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The study of the residence time distribution is usually made in order to diagnose the hydrodynamic
behaviour of the equipment. This paper reports on the residence time distribution according to six
combinations of the open and closed boundary conditions, which are compared in order to determine an
appropriate equation to fit experimental data from the stimulus-response method. The residence time
distribution under laminar flow is analysed and the mathematical modelling of the pure convection
regime, zone of axial dispersion and intermediate case is discussed. The disturbances in the residence
time distribution produced by a non-ideal impulse and also by the dynamic behaviour of the sensor are
quantified and the errors in its evaluation are given.
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1. Introduction

The design of an electrochemical reactor requires knowledge of
its hydrodynamics, which can be studied by using the stimulus-
response method in order to determine the residence time
distribution, RTD, of the flow inside the equipment [1]. Thus, an
inert tracer is injected into the vessel inlet and its concentration in
the effluent stream is measured versus time. Several signals can be
used as a stimulus function, but the most common one is an
instantaneous impulse in concentration at the vessel inlet,
mathematically described as a Dirac delta function. The shape of
the response at the vessel outlet allows to determine irregularities
in the flow conditions and their correction by means of geometric
changes in the equipment [2]. The response function can be
processed in order to obtain characteristic parameters of the model
proposed to represent the hydrodynamic behaviour of the reactor.

The implementation of the stimulus-response method, data
acquisition, modelling, and ways to derive the model parameters
from the residence time distribution are properly summarized in
[3,4].

The effect of the injection time of the stimulus on the RTD is
scarcely treated in the literature. Richardson and Peacock [5]
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commented that the deviation of the stimulus from the ideal pulse
is irrelevant in the frequent practical cases. However, in reactors
operated at high volumetric flow rates or filled with turbulence
promoters the space time can be small increasing the importance
of the non-ideal behaviour of the stimulus on the response of the
system. Westerterp et al. [3] and Levenspiel et al. [6,7]
recommended that the injection time must be lower than the
reactor space time as a basic criterion for an ideal stimulus.
Likewise, Levenspiel and Smith [8] show that when a stimulus is
not well represented by an impulse function it is necessary to
measure the RTD at the inlet and at the reactor outlet subtracting
both variances. But, the measurement of the RTD at the inlet can
introduce high errors because the time constant of the sensor
could be in the same order of magnitude as the injection time of
the tracer, which demands that the response of the system must be
processed taking into account the dynamic behaviour of the sensor.

The aim of this paper is to compare different boundary conditions,
earlier-presented [8-12], in order to identify the best choice to fit
experimental data, including turbulent and laminar flow conditions.
Also, the influence of the dynamic response of sensors and the non-
ideal behaviour of the stimulus on the RTD are discussed.

2. Fundamental equations of the dispersion model

The temporal behaviour of an electrochemical reactor without
reaction according to the axial dispersion model is given by [13,14]
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(i) At the reactor inlet and T>0:for an open system
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Peclet number, t time, T space time, T

being c¢ concentration, Pe
dimensionless time, L electrode length, u mean superficial fluid
velocity, ¢ porosity, D; dispersion coefficient, y axial coordinate

along the electrode length and Y normalized axial coordinate.
However, the adoption of the initial and boundary conditions

represent a controversial subject. To solve Eq. (1) the following

initial condition is proposed

T=0 c(0,Y)=f(Y)

and for the boundary conditions some of the more common

proposals are:

(6

for a closed system with dispersion at the reactor inlet

2 Pe 0Y

1 oc(T,Y
1,0) 5 01— gm)

for a closed system without dispersion at the reactor inlet
(9)

c(T,0) = g(T)
(ii) At the reactor outlet and T>0:

for an open system
(10)

c(T,00) =0
and for a closed system
(11)

ac(T,Y)

Syl =0
The boundary condition given by Eq. (7) considers that only half
of the tracer enters into the reactor because in an open system it
can diffuse in both positive and negative directions due to the
initial concentration gradients [15]. Consequently, a portion of the
tracer diffuses on the contrary direction to the convection flow
giving that its mean residence time is lower than the space time of
the reactor. Likewise, Eq. (9) means that the dispersion is neglected
at the reactor inlet. Eq. (10) assumes that at a long distance from
the injection point the system is not disturbed retaining the initial
condition given by Eq. (6); whereas Eq. (11) neglects the dispersion

)

at the outlet.
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Fig. 1. Comparison of the response according to Eqs. (16),(18), (22), (23), (24) and (25) at different Peclet numbers.
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Fig. 2. Comparison of the residence time distributions of the ideal models,
continuous stirred tank electrochemical reactor and plug flow, with the axial
dispersion model, Eq. (16), for different values of the Peclet number.

For the study of the residence time distribution by the stimulus-
response method different functions f(Y) and g(T) were proposed,
being the impulse function the more frequently used according to

f(Y) = ad(Y —0) and g(T) =0 (12)
or
g(T) = a8(T — 0) and f(Y) =0 (13)

which will be used in the following. Here & is the Dirac delta
function and a is the total mass of tracer introduced in the system
given by

a= [ oT,1)dT (14)
/

The normalized outlet concentration, called E curve [1], is defined
as
o(T, 1)

(T, 1)dT

E(T) = (15)

oy

The solution of Eq. (1) with the boundary conditions given by Egs.
(8) and (11), called Danckwerts’boundary conditions, and Eq. (12)
was reported in [9] as

Aﬁcos(kn)(kﬁ4—Pe2/4)

E — 2ePe/2 § e—[(PeZ+4A,21)/(4Pe)]T
n=1(A2 + Pe2 /4 + Pe)(A2 — Pe2/4)
(16)
where A, are the positive roots in ascending order of the equation
AnPe
tg(Ag) = ——2°% 17
g( l’l) )\,ﬁ B Pe2/4 ( )

Furthermore, in [16,17] Eq. (1) was solved by assuming a negative
step in concentration as an initial condition. In [16] Eq. (16) was
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Fig. 4. Bodenstein number as a function of the aspect ratio (L/d.). Laminar flow
conditions. Dotted region: axial dispersion model. Dashed region: pure convection
model. Adapted from [19].

obtained taking the first derivative of the concentration at the
reactor outlet.

The numerical solution of Eq. (1), by means of an implicit finite
difference method, with the boundary conditions given by Egs. (9)
and (11) and considering Eq. (12) can be written in matrix form as
[10]

By 0 O
000 apPpyo 0 O

000 (y-a B

000 0 0][CT+AT0)
C(T + AT,Y)

C(T + AT, 1)

= | C(T,Y) (18)
(T, 1)

where

1 1
a:ATQAY+%AW> (19

Fig. 3. Different ways to introduce the tracer. (a) injection proportional to velocity. (b) planar injection ensuring a constant concentration of tracer in the cross-section of the
reactor. (c) the tracer is introduced mainly in the region of low velocities and in (d) it is only injected in the central zone.
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Fig. 5. Response in normalized concentration under stationary, fully developed, laminar flow from the numerical solution of Eq. (32). Each part corresponds to the way to
introduce the tracer according to Fig. 3 for different values of the Bodenstein number. Full lines in Parts (a) and (b) represent the pure convection model given by Egs. (35) and
(36), respectively. Thick short dashed line: RTD according to Eq. (37). Aspect ratios: g/W — 0 and L/g=100.
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The solution of Eq. (1) for an open-open system with boundary
conditions given by Eqs. (7) and (10) and Eq. (13) yields [8]

E— Pe o [Pe (1-1)?/41]
T

pe (22)

Zaisha and Jiayong [11] reported the solution of Eq. (1) as

E— Ee—[PEU—T)z/llT] —Eepeerfc 1+T /Pe
7T 2

5 T (23)
which is obtained when the boundary conditions of Eqgs. (8) and
(10) are taken into account together to Eq. (13).

Likewise, solving Eq. (1) for a semi-infinite dispersion system
with the boundary conditions of Egs. (9) and (10) and Eq. (13),
Gibilaro [12] has obtained

E— Pe o~ [Pe(1-T)/4T]
47T?

Solving Eq. (1) with the boundary conditions of Egs. (7) and (11)
an Eq. (12) it is obtained [10]

E_ ePe2 § AnCOS(An)
n=1 ()m + cos(kn)sin(kn))

(24)

e~ [(Pe>+413)/(aPe)|T

(25)

where A, is given by

t8(n) = 3 (26)
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Fig. 6. Response in normalized concentration under stationary, fully developed,
laminar flow from the numerical solution of Eq. (32). Each part compares the effect
of the way to introduce the tracer for a given value of the Bodenstein number. The
curves are in accordance to Fig. 3. (a): full line, (b): dashed line, (c): dotted line and
(d): dashed-dotted line. Aspect ratios: g/W — 0 and L/g=100.
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K2

Fig.7. Comparison of residence time distributions calculated by numerical solution
of Eq. (32) with the prediction according to the axial dispersion model with
Danckwerts’boundary conditions given by Eq. (16). Full line: Eq. (32) with tracer
injection (a), Bo=200. Dashed line: Eq. (32) with tracer injection (b), Bo=200.
Symbols: Eq. (16) with Pe=96.

Fig. 1 compares the temporal response of the normalized
concentration according to Egs. (16), (18), (22), (23), (24) and
(25). It is observed that for low values of the Peclet number the
equations show discrepancies. However, for Pe higher than
2 Eq.(23) coincides with Eq. (25) and all the calculation procedures
present the same performance when the Peclet number is higher
than 75. For Pe higher than 10, Eq. (24) agrees with the analytical
solution of Eq. (1) with Danckwerts’boundary conditions, Eq. (16),
which are frequently used for the calculation of electrochemical
reactors with the dispersion model.

3. Comparison of the axial dispersion model with more
simplified treatments

Applying the L’'Hospital’s rule for Pe — 0, the terms in the
summatory of order higher than one are zero and Eq. (16)
approaches

E(T)y=eT (27)

valid for a continuous stirred tank electrochemical reactor, CSTER.
Likewise, solving Eq. (1) for Pe — oo, with the initial and
boundary conditions given by Eqgs. (6) and (9), respectively, yields
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Fig. 8. Normalized transient response of the conductive cell, WTW model LTA 01,
for a step change in concentration. Inset: semilogarithmic plot of the normalized
transient response. Full lines: correlation of the experimental results according to
Eq. (40).

the temporal behaviour according to the plug flow model, PF, as

E(T) =8(T — 1)H(T - 1) (28)
where the Heaviside shifting function H is defined as

H(T - 1) =0forT < 1 (29)
H(T-1)=1forT > 1 (30)

Fig. 2. compares the temporal behaviour for different Peclet
numbers according to Eq. (16), where it can observed that the
predictions of Egs. (27) and (28) represent limiting behaviours of
Eq. (16). The above comparisons were based in the dispersion
model with Danckwerts’boundary conditions because it was
demonstrated that this model is appropriate to represent
experimental results of electrochemical reactors either with low
[18] or high [9] Peclet numbers.

4. Laminar flow conditions

In the case of reactors with short electrodes under laminar flow
conditions each element of fluid passes its neighbour with no
interaction by molecular diffusion. The residence time distribution
is caused by velocity variations [19], which is called the pure
convection regime, but it depends on the way to inject and to
detect the tracer. Fig. 3 outlines four ways to introduce the tracer.
In Part (a) the injection is proportional to velocity. Part (b)
represents a planar injection ensuring a constant concentration of
tracer in the cross-section of the reactor. Parts (c) and (d) show
special cases. In (c), the tracer is introduced mainly in the region of
low velocities and in (d) it is only injected in the central zone.

Fig. 4 reports, according to Levenspiel [19] for developed
laminar flow conditions, the Bodenstein number, defined as

_ Ped,
L

, as a function of the aspect ratio L/d., being d. the hydraulic
diameter. The Bodenstein number is used for the analysis and
comparison of different electrochemical reactors with unequal
length. In the dotted region is valid the axial dispersion model and
in the dashed zone the pure convection regime can be used. In the
intermediate region it is necessary to take into account the
influence of both the velocity profile and diffusion on the residence
time distribution [20]. The differential equation that describes
substance spreading in laminar unidirectional flow is [21]

Bo (31)

3+ 4
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Fig.9. Comparison of the residence time distribution considering the time constant
of the sensor. Full line: ts/t=0. Dashed line: t5/t=0.2. Pe=160. Dotted line:
correlation of the dashed line with the dispersion model, Eq. (16), giving Pe =67 as
fitting parameter.
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wdt = ul\ g T av?) " woy (32)

being D the diffusion coefficient, u, the velocity in the axial
direction and

Loc D (82(} 820> _uydc

P
X=7 (33)

Neglecting the second derivative in the X direction and assuming a
mean value for the fluid velocity along the electrode length,
Eq. (32) is simplified to Eq. (1), where the deviations from the ideal
behaviour are considered by means of the dispersion coefficient. To
solve numerically Eq. (32), the right hand side was discretized by
the method of finite volumes, giving a system of ny x ny ordinary
differential equations that were solved with an implicit Runge-
Kutta algorithm for stiff problems using a Matlab subroutine [10].
It was considered stationary, fully developed, laminar flow in a
rectangular channel according to [22]

uy = 12u(1 - 2di) (34)
e e

The aspect ratios were g/W—0 and L/g=100, being W the
electrode width and g the interelectrode gap. Fig. 5 reports on the
response of the calculated normalized concentration for the four
ways to inject the tracer depicted in Fig. 3 and in all cases for the
sampling of the tracer an average of concentration over the outlet
cross section was considered. For an electrochemical reactor with
infinitely wide parallel plate electrodes and fully developed
laminar flow, the outlet normalized concentration in the pure
convection regime is given by

E T)—OforT<zand E'(T 1 1—i 71/2for T>Z
(N = 3 ()737'2 3T =3

(35)

when the tracer is introduced according to Fig. 3 Part (a) and

-1/2
1<1 2) forTz%

o _ 2 o -
E*(T)=0 for T<5 and E"(T) = g( 1 - 35

(36)

for the injection way given in Part (b), being E(T) and E ' (T) the
theoretical normalized concentrations defined in [19]. The full
lines in Parts (a) and (b) of Fig. (5) show the behaviour according to
Eqgs. (35) and (36) [19], respectively, which corroborates that the
numerical solutions of Eq. (32) approaches the performance
predicted by the pure convection model for high values of the
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40

/t
S
Fig. 10. Contour plot of the error between the residence time distributions
considering the time constant of the sensor as a function of the Peclet number and
the ratio between the time constant of the sensor and the space time of the reactor.
Contour height numbers are the error values according to Eq. (43).

Bodenstein number. Likewise, Wérner [23] generalised the
residence time distributions for flow channels of different cross-
sectional shape and aspect ratios, which for a rectangular channel
is given by:

2 1 2\ 12 2
E(T)=0 for T <3 and E(T):B?<l—ﬁ> for T>3

(37)

In Parts (a) and (b) of Fig. 5, Eq. (37) is represented as thick short
dashed line showing the strong influence of the injection way on
the residence time distribution.

The results of Fig. 5 are replotted in Fig. 6 in order to compare
the effect of the way to inject the tracer in the reactor for different
values of the Bodenstein number. Figs. 5 and 6 show that in the
regions of intermediate regime and under pure convection the
temporal behaviour of the reactor is strongly dependent on the
way to introduce the tracer. Under laminar flow conditions, it is
necessary to pay attention to the design of the experiment and the
care used to conduct the tracer study.

Fig. 7 makes a comparison between the residence time
distribution according to the axial dispersion model with
Danckwerts’boundary conditions, Eq. (16), with the temporal
behaviour obtained by numerical solution of Eq. (32) when the
tracer is introduced in the ways (a) and (b) of Fig. 3. Fig. 7
corroborates that for Bodenstein numbers lower than 200 the axial
dispersion model is appropriate for calculating the residence time
distribution in the reactor, being also independent on the way to
introduce or to detect the tracer.

5. Consideration of the time constant of the sensor

For small reactors or high volumetric flow rates the space time
can be of the same order of magnitude of the time constant of the
sensor, which requires to modify the above equations in order to
obtain accurate values of the Peclet number.

Applying Laplace transformation to Eq. (1) with the initial and
boundary conditions given by Egs. (6), (8) and (11), respectively,
and Eq. (13) yields

4acePe/?
(0+ 1)26‘7Pe/2 — (o — 1)26*‘71’6/2

where s is the Laplace transform variable and

o= /T 7 4s/Pe (39)

Fig. 8 shows the dynamic behaviour of a platinum conductivity
cell formed by two parallel plate electrodes, WTW model LTA 01,
with a cell constant of 0.114 cm ™. To obtain Fig. 8, the conductivity
cell was suddenly immersed in an electrolytic solution and its
conductivity was measured as a function of time. This procedure
was repeated for NaOH and KCl solutions with different concen-
trations. The inset in Fig. 8 shows the data plotted in a
semilogarithmic scale, which are independent on the kind of
electrolyte solutions and on its concentration. The linearity of the
data in the inset suggests that the dynamic behaviour of the
conductivity cell, as concentration sensor, can be represented by a
first order system according to

des(t)
dt
being 7 the time constant of the sensor and cs its response in
concentration for a perturbation given by h(t). For the results
reported on Fig. 8, h(t) is a step perturbation in concentration. The
slope of the line in the inset of Fig. 8 gives t,=0.3 s and the full lines
represent the result of the correlation. Applying Laplace transfor-
mation to Eq. (40), combining with Eq. (38) and taking into account

c(s,1) = (38)

s +¢s(t) = h(t) (40)
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Table 1
Experimental conditions for the tracers.

Tracer Concentration Conductivity range’ Injected volume Volumetric flow rate
/ mScm™! | cm?® / dm®>min~!
NaOH 0.15-30 wt% 0.1-2.0 0.2-2.5 0.5-6
KCl 0.2 wt%-sat. 0.1-2.0 0.2-2.5 0.5-6
“ In the detection point.
x
" o Eideal impulse Eideal impulse d 43
i 15 w - | ,Ts=0 B 2] | (t/tmeaﬂ) ( )
1.0 ¥ 0

c () or h(?)

0.5

0.0 ......l"---u|....|....|..

Fig. 11. Non-ideal impulse for the different tracers. Symbols: experimental points.
Full line: smoothed values of the experimental results. Inset: concentration
measured by the conductivity meter, full line, and its correction by the constant
time of the sensor, dashed line.

Eq. (2), the residence time distribution for an ideal impulse results
in

4O-ePe/2

[(o 1 1)2eoPe/2 _ (g — 1)2efol’e/2] (Ts+1)

E(s) = (41)

The inversion of Eq. (41) from the complex s plane to the time plane
was made by a numerical Laplace transform inversion method
[24], using a Fourier series approximation with a Matlab
subroutine [25]. Fig. 9 shows as full line the residence time
distribution according to the dispersion model and in the dashed
line was taken into account the time constant of the sensor,
Eq. (41). In these calculations it was assumed Pe=160 and t,/
7=0.2, where it can be observed a strong influence of the sensor on
the measurement of the dynamic behaviour. The curves in Fig. 9
are referred to the mean residence time in the reactor, tmean,
defined as

o te(pdt

tmean - W (42)

instead of t, because the sensor shifts the distribution giving a
tmean Value higher than t and displacing the dashed line to the left
of the full line. Likewise, the dotted line in Fig. 9 was obtained by
correlation of the dashed line with the dispersion model, Eq. (16),
obtaining Pe=67 as fitting parameter. The high discrepancy
between the full and dotted lines points to the need to consider
the effect of the time constant of the sensor on the RTD for the
correlation of experimental results in order to obtain the Peclet
number. This effect is more pronounced as smaller is the space
time between the injection and detection points, as in the
measurement of the RTD at the reactor inlet. Fig. 10 displays a
contour plot of iso-error between the residence time distributions
with and without regard to the time constant of the sensor, as a
function of both the Peclet number and the ratio between the time
constant of the sensor and the space time of the reactor. The error
in the evaluation of the residence time distributions was calculated
as

Fig. 10 reveals that to obtain an error lower than 5 % the ratio
between 75 and T must be lower than 0.1, the exact value depends
on the Peclet number.

6. Injection time

For the experimental determination of residence time distri-
butions by means of the stimulus-response method an impulse
function is usually used as stimulus, which is frequently simulated
by manually injecting, with a syringe, of a small volume of a tracer
into the reactor inlet during a short time. The injection time of the
tracer in order to approximate the impulse function is a
controversial subject. The aim of the present section is to propose
a quantitative criterion regarding to the ideal behaviour of the
stimulus. Thus, a volume of tracer was injected and its concentra-
tion was measured, by conductimetry, close to the injection point.
Table 1 summarizes the range of experimental conditions of the
tracers and Fig. 11 shows the experimental RTD near the injection
point, where it can be observed that the experimental distributions
show the same shape independent of the kind and volume of tracer
and also of the volumetric flow rate. These experimental data were
corrected by the constant time of the sensor using Eq. (40). The
inset in Fig. 11 shows as full line a typical curve of the concentration
detected by the conductivity meter and as dashed line its
correction taking into account the time constant of the sensor, h
(t), where a strong influence of the dynamic of the sensor on the
response is observed due to the small distance between the
injection and detection points. Likewise, the full line in Fig. 11
corresponds to the smoothed values of the experimental results,
which were used in the model as stimulus at the reactor inlet,
function g(T), instead of the impulse function, Eq. (13). The
theoretical residence time distribution was calculated solving
numerically Eq. (1) with the initial and boundary conditions given
by Egs. (6), (8) and (11), respectively, and Eq. (13) by using the
implicit finite difference method, as it was previously outlined [9].
Fig. 12 compares typical curves of the residence time distributions
for the axial dispersion model using as stimulus the ideal impulse
function, represented as a thick full line, with the temporal
behaviour when is used a non-ideal stimulus according to Fig. 11.

It must be emphasized that when a non-ideal impulse is used as
stimulus the mean residence time of the tracer, tmean tracer, differs
from the space time because the tracer is not injected all together
into the reactor. Thus, in the abscissae of Fig. 12 t/tiean is again used
instead of 7. Each graph in Fig. 12 corresponds to a Peclet number
value and the curves at each graph depends on the parameter R,
defined as

Ri=— "

tmean. tracer

(44)

As expected when R; increases the response of the system
approaches the ideal stimulus. To compare the curves reported
in Fig. 12, it is convenient to define the error in the calculation of
the residence time distribution as
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Fig. 12. Comparison of the residence time distributions for an ideal and non-ideal
impulse stimulus for different values of Pe number. Thick full lines: ideal stimulus,
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Fig. 13 shows a contour plot of iso-error, y», between the
residence time distributions as a function of both the Peclet
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Fig. 13. Contour plot of the error between the residence time distributions for an
ideal and non-ideal impulse as a function of the Peclet number and the parameter
R.. Contour height numbers are the error values according to Eq. (45).

number and the parameter R,. In Fig. 13 it can be observed that
errors lower than 4.8% correspond to the region on the right hand
side of the dashed lines, which can be represented by the following
empirical equations:

R; > 24 — 0.16Pe for 10 < Pe < 100 (46)
and
R; > 38 — 2Pe for 0.1 <Pe <10 (47)

Fig. 13 allows to estimate the injection time for a given error, as
two times the value of tyean tracer OF alternatively the calculation
with the use of Egs. (46) or (47) yields errors lower than 4.8%.

7. Conclusions

The design of electrochemical reactors under turbulent flow
conditions is frequently performed by using the axial dispersion
model with Danckwerts’boundary conditions. In these cases and
for Pe higher than 10, the calculation of the Peclet number by
fitting of experimental data obtained with the use of the stimulus-
response method can be made with Eq. (24) instead of Eq. (16),
requiring less computation time.

Under laminar flow conditions it becomes necessary to identify
if the system is under pure convection regime, in the zone of axial
dispersion or in the intermediate case to use the appropriate
algorithm to fit the temporal behaviour of the reactor. Further-
more, in pure convection regime or in the intermediate one the
reproducibility of experiments is constrained by the uneven
distribution of the tracer injected with a syringe.

The calculation of reliable values of Peclet number from
experimental data requires knowing the dynamic behaviour of the
sensor, whose time constant must be lower than 10% of the reactor
space time to ensure an error in the measurement of the residence
time distribution lower than 5%.

The injection time of the tracer can be estimated by using Eqgs.
(46) or (47) to achieve a stimulus close to the ideal impulse giving a
minimal disturbance in the residence time distribution.

A mean residence time higher than the space time can be
attributed to the impulse is non-ideal or to the influence of the
dynamics of the sensor.
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