REDUCTION

The representation e = C'p is problematic owing to the size
of Cs and Rg. In a brute force search, we set C¢ = Kg and
Rs = Kg, requiring a cost matrix C' of size |Kg| x |Kg|,
which can be prohibitively large even for moderate size point
sets. In this section, we will use following theorem to alleviate
this problem without sacrificing optimality.

Theorem I: Leti* € {1,...,|Cs|} index the Bayes partition.
LetC, = {Q',..., , 0l sl} C Cg be any subset of candidate
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partitions, and R = {P!,. .. ,73‘723'} C R s be any subset of

reference partitions. Then

R =5 =
o < min ciipi | +M |1 - P
> coini< | i 3 on >
j= J J=
(20)
whenever ¢;; < M for all ¢ and ;.
Proof: Foralli € {1,...,|Cs|},
IRs| R IRs|
Z Cijpj = Z ciip; + Z CijPj 2D
N
so that
=5 Rs| || |R|
2 cums S D ey S 2 et M| 1=2 m
(22)
For the Bayes partition, ¢*, and for all ¢ € {1, ..., |Cs|},
IR s IR 5]
> cigpi £ cipy (23)
j=1 j=1
Applying (22) on both sides of this equation,
[R5 | |R5| ||
Z Cix 5 P4 S Z Cup] 1M 1- Z Pj (24)

j=1

Since this is true for all 7, we may use the tightest bound among
any subset Cg C Cg. []

With the natural cost function in Theorem 1, the constant
M = =L can always be used (c;; = 1 if partition ¢ assigns
every point to the same cluster but partition j assigns every point
to a distinct cluster). With two clusters we may use a tighter
bound M = % for n even or M = "fzjll for n odd.

This theorem is very flexible, since there are no requirements
on the partitions included in C and R’, and in the following
subsections we will present several examples of how it can be
used to reduce the size of Cg and Rg. These methods tend to
be most effective in problems with moderate to low Bayes error
because the distribution Pg over partitions Pg is more concen-
trated on only a few partitions with high probability, p;, and thus
it is possible to focus on these few partitions representing most
of the probability. With high Bayes error, this distribution tends
to be more spread out so that no partition can be ignored.

A. Reducing the Space of Candidate Partitions

Theorem 1 can be used to eliminate candidate partitions from
consideration without fully computing their error, and in some
cases without any computation at all, by checking if (20) is vi-
olated. To illustrate, suppose the natural cost function is in use
and C5 = R = {P'}, where P! has probability p;. By The-
orem 1, any candidate partition, P, can only be the Bayes par-
tition if ¢;1p1 < e11pr + M(1 — p1) = M(1 — py), where we
have used the fact that ¢;; = 0. Furthermore, since ¢;1 > 1/n
for all i # 1, a partition P? for i # 1 can only be the Bayes par-
tition if p; < 242 Equivalently, partition P! is guaranteed

— Mn+1-
to be the Bayes partition if p; > U’Lfl ‘7~ This inequality gives
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Reference Partitions

pLp2ps... P‘ - PIRsl
PO\ L DC 2 2)|
P2 |1 -2 : a a - a :
P31 21 .- |
Reference Partitions gp. . 1 K n K |
Pl p2 p3...plRs|... pIRs| g : : - : |
P! i 5 Y !
2 . a [T T 777 =
§p? : g 2 a a a |
= o
£ p3 o . |
5 IR B AERERTANN
£ | I S : : H IR :
2 plel | ples|2) a a - a_:
. === A -y
§ : 1 : acanbelto3]| | |
Q¢! ! 01Csl| |bcanbe1to4 ! [
(@) (b)
Fig. 1. Example cost matrices (all elements are scaled by a factor of 12). (a) Ar-

bitrary partition, P*, listed first, followed by all partitions with exactly one mis-
match from 71 ; (b) Arbitrary partition, P*, listed first, followed by all partitions
with exactly one mismatch from P!, followed by all partitions with exactly two
mismatches from P*.

a test to check if P! has a probability that is so high that it is
guaranteed to be the Bayes partition.

Next, suppose C5 = Rl = {PL,..., PIRsl}, where P! is
any partition and P?, . .., P‘R | correspond to all partitions that
have one point mismatched relative to 1. An illustration of the
cost matrix is shown in Fig. 1(a). We have forced a structure on
the cost matrix, where the upper left hand square has an all-zero
diagonal, the non-diagonal elements in the first row and column
are 1/n, and all remaining elements are 2/n. In this case,

=5 =4
min Z cijp; < Z C105 =

(25)
1<L<\C/

N
n Z P,
j=2

so that by Theorem 1 the Bayes partition must satisfy

|R5| 1 RS
Zl ¢ivjp; < M — Mpy — (M - Tz) Z; p;. (26
i= i=

The imposed cost-matrix structure assures ¢;1 > 2/n and ¢;; >
1/nfori ¢ Csandj =2,...,|R%|. Thus, fori & C,

R

Z CijPj 2
=1

27

2 1 |R'/S|
ezl + - ; Pj-

Hence, if the Bayes partition is not in C%, then by combining
(26) and (27), we have

, IR N
y - n. < — Mnp — _ = i
“pt ij <M - Mp, (M n) ij (28)
j=2 j=2
Taking the contrapositive, we can guarantee that i* € C% if

Mn

P> Mn +2

(29)

R
- Z Pi| >
=2

and hence avoid computing e; for all i € C.
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The next theorem generalizes this procedure, so that we may
successively add partitions to C§ until it is guaranteed that *
Cs.

Theorem 2: Leti* € {1,...,
under the natural cost function, among all candidate partitions,
d > 1 be an integer, and C; = R consist of an arbitrary
partition, P, and all partitions with cost at most d/n relative
to PL. Moreover, suppose that for each k, 0 < k < d, ay. is
the set of all indices for partitions with cost & /n relative to P*.

Suppose the minimum in (20) is achieved by #’, that is,
||
i/ = arg min CiiDs 30)
g1<z<|c’ | ; jPj (
Then i* € C§ if ¢;; < M for all i and j and
Mn—-Y% ; Mn+d+1—k—cyn)p;
p1> Ek—l ZJeak( 7 ) ]' (31)

Mn+d—+1-—cnn
Furthermore, the same conclusion holds for the following

weaker bound, not requiring 7’

Mn =Yg (Mn+d=2k+1)% 0, pi

Mn4+d+1

p1 > (32)

Proof: An example of the structure imposed on the cost
function for d = 2 is illustrated in Fig. 1(b), where we assume
the partitions in R’y are ordered by their cost relative to P*. If
i ¢ Cs, thene;; > (d+1—k)/nforj €apandk =0,...,d.
Thus, by construction,

R
Zm,p,>zd+1’ S by (33)
i=1 J€ay

Combining #* and (33) with Theorem 1 guarantees i* € C% if

B |
Z(I—I—l k ZP;S Z(Z:'jpj-l-]\/l -

k=0 jEak

RS
> v
j=1

Solving for p; yields (31). Rather than finding i’ , weaker bounds
on the minimum in Theorem 1 are obtained by noting

Zd: > cigpi < Zd: > epy = Z > = —pJ

k=0 j€ay k=0j€ay k=1 j€ay

min
i<yl

Combining this and (33) with Theorem 1 and solving for p;
results in (32). u

The flow chart in Fig. 2 uses the preceding methods to deter-
mine a subset of candidate partitions guaranteed to contain the
Bayes partition. There are many other methods for reducing the
search space by enforcing a structure on the cost matrix C' and
applying Theorems 1 or 2; however, given the length of the cur-
rent paper we will pursue this no further.

B. Reducing the Space of Reference Partitions

Any reference partition with probability zero can be omitted
from consideration. Can we reduce the set of reference partitions
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Let d = 1. Let D be either the smallest integer
2 <D < [Mn] such that eq. (32) holds, or D = [Mn]

Fig. 2. A flow chart for determining a subset of candidate partitions containing
the optimal partition. The final subset consists of an initial partition, P*, and all
partitions with at most Z points mismatched relative to P!.

further? Suppose we have identified a list, C%, of candidate par-
titions that must contain the Bayes partition. Rather than eval-
uate the exact error for every partition in Cg using all reference
partltlons we would like to know if a subset of reference parti-
tions, R = {P',..., , PR }, can be used to further shrink C3
or even identlfy the Bayes partition. By Theorem 1, it is ev1dent
that any candidate partition i € C% for which

R 5] 5]
Z Cijpy > min Z cripi| +M [ 1— Z pi| (34)
o 1<ks|ey| 5= j=1

may be eliminated from consideration.
This may be done iteratively: for each integer £ > 0, de-
fine C% Cf ! to be the set of candidate partltlons not yet

eliminated, meanwhile keeping track of Z' '

t 1
Pt e CL, as well as Z ' p;. Then define a new larger set
of reference partitions, Rt D Rgfl (in our implementation we
add the highest probability partitions one at a time), and update

CigPj for each

|R| RS |R%
Yocpi= Y it Y, cpy (39
i=1 J=1 ':|Rt,—1|+1

3 i7—7<‘| ‘; iR
foreach P’ €C§ and Y-, 27 p; Zj i ,+Z R P

Then eliminate partitions in Cf where (34) holds with CL and
RY in place of C3 and RY. Repeat until C% contains only one
candidate partition, which may occur with a small reference set,
RY, and greatly reduced computation.

C. Finding the Bayes Error and Arbitrary Partition Error

At each stage of the above algorithm to reduce the space of
reference partitions, we obtain successively tighter bounds on
the Bayes partitioning error: if the procedure ends atstep 7' > 0,
having identified :* as the index of the Bayes partition, then the
Bayes error satisfies

RrRY R RYL
) 5
> cigp; < e <Zc,]pg+M 1= pi |, (36)
J=1 =1 =1
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where Zl ] e ;p; and Z'
by the above algorithm.

If these bounds are not tight enough for the application, they
can be made as tight as desired by expanding the set of reference
partitions further, i.e., with R?'l D Rg In the extreme, where

p are automatically supplied

R?H = Rg, we obtain the exact Bayes error,
|RE| Rs]
€ix = Z Ci=5p; + Cix 5P 37
j=|RL|+1

Likewise, the exact theoretical error for any arbitrary candi-
date partition indexed by ¢ (say the partition obtained by an al-
ternative clusterer) under the assumed model can be bounded at
each stage of the algorithm:

|| || |R|

Z(‘l_]p‘ISPLSZCL‘]p]—i_M 1—227] s

(3%

where Z‘ p] is already being tallied and Z‘ -3 c”p7 can
also be updated at each stage. If at the end of the search where

= T these bounds are not tight enough for the application,
they can also be made as tight as desired by expanding the set
of reference partitions further, i.e., with RZSH'I O RL, until we
achieve the exact partition error when R4 ' = Rg:

|RE]

Z Cijp; +

IR s|
CijPj- (39)

i=[RTj

V. SUBOPTIMAL COMPUTATION REDUCTION

Although the above methods to compute the Bayes clusterer
greatly reduce computational complexity, as the point set size
grows the problem will eventually become intractable. Ignoring
the size of the cost function, even computing the probability of
all possible partitions can itself be infeasible. Hence, we con-
sider suboptimal algorithms to approximate the Bayes clusterer,
the idea being to constrain the space of candidate and reference
partitions to a subset of partitions representing a high concen-
tration of the probability mass over all partitions, without re-
quiring that we evaluate the probability for every partition. We
implicitly assume that partitions “near” each other have close
probabilities, so that we can search for high probability parti-
tions based on “nearness” to other high probability partitions.
We measure the distance between two partitions, say P* and P2,
by the minimum Hamming distance between labels inducing
the partitions or, equivalently, the scaled natural partition cost,
n(S)es(P, P?), which we have shown to be a valid metric.
We loosely refer to this as the Hamming distance between par-
titions. The maximum distance between any two partitions is
finite and we assume the maximum distance is Mn, where M
is some positive constant.

We will outline several suboptimal clustering algorithms in
Section IX. All of these are essentially based on two algorithms.
Algorithm 1 implements a greedy search for the highest prob-
ability partition by evaluating the scaled probability of a seed
partition (typically partition probabilities can be directly com-
puted only up to an unknown normalization factor), evaluating
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Algorithm 1: Search for the Maximum Probability Partition

Data: PY = seed partition
k = Hamming distance
Result: P = local maximum probability partition
i =0;
po = scaled probability of PY;
repeat
1 =1+ 1;
{9, ..., 0%} = Algorithm 2(P~ 1, k);
for j =110 s do
| g = scaled probability of Q7;
end
j* = arg max(q1, g2, - - -
if qj* > Di—1 then

7QS);

Pl=Ql;
Di = qj+;
end
until g;« < p;_1;
P _ fPifl.

Algorithm 2: Find the Set of Partitions in a Closed Ball of
Radius ~ Centered on a Seed Partition P

Data: P = seed reference partition

h = maximum Hamming distance

Result: R = set of unique partitions with Hamming

distance at most h from P

Rs =1}

for j =110 h do
X = set of all partitions of the form P with j points
flipped;
Rs ={Rs,Xs}:

end

a scaled probability of all partitions within a closed ball of radius
k centered on the seed partition for a given fixed integer & (call
these partitions Q', ..., Q%), identifying the partition among
these, including the seed, with highest probability, and repeating
using the highest probability partition as the new seed until there
is no improvement. This procedure is guaranteed to converge to
a local maximum in a finite bounded number of steps, since the
search is over a finite number of partitions and the probabilities
can only increase. It is also guaranteed to find the maximum
probability partition when £ = Mn because a closed ball of
this radius contains the whole space. The entire procedure may
be repeated a number of times with different seeds, and a final
partition with highest scaled probability selected. Algorithm 2
finds the set of partitions in a closed ball centered on a given
seed partition.

When the Bayes error is not high, most of the probability
mass over partitions tends to be concentrated in a neighborhood
of the maximum probability partition. Hence, we will typically
choose a set of reference partitions using Algorithm 2 with a
fixed integer radius 2 and some available seed partition, e.g, the
true maximum probability partition or an approximation found
from Algorithm 1. The constant & controls the complexity of the
Bayes partition search, and when Algorithm 1 is used to select
a seed, the constant & controls the complexity of the maximal
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probability partition search. If A = Mn then the space of ref-
erence partitions includes all partitions, and if 4~ = 0 then the
only reference partition is the seed partition.

Given a suboptimal set of reference partitions and their scaled
probabilities, we take a naive approach to normalizing them by
assuming that non-reference partitions have probability zero.
We also initialize the space of candidate partitions to be either
the set of all partitions, or the same as the set of reference par-
titions. Given a set of reference partitions, normalized partition
probabilities, and a set of candidate partitions, we approximate
the optimal Bayes partition, where all methods in Sections [V-A
and IV-B to improve computational complexity may be applied.

One can approximate the Bayes partition error of any can-
didate partition P* usmg only the probabilities that have been

computed by € = Z -3 cupJ (R), where R’y is a set of ref-
erence part1t1ons and p;(R') is the probability of reference par-
tition j normalized over only the partitions in R. This tends to
be a low biased approximation if P* € R, primarily due to the
naive scaling method. In fact, the reported Bayes error is upper
bounded by the maximum cost between partitions in the candi-
date and reference set, which is upper bounded by 24 /n when
using Algorithm 2 with distance 4. Put another way, we must
choose h > ne* /2, where e* is the Bayes partitioning error, for
it to even be possible to report the Bayes error correctly. Thus,
problems with higher Bayes error require higher computational
complexity for accurate error estimation. To approximate the
partition error for an arbitrary partition we recommend com-
puting the probabilities for a larger collection of reference par-
titions, R D RY, than used for finding the Bayes partition.
Then, under our naive scaling rule, p; (R%) = Cp;(RY) for all

7 € {1,...,|R%|} for some constant C < 1 and we have the
approximate error
|R%| |R%|
Z by (R§) = C&+ ) ey (RE). (40)
= e

VI. PARTITION PROBABILITIES FOR GAUSSIAN MODELS

To this point, we have made no assumptions on the RLPP,
except to say that the probabilities Ps(¢s) (in the case of the
optimal label operator) or Pg(Pg) (the p; in the case of the op-
timal cluster operator) are available. To evaluate either of these
probabilities requires finding Ps (g ) for an arbitrary label func-
tion under the assumed RLPP model. For ¢g € L°,

Ps(ps) = P(¢s]9) o< P(¢s)f(S|bs). (41)
We assume a RLPP where P(¢g) is a known prior probability
on labels, which does not depend on the specific points in .S.
For instance, under random sampling with 7 points and / pos-
sible labels, P(¢s) is uniform over all {" possible label func-
tions. Under stratified sampling, label functions with the correct
number of points in each class are equally likely, with all other
label functions having zero prior probability.

We further assume that given a label function, ¢ 5, and a col-
lection of distribution parameters, p = {p1,...,p:}, where p;
is a parameter associated with label 4, each point x € S having
label i = ¢5(x) is independently drawn from a label-i-condi-
tional distribution, f;(x; p;). We also assume the p; are a priori
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independent from each other and from ¢g with prior density
f(p:). Hence,

Ps(s) x P(¢s) / F(Slbs. ) (p)dp

P(s) H/(fom). (pi)dpr, (42)

XES

where 5; = {x € §: ¢g(x) = i} is the set of all points in §
assigned label ¢z by ¢ and n; is the cardinality of S;.

We next introduce three Gaussian models. In the next Section
we extend these to generalized RLPPs with improper distribu-
tions on model parameters, and show invariance of generalized
RLPPs to linear transformations of the space.

A. Known Means and Covariances

Under this model, point sets are generated by ! Gaussian dis-
tributions with known parameters. In particular, for each : €
{1,.... 0} let p; = {ps, X, }, where p; is a length d real vector
and X; is a symmetric positive definite d X d matrix. Then a point
x € S with label ¢ has a Gaussian distribution with mean y; and
covariance ;. That is, f;(x; p;) ~ N (i, %;). Forn; > 1,

[T fitsm) = —o—

XES; (2 ) 7 E‘i 2

X exp (% Z (x— ui)TEfl(x — uz)> ., (43)

xEe5;
where | @ | denotes a determinant. If n; > 2, let [i; and ii be the
sample mean and covariance of points in S;. Then,

o= ) S x - ) =t (D7), (44)
xXES;
where tr(e) denotes a trace and
®F = (ni — D)3 + i — )i — )"
If n; = 1 then (44) holds with ®F = (pu; — fi:)(pi — )T,
Hence,
1 (X
H Ji(xsp0) =5 €XP (—%) . (45)
xES, (2m) = [Xa] =

Since the p; are fixed, f(p;) is a point mass at p; = {u;, 2 }.
Hence, from (42),

1

1
Ps{¢s) < P(ds) H ! exp(—itr ((szil)>

1 .
S)<H [3; "‘l> cxp(—% Ztr(‘bfﬁ]il)),

where by convention we set ®; to a d x d zero matrix if n; = 0.
The Bayes clusterer is thus given by (19) and (17) with Ps(¢s)
provided above. If P(¢g) o 1 for all ¢s considered, and we
either have that all n; are fixed for all ¢5 considered or equal

\V H
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covariances for each label (X1 = Yo = ... =
simplified further:

!
Ps(¢s) o exp (%Ztr (@f2i1)> .

Y1), this may be

(46)

The probability of a label function is larger if the sample means,
i1;, are close to the true means, y; (so ®7 is smaller), and if
the shape of the sample covariances, Zl , are close to the known
covariances, ¥;, in the sense that 3; ~ aX;  (so tr(®7E; h
is smaller). This probability is also larger if S, is smaller in
the sense that 3; ~ a}; is better for smaller «.. Thus “tighter”
clusters have higher probability.

B. Gaussian Means and Known Covariances

In this model, point sets are generated by distributions with
random means and known covariances. Foreachi € {1,... 1},
we define two fixed hyperparameters: a real number v; > 0 and
a length d real vector m;. We define parameters p; = {1;, 2;},
where the ¥; are fixed symmetric positive definite d x d matrices
and the p; have independent Gaussian distributions with mean
m; and covariance —E A point x € S having label ¢ is drawn
from a Gaussian dlstrlbutlon with mean y; and covariance X;,

so that f;(x: p;) ~ N (s, ;). Define
)) fpi)dp;

= / < H fi(x; pi
- xES;

when n; > 1. For a proper distribution on the x; where v; > 0

for all ¢, applying (45) for n; > 2,

il 2

1 “
— — exp(——tr((ni—l)E.iEi ))
(2ﬂ_)d( ;+1>|Ei (1) 9
' n; ~ _ -
X /GXP (*7(#:‘, - Mi)TE'i 1(Mz‘ — Is)

v; _
_5(/1,1' — mi)TE,i 1(/1@ — IIIL)) d/l,i.

Li(S)=

Applying the fact that

i — )" (e — ) + vips — m) "8 (g — my)
T ~
n; 1+V1 7 _ N i +151m;
(ni+uv;) ( H ) ¥; 1 (N,i_”7>
n;+v; ni+v;
nl 7

(7 — mi) "8, (i — my),

n7 + v

and integrating out a Gaussian distribution on ;,

Ini + ;| (27) 5

i 2
1 ~
X exp <—§tr <(nL - 1)Zi2i1))

1 Vi . Teal/~
Xexp|—5- i —my)” B — m;
exp ( 5 it Vi(/z m;)* S (i — my)
d
0|2 1
= d|1/ | — — exp (—_—tr (\PTEL—l)> )
| + w2 (27) = |3 = 2

(47)
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where

W) = (= DS+ (- my) (i - my)T. (48)

n; + v;

o~

In the case where n; = 1, (47) holds with W} = 25 (ji; —
m;)(fi; — m;)T. Finally, from (42) and (47),

(S

!
||
P, P _
S(¢S) X (¢S) (L_Hl |7l.7j + I/i|d|2ilyw>
!
X exp (—%Ztr (@fz;g) . (49)

=1

where by convention we set ¥ to a d x d zero matrix if n; = 0.
The Bayes clusterer is thus given by (19) and (17) with Ps(¢s)
provided above.

If P(¢s) ox 1 for all ¢ considered and all n; are fixed for
all ¢5 considered, then

(50)

1
Ps(dg) x exp (—% Ztr (@f2:1)> .
i=1

A label function probability is larger if the sample means, Ji;, are
cAlose to the expected means, m;, and if the sample covariances,
Y, are “tighter” with a shape close to the known covariances,
Y;, in the sense that ¥; &~ «2I; for small «.

C. Normal-Inverse-Wishart Means and Covariances

In this model, the means and variances of each class-condi-
tional distribution are random. For each ¢ € {1,...,[}, define a
length d real vector m;, real numbers ; > O and x; > d—1, and
a symmetric positive definite matrix U; as hyperparameters. De-
fine parameters p; = {p;, ¥;} having independent normal-in-
verse-Wishart distributions. That is, 2; is inverse-Wishart,

rybdEL
D

exp (—%tr (\IJiEi—l)> ,

where I'; is the multivariate Gamma function and, given X;, the
1; have Gaussian distributions with mean m; and covariance
1 2. Note if 5; > d + 1, the mean of ¥; is — d i~ With p;
ﬁxed each x € S, having label 1, is Gau551an w1th f,(x pi) ~
N (4, %3;). p; has a proper density, and when n; > 1 we define

//(H Fils s 't)f(/l/izi)duif(zi)di)

XES;

:/ |Vl|
s + v (2m) |5 5
X exp (—ltl (Bis; )) F(E)HdE;,

(5D
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where in the last line we use (47) for the previous model with
fixed covariances, and ¥ is defined as in (48) if n; > 1. Pro-
ceeding,

d
. vl % 1 .
Ei(Si):/ c£| | — — eXp<__tr(‘1’iEi 1))
S| E(2m) T |2 7 2

|\IJ Kz_z  mgtdtl
X —a - o |Ei| 2
275 T (%)
X exp (——tr (‘I’izl)) a¥;
|vil2 |2
4 X nd

1
X exp (—itr (T, + ) Ei‘l)> d¥;.

This is essentially an inverse-Wishart integral with updated pa-
rameters #; + n; and ¥; + U7, Thus,

L;(S:)=

\7L7;—|—1/1¢|%(27r)d— Fd(%) \qji+\p;¥|ﬁ;
(52)

From (42) and (52), after scaling across all ¢s, we have

! v 3T, (Edni) .| %

Ps(¢s) x P(¢s) || | Ad ¢ (55%) 194 e

i=1 ‘WL + Vi|5Fd (2—1) “IJL + \PHT

(53)

where by convention we set ¥} to a d x d zero matrix if n; = 0.

The Bayes clusterer is again given by (19) and (17) with Ps(¢s)

provided above. If P(¢s) o 1 for all ¢s considered and we

have all n; are fixed for all ¢ considered, then

1
Ps(ds) o [[ Wi+ ¥} (54)

i=1

VII. GENERALIZED GAUSSIAN MODELS WITH IMPROPER
DISTRIBUTIONS ON MODEL PARAMETERS

In a Bayesian setting, it can be useful to assume Gaussianity
with a “non-informative” prior on the parameters. We take a
similar approach to formulate generalized Gaussian RLPPs,
where the means and/or covariances are random and governed
by improper distributions. To formalize this, the random point
process, =, now maps from a measure space, ({2,.4,v), to
[N; N, where A is a o-algebra and v is a o-finite measure. v
is now a measure on = determined by v(Y) = v(Z2-1(Y)) for
Y € N . Strictly speaking, this RLPP is not realizable since it
is not based on a probability space. That being said, it may still
be possible to find a meaningful probability mass function over
all possible labelings, conditioned on a given point set S. If
used to find a Bayes clusterer, we call the result a generalized
Bayes cluster operator. One consequence is that (42) must be
modified such that Ps(¢g) is proportional to:

{
Pigs) H /(H filx: pi) >.f(m)dm H /f(pi)dp.i.

XES;
n;=0
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If n; = O for any ¢, then the last product above is not defined.
Hence, the generalized theory requires that we only consider
label functions that assign at least one point to every label, and
to do so we set P(¢s) = 0 otherwise.

A. Gaussian Means and Known Covariances

Returning to our Gaussian model with unknown means and
known covariances, suppose we set #; = 0 for all ¢, so that the
; have improper distributions of the form f{(p;) = f(p;) x

1 . . . .
[3;] 72, where %, is known. Although these distributions are
improper, it is possible to carry out the derivation of £,;(S;) =
f(HxleSi Ji(x; p:)) f(pi)dp; for each i where n; > 1, using
[3;]~ 2 in place of f(p;). The steps are exactly the same and the
result is essentially the same:

1

,CL(SL) X

dng

§(2m) =

" exp (— %tr (q’;tzil)) . (55)

|n;

where U = (n; — 1)§3L forn; > 2 and ¥7 = 0 forn, = 1.
As long as ¢g is such that n; > 1 for all 4, Ps(¢s) is derived
in the usual way from (55) and (42), and, analogously to (49)

under proper priors, may be simplified to
1

l 2
Ps(¢s) x P(¢s) (H |ﬂi|d|Ei|TLi>

i=1

1
X exp (%Ztr (\11:2,131)> . (56)

i=1

Ps(¢s) is normalizable and provides a probability mass func-
tion that can be used in a generalized Bayes cluster operator.

The standard %£-means objective function is optimal for a
0-1 cost function (i.e., maximum a posteriori clustering), a
Gaussian model with unknown means having an improper
flat distribution, identical scaled identity covariances (the
scaling factor need not be specified), and a specific form for
P(¢s) [22]. Thus, the new theory reveals implicit assumptions
in applying the k-means objective function, and provides a
framework to compute the exact partition error (with any cost
function) under the given assumptions.

B. Normal-Inverse-Wishart Means and Covariances

Next consider our Gaussian model with unknown means
and unknown covariances. If we set v; = 0 for all ¢, as
before the p; given 3; have improper distributions of
the form f(ui|S;) o |8 "%, and just as before substi-
tuting |Z;| % in place of f(u;|¥;) in the derivation of
J(Txes, fi(x: pi)) f(uilX:)dps for each i where n; > 1 gives
(55). For the covariance we require x; € R and ¥; = 0 for all
i, resulting in an improper distribution:

Ky fdtl
hF)
[N g 57)
2751y (%)

Substituting the right hand side above in place of f(3;) and
the result for f(erS, Fi(xs p)) f(pa|X0)dp; into £;(S;) =
J(Txes, filx; pi))f(pi)dp;, we again obtain essentially the
same result:

r ()
=Ty (%) ni| 2 [W¥

L£i(S) x (58)

Wit ¢
Z
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where UF = (n; — l)i forn; > 2and U7 = 0 forn; = 1. For
any labeling in which n; > 1 for all i, Pg(¢g) is derived in the
usual way from (58) and (42), and, analogously to (53) under
proper priors, may be simplified to
1 - )
F(l Ki+n;
Ps(¢s) o P(¢s) H (—22

=1 |na 2 |07

(59

C. Invariance to Affine Transformations

Aside from avoiding informative assumptions on the means
and/or covariances, generalized Bayes clusterers enjoy several
invariance properties for linear transformations of the sample
space. Suppose we apply an affine transformation to a point set
S, resulting in the point set S = A(S — X¢), where Xy € R¢
and A is a d x d matrix. Let ¢)g be an arbitrary label function
on S and ¢z be the corresponding label function on S, where
¢5(X) = ¢s(x) forXx = A(x — x¢) € S. In both generalized
Gaussian models, U, = Yxes. (X — E)(X — )", where 1,
is the sample mean :)f points in S;. One can easily verify fi; =
A(fi; — Xg), and ¥, = AUrAT,

For a Gaussian model with unknown means and known co-
variances, from (56) observe that Pg(¢g) = Ps(¢s) if

tr (W371) = o (AWPATS ) = o (w737

First, suppose A = I;, where I is the d X d identity matrix. In
this case, the preceding equation holds trivially. Hence the gen-
eralized Bayes clusterer for unknown means and known covari-
ances is invariant to translations of the point set. Next, suppose
A is a rotation matrix, where AT A = I,;, but the model assumes
Y = O’?Id for scalars 0? forall i € L. Then
tr (@fz;l) = iQtr (UF) =tr (U735, 1).
K3

Thus, the generalized Bayes clusterer assuming known scaled
identity covariances is invariant to translations and rotations.

For the Gaussian model with unknown means and covari-
ances, examining (59) it is clear that Pg(¢g) = Ps(¢s) if

iz

= | AV AT| o [0

; (60)

which holds for any matrix A such that |A| # 0. Thus, the
generalized Bayes clusterer for unknown means and covari-
ances is invariant to translations, rotations, scaling, and any
other one-to-one linear transformation of the sample space.

VIII. CLUSTERING IS DISTINCT FROM LABELING

Earlier we noted that an optimal label operator does not nec-
essarily induce an optimal clustering operator. To illustrate, as-
sume that for any partition Pg with non-zero probability, P(¢s)
is constant for all s in G'p,, that s, all label functions inducing
Ps are equally likely. First consider a generalized Gaussian
model with unknown means and known covariances satisfying
3; = X forall2 € L. Then for any non-zero probability par-
tition, Ps, and for every label function ¢s € Gp,, from (56)
with ‘IJT = (ni — 1)Ei,

Ps(¢s) o« exp (-% Z(m - 1)tr(§i21))

i=1
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where the proportionality holds over all ¢s € Gp, . The terms
in the sum, and hence the Ps(¢s), are equivalent for every ¢
in Gp,. Recall from (17) that Ps(Pg) = Z%Ec% Ps(¢s),

so that 3 ¢seep, Ps(ps) = $Ps(Ps). Furthermore,

dg(x)=1
> Pslés)= Y, > Ps(és)
dgelS Ps€EKs ¢5€CGpg
bg(x)=i b (x)=1
1 1
= 2. Ps(Ps) =1
PseKs

In particular, this quantity is not a function of . From (11),

A
1 - 1 -1
als)= > Y =
W 1
iEdg a(x

This is the same labeling error achieved by random guessing.

For our generalized Gaussian model with unknown means
and covariances, suppose x; = & for all« € L. From (59) with
U¥ = (n; — 1)%;, for each label function ¢5 € Gp,,

rtng
_rdng

(ni — )3

1
Ps(ps) o H

The terms in the product, and hence the Ps(¢s), are equivalent
for every ¢bs in Gp,, . Just as before, ,(S) = I*Tl, so that even

optimal labeling can do no better than random guessing.

IX. EXPERIMENTAL RESULTS

This section presents performance for the optimal Bayes clus-
terer and several suboptimal algorithms relative to classical al-
gorithms. All results are obtained from synthetic data generated
under the proposed Gaussian RLPP models.

A. Algorithms

We implement several clustering algorithms: (Optimal) the
exact optimal solution for the given RLPP—only used in small
point sets; (Subopt. Pmax) Algorithm 2 where the seed is the
true maximum probability partition, P,,,.. ; (Subopt. Pseed) Al-
gorithm 2 where the seed partition, Ps.cq, is found from Al-
gorithm 1; (FCM) fuzzy c-means; (KM) k-means; (Hier. (Si))
hierarchical clustering with single linkage; (Hier. (Co)) hierar-
chical clustering with complete linkage; (Random) randomly
clustered points; and (Classifier) the clusterer induced by the
optimal linear classifie—only used in models with no uncer-
tainty in the mean and covariance of the distributions that com-
pose the RLPP. We will also introduce two suboptimal algo-
rithms tailored for very large point sets in Section IX-E.

We make a few simplifying modeling assumptions to reduce
computational burden in the optimal, Pmax and Pseed algo-
rithms. First, we restrict our analysis to only [ = 2 clusters.
For the optimal clusterer, the number of candidate partitions for
a given point set S with n points is 2", We also assume that
we know the cluster sizes. If there are n; and n, points in the
clusters, where labels can be switched, the number of reference
partitions is thus reduced to %#,Lz, ifny = nyorto #,L, oth-
erwise.
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The suboptimal Pmax algorithm constrains the set of ref-
erence partitions to a subset over which most of the proba-
bility mass is concentrated using Algorithm 2 with seed partition
Pynae and threshold h. We further constrain the reference set to
partitions assigning the correct number of points to each cluster
and apply no constraints to the set of candidate partitions. When
h reaches the maximum value for a given clustering problem,
Pmax turns into the optimal algorithm.

Suboptimal Pmax still requires computing the probabilities
for all reference partitions in order to find P,;,4, . To further re-
duce computational cost, Pseed applies two changes:

1) We use Algorithm 1 with & = 1 and repeat the algorithm

5 times with random seeds to iteratively find a partition
Pseed close to Pp,q. We may find a local maximum.

2) We apply Algorithm 2 with seed Pye.q and threshold h.
The same set is used for both the reference and candidate
sets, and is constrained to have correct cluster sizes.

Even with the maximum value for £, Pseed might not return
the optimal partition since candidate partitions have been con-
strained to have the correct proportion of points.

Where applicable, Optimal, Pmax and Pseed use all bounds
in Fig. 2 and Section IV-B to reduce the set of candidate
and reference partitions, respectively. We set partition P!
(Figs. 1(a) and 1(b)) to the highest probability partition avail-
able, Prgr OF Pseeq. The complexity of the search is often
significantly reduced with these bounds, particularly in models
with low or moderate Bayes errors.

B. Description of Experiments

We consider 2-dimensional RLPPs based on the Gaussian
mixture models in Section VI with { = 2 clusters: (Model 0)
fixed known means and covariances; (Model 1) Gaussian means
and fixed known covariances; and (Model 2) Gaussian means
and inverse-Wishart covariances. Experiments are divided into
three steps: point set generation, clustering, and performance
evaluation.

In point set generation, we first draw two random distribu-
tions based on the RLPP model, and then draw a testing set, S,
from these distributions. We fix a priori the number of points
in each cluster, n; and no. We will evaluate the performance
of optimal clustering and the optimal clustering error on small
point sets of size n = ny + ne = 20, the performance of sub-
optimal clustering and clustering error estimation on moderate
point sets of size n = 70 points, and the performance of clus-
tering on very large point sets of size up to » = 10000. We will
consider several equal and unequal cluster size settings. For un-
equal sized clusters, where n; # ns, by convention half of the
point sets are generated with 721 points from distribution 1 and
no from distribution 2, and vice-versa for the other half. In all
cases, each testing set is accompanied by a vector of labels in-
dicating the distribution from which each point comes.

We apply the algorithms listed in Section IX-A to each testing
set. A two-cluster partition is found by assigning a vector of la-
bels based on the clustering algorithm. Only the optimal, sub-
optimal Pmax, suboptimal Pseed, and clusterer induced by the
optimal linear classifier assume a RLPP model; classical clus-
tering algorithms are model-free.

For each set, we compare the output (label vector) of each
algorithm with the actual label vector by counting the number
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TABLE 1
SIMULATIONS BASED ON 3 MODELS AND 2 DIFFERENT BALANCING OF SAMPLES: 10:10 AND 12:8. IN THE COVARIANCE MATRICES COLUMN, J; REPRESENTS THE
d X d IDENTITY MATRIX. THE HYPERPARAMETERS m;, ¥, 1; AND £; ARE DEFINED IN SECTIONS VI-B AND VI-C

Sim ID | Model | ni n2 | Repeats | Mean Vectors Covariance Matrices v K
1 0 10 | 10 | 1000 w1 = (0,0), u2 = (1.5, 1.5) Ti=%2=1 14 — —
2 1 10 10 500 m; = (0,0), mg = (1‘5 1.5) Y1 =X9=05-14 vi=11rv=2| —
3 2 10 10 500 mij = (07 0), my = (1‘5 1‘5) \Ifl = \112 =0.5- Id vy = 1, vy = 2 K1 = 2, K2 = 3
4 0 12 |8 1000 u1 = (0,0), u2 = (1.5, 1.5) Ti=%r=1-1I4 — —
5 1 12 | 8 500 mi = (0,0), mg = (1.5,1.5) | X1 =32=05-I3 | 1=1Lwve=2 | —
6 2 12 | 8 500 mi = (0,0), mo=(1515) | 1 =U3=05-I3 | v1i=1va=2 | k1 =2, k2 =3

of points assigned to a cluster different from the actual one and
dividing by n. Averaging these quotients across all point sets
yields the empirical clustering error for each algorithm. When
comparing vectors of labels, we account for the label switching
issue (see Section II). Since we know the RLPP, for small point
sets we can find the optimal partition, calculate its theoretical
error, calculate the errors for the partitions output by the other
algorithms, and make comparisons.

C. Results for Small Point Sets (n = 20)

Table I shows settings used for simulations on small point
sets. In all cases, parameters are selected to obtain a Bayes clus-
tering error close to 0.1. Additional results are available on the
companion website for clustering error close to 0.2.

1) Clustering Operator Performance: To evaluate empirical
errors, we use 1000 testing sets for Model 0 and 500 testing
sets for Models 1 and 2. Fig. 3 displays average empirical er-
rors as a function of the Hamming distance threshold / used in
Algorithm 2 to define the set of reference partitions in Pmax
and Pseed. The optimal and suboptimal algorithms are supe-
rior to all classical algorithms, particularly under Model 2, see
Fig. 3(c) and (f). Performance is nearly optimal for both Pmax
and Pseed even with very small /4. For Pmax, this indicates that
the partition with maximum probability is often the optimal par-
tition. For Pseed, this leads to two additional conclusions: (1)
Algorithm 1 with £ = 1 often finds the maximum probability
partition rather than getting trapped in local maxima, and (2)
constraining the set of candidate partitions to the set of parti-
tions with correct cluster sizes does not significantly degrade
performance. The average difference between theoretical and
empirical errors, provided on the companion website, has been
found to be small in all cases.

2) Clustering Error Approximation Performance: Fig. 4
shows the root-mean-square (RMS) error over all samples in
Simulation 1 between the approximate error for each algorithm
(found using the probabilities of partitions within Hamming
distance at most A from Ps..q) and the exact error (found
using the probabilities of all partitions). Similar results for
the other simulations are available on the companion website.
In all cases the quality of error estimation is poor for small
Hamming distances. This is in contrast with Fig. 3, where the
quality of the clusters computed using Pgs..q remains quite
stable across all values of h. This indicates that clustering
is easier than cluster error estimation: suboptimal clusterers
reach good clusters, but may not estimate their error accurately.
The situation is analogous to classification, where a small
sample may yield a decent classifier, but without the ability to
obtain a satisfactory error estimate [23]. In addition, the best
algorithms, the ones that produce better clusters, tend to suffer
more from the estimation issue with larger RMS.
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Fig. 3. Average empirical errors: (a) Simulation 1, (b) Simulation 2, (¢) Simu-
lation 3, (d) Simulation 4, (¢) Simulation 5, (f) Simulation 6.

3) RAM Memory Usage and Processing Time: RAM
memory usage and processing time to run all clustering algo-
rithms in all simulations are provided in the supplementary
materials as functions of the threshold % used in the suboptimal
Pmax and Pseed algorithms. Pseed in particular requires very
little time and memory for small A, where it is comparable
to or even better than classical algorithms for 2~ < 5. This is
typical for all simulation settings we tested for small sample
sizes. In some cases, the processing time and RAM memory
usage for Pmax at maximum / can slightly exceed the optimal
algorithm, although they produce the same results. This is
because Pmax requires additional overhead when finding the
maximum probability partition and its neighbors.
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Fig. 4. RMS performance of error estimation for Simulation 1.
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Fig. 5. Performance for moderate sized point sets drawn from Model 2: (a)
average empirical errors, (b) RMS performance of error estimation.

D. Results for Moderate Sized Point Sets (n = 70)

The maximum size of the set of candidate and reference par-
titions grows exponentially with the number of points that com-
pose a given point set to be clustered. Employing the optimal
and Pmax algorithms for any but very small point sets is a
computationally prohibitive task. Therefore, for this case we
only test the performance of the suboptimal Pseed algorithm
to cluster and estimate the clustering error. For this task, we
draw 500 testing sets from Model 2 using the following settings:
Ny = Ny = 35, m; = (0/0), mo = (6/()), ‘111 = \IJQ = 3[4,
vy = o = 2, K1 = 2 and k9 = 3. The approximate Bayes clus-
tering error in this model is close to 0.1. Results for 11 additional
simulation settings are available on the companion website.

Fig. 5(a) shows average empirical errors for all algorithms
tested. The averages are computed as a function of the Ham-
ming distance threshold 7 used to define the set of candidate and
reference partitions for the Pseed algorithm. Results are shown
up to h = 6; using larger /& considerably increases both the
processing time and memory usage. Performance of the Pseed
algorithm is superior to all the classical clustering algorithms
tested and is almost constant as b increases.

Fig. 5(b) shows graphs of the RMS values between the ap-
proximate errors (found using the probabilities of partitions with
a Hamming distance at most A from P..4) and empirical errors
with respect to k. While with a small point set the exact error
can be found using the probabilities of all partitions, for a large
point set this is impossible because of the huge size of the set of
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reference partitions. Instead, we substitute the empirical error,
or the Hamming distance between the true and predicted labels,
for the exact error to approximate the RMS. As in the case of
small point sets, error estimation using the Pseed suboptimal al-
gorithm is more difficult than clustering itself.

Finally, graphs of memory usage and processing time for all
clustering algorithms are available on the companion website.

E. Results for Large Point Sets (n. Up to 10000)

We have shown that optimal clustering on small point sets
can significantly outperform classical clustering algorithms, and
that suboptimal clustering algorithms with Pseed are nearly op-
timal on small point sets and significantly outperform classical
clustering algorithms on moderately large point sets. Thus far,
the suboptimal methods we have proposed have been relatively
computationally intensive owing to the desire to evaluate the
Bayes clustering error. In this section we do not attempt to ap-
proximate clustering error, but instead focus on computationally
efficient methods to perform clustering itself and how the new
theory can be practically applied to very large point sets.

Given a partition Pgyeeq having high probability found using
Algorithm 1, we have seen that the Suboptimal Pseed algorithm
performs quite well and is very fast when the maximum Ham-
ming distance, , is set to zero. Essentially, the key to good clus-
tering, at least in our Gaussian models, is to focus on finding a
maximum probability partition. We thus propose the following
method, Subopt. Pseed Fast, to identify high probability parti-
tions under very large point sets:

1) Selectarandom subset, Syya11, of 100 points from the orig-

inal large point set, S.

2) Initialize a partition on Sy, With Piyitia1. Here we use
fuzzy c-means, since this method is quite fast and performs
well in the Gaussian models we have tested.

3) Let Poqual be a partition having a designated number of
points in each cluster (11 and n3), chosen to keep the size
of clusters proportional to known sizes of clusters in S, if
available. This step is optional, but can improve clustering
in models where the size of the clusters are known.

a) Select one cluster in Pjyisi41; call it cluster A and the
other cluster B.

b) Evaluate the probability of all partitions having a
Hamming distance 1 from Piyuitia1; note that each
point in each cluster corresponds to a probability.

c) Let P; be the partition found by flipping points
corresponding to the highest probability until cluster
A has exactly n; points as follows: if cluster A has
fewer than n; points, we flip points in cluster B cor-
responding to the highest probabilities, and if cluster
A has more than n; points, we flip points in cluster
A corresponding to highest probabilities.

d) Similarly, let P, be the partition found by flipping
points corresponding to the highest probability until
cluster A has exactly ns points.

e) Evaluate the probabilities of ; and Ps.

f) If the probability of P; is greater than Ps, then let
Poqual = P1; otherwise let Pegual = Po.

4) Let Pyman be the result of Algorithm 1 with input seed
Poqual and Hamming distance k& = 2.

5) Train a quadratic discriminant classifier by evaluating the
sample mean and sample covariance of clusters formed
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Fig. 6. Performance of clustering methods on large point sets drawn from
Model 2: (a) average empirical errors, (b) average processing time.

by Psman on the small point set. Let Plarge be the parti-
tion found by classifying all points in S with the above
quadratic discriminant, where the classifier threshold is se-
lected so that the cluster sizes match the known cluster
sizes.

6) Let Ppoisy be the result of Algorithm 1 with input seed
Plarge and Hamming distance & = 2.

7) Repeat 10 times and select a final partition, Pyeeq, having
highest probability among the Pp,q1ish -

The keys to this algorithm are in step (5), where we generalize
clusters on a small point set to the full point set, and in steps (4)
and (6), where we use Algorithm 1 to search for improved clus-
ters using equations based on the optimal clustering theory. We
also implement a modification of the above algorithm, which we
call Subopt. Pseed Faster, where in step (6) we apply a modi-
fication of Algorithm 1 in which, naming the clusters A and B,
one first selects the best single point to flip in cluster A based
on partition probabilities, selects the best point to flip in cluster
B, and iterates until there is no improvement.

To evaluate these algorithms, we draw 500 testing sets from
Model 2 using the following settings: n1 = ny, where 71 + ns
varies from 1000 to 10000, m; = (0,0), my = (1.5,1.5),
Uy =W, =0.51;,11 = 1,00 =2,k = 2,and ko = 3. Except
for sample sizes, these are the same settings from Simulation 3
in Fig. 3(c), where we observed a Bayes clustering error around
8% on point sets of size 20.

Fig. 6(a) shows the average empirical error with respect to
point set size for all classical clustering algorithms, as well as
Subopt. Pseed Fast and Subopt. Pseed Faster, described above.
Both algorithms based on equations for the optimal clusterer
significantly outperform all classical algorithms tested, and in
particular they maintain error rates around 5—6% across all point
set sizes, which is in fact slightly better than the optimal clus-
terer on 20 points. The optimal error may actually decrease with
point set size since larger point sets carry more information, i.e.,
consider clustering a few points versus clustering when one es-
sentially knows the Gaussian mixture distribution that gener-
ated the points. Thus, these suboptimal algorithms appear to
suffer very little performance degradation relative to the op-
timal clusterer, even on very large point sets. The next best al-
gorithms in terms of accuracy are fuzzy c-means and k-means,
which achieve error rates around 17%, followed by hierarchical
clustering with complete linkage at around 30%, and hierar-
chical clustering with single linkage, which performs as poorly
as random clustering.
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Graphs of average processing time are provided in Fig. 6(b),
where the y axis is shown in log scale. A similar graph for
average memory usage is available in the companion website.
Subopt. Pseed Fast takes between 37 and 50 times longer than
either hierarchical method, and Subopt. Pseed Faster takes be-
tween 17 and 40 times longer. Memory requirements for our
methods are, in fact, less than hierarchical methods on very
large point sets. Relative to fuzzy c-means and k-means, Subopt.
Pseed Fast and Subopt. Pseed Faster do require substantially in-
creased processing time and memory, but the requirements are
not prohibitive. On a desktop PC clustering 10000 points with
Subopt. Pseed Fast typically took 106 seconds and 100 MB of
RAM, while Subopt. Pseed Faster typically took 50 seconds and
9 MB of RAM. In return, we achieve a 3 to 4 fold performance
improvement over the best existing methods in this example.
Furthermore, all processing time and memory results we have
presented may be somewhat pessimistic, as all classical methods
have been implemented using built-in MATLAB functions with
optimized code.

X. CONCLUSION

Bayes decision theory for clustering parallels classification
theory, but in the more difficult environment of random point
sets. We have shown that Bayes clustering is equivalent to a
Bayes risk model in which one considers all possible partitions
of a point set along with a cost function. This leads to a fun-
damental difficulty in optimal clustering in which one must
enumerate all possible partitions of a data set, something that is
prohibitive even for moderately sized point sets. Thus, we have
proposed approaches to reduce this computational complexity.
Going a step beyond clustering itself, we have addressed
methods to evaluate clustering error. Error estimation tends to
be more difficult than optimal clustering itself, in the sense that
error estimation requires examination of a much larger subset
of the highest probability partitions than it takes to simply
identify the best partition.

Given the results in this paper, two basic requirements for
developing a rigorous theory of clustering are now in place:
an appropriate probabilistic framework, including a measure of
error [4], and a Bayes decision theory for clustering within that
framework. Owing to the importance of clustering for science,
engineering, and medicine, research should now proceed to de-
velop arigorous clustering theory that addresses many questions
heretofore considered in classification theory and which allows
clustering to be used in a scientific context rather than subjec-
tively.

Two issues require immediate attention. First, in analogy
with classification, the Bayes clusterer requires a known model.
Since model uncertainty is commonplace in many situations, we
need to develop the theory of robust clustering, that is, finding
an optimal clusterer in the presence of model uncertainty.
Although the problem has been solved under fairly general
circumstances for nonrecursive filtering [24] and classification
[25], the solution for clustering will be quite different because
the signal in clustering is a random set and the objective is
set partitioning rather than predicting a signal. Beyond that,
owing to the difficulty in error estimation, as in the case of
small-sample classification [26], we need to develop a theory
of minimum-mean-square-error (MMSE) error estimation
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that provides an error estimate that is optimal relative to the
(uncertain) model and the data.
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