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Abstract The effects implied for the structure of compact objects by the modification
of General Relativity (GR) produced by the generalization of the Lagrangian density
to the form f (R) = R+αR2, where R is the Ricci curvature scalar, have been recently
explored. It seems likely that this squared-gravity may allow heavier Neutron Stars
(NSs) than GR. In addition, these objects can be useful to constrain free parameters
of modified-gravity theories. The differences between alternative gravity theories are
enhanced in the strong gravitational regime. In this regime, because of the complexity
of the field equations, perturbative methods become a good choice to treat the problem.
Following previous works in the field, we performed a numerical integration of the
structure equations that describe NSs in f (R)-gravity, recovering their mass-radius
relations, but focusing on particular features that arise from this approach in the profiles
of the NS interior. We show that these profiles run in correlation with the second-order
derivative of the analytic approximation to the Equation of State (EoS), which leads to
regions where the enclosed mass decreases with the radius in a counter-intuitive way.
We reproduce all computations with a simple polytropic EoS to separate zeroth-order
modified gravity effects.
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1 Introduction

Current cosmological observations interpreted in the standard cosmological model
require the presence of a non-standard matter content in order to explain the accel-
erated expansion of the Universe [1,17,18,21,23]. Along the last decade alternative
cosmological models have been developed to reinterpret these data without involving
any unknown, doubtful component of the energy-matter tensor (see, for instance, [4]).
The appearance of Extended Theories of Gravity (ETGs) was strongly stimulated by
the possibilities they might provide in this context [5,8,27].

ETGs are based on corrections and generalizations of Einstein’s General Relativity
(GR) theory. We focus on a particular class, called f (R)-gravity theories, which are
based on a modification of the Einstein-Hilbert action: the usual Lagrangian density
is generalized replacing the Ricci curvature scalar R by a function of it or high-order
invariants of the curvature tensor, such as R2, Rμν Rμν, Rμναβ Rμναβ, R�R, R�k R
(see [5] for a complete review).

Several of these models are successfully constructed to satisfy the current Solar
System and laboratory tests [15,16,19,28]. In particular, the simplest choice f (R)

= R + αR2, also called “R-squared” gravity, has been further studied as the basis for
a viable alternative cosmological model, that can lead to the accelerated expansion
of the Universe and is well consistent with the temperature anisotropies observed in
Cosmological Microwave Background [8]. But in contrast to gravity in the weak-
field regime, which has been subject to numerous experimental tests, gravity in the
strong-field regime is largely unconstrained by observations (e.g. [9]).

However, other authors, making a more detailed model of the structure of compact
stars, obtained a set of modified Tolman-Oppenheimer-Volkoff (TOV) equations that
describe a spherically symmetric mass distribution, under hydrostatic equilibrium,
in simple f (R)-gravity, and derived solutions that reproduce the correct behaviour
at the weak gravity limit (e.g. [3] in the context of scalar-tensor theories of gravity).
Furthermore, working with a perturbative approach to solve the field equations, [7] and
[25] have found mass-radius relations for compact stars using a polytropic Equation
of State (EoS). More recently [2] and [10] applied the same approach using a set
of realistic EoS for Neutron Stars (NSs) in the R-squared and Rμν Rμν gravities,
respectively.

The mass-radius relations obtained by [2] and [10] indicate that such f (R) models
can accommodate NSs up to masses larger than the currently observed ones, which
are at most Mmax = 1.97 ± 0.04M� for PSR J1614-2230 [? ]. The R-squared gravity
introduces a new parameter in the model through the value of α, the coefficient of R2.
The freedom in the choice of this parameter allows some EoS, which are excluded
within the framework of GR, to be reconciled with the observations. Motivated by
these results, we investigate in detail the structure of NSs under this model for two
different EoS. One of them is a polytropic approximation that we use here to sepa-
rate zeroth-order modified-gravitational effects, whereas the other provides a realistic
representation of nuclear matter at high densities.

The paper is organized as follows. In Sect. 2, we obtain the modified TOV equations
following the perturbative approach to solve the field equations. In Sect. 3, we present
the EoS used to integrate the equations and we briefly describe the numerical methods
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Structure of neutron stars in R-squared gravity 773

of resolution. In Sect. 4, we present our results for the mass-radius relations, focusing
on the behaviour of the profiles obtained for the NS interior. Final remarks are shown
in Sect. 5.

2 Structure equations in R-squared gravity

The equations that define the structure of a NS in GR are deduced proposing the static,
spherically symmetric line element, ds, to be

ds2 = −e2Φ(r)c2dt2 + e2�(r)dr2 + r2(dθ2 + sin2 θdϕ2). (1)

Then, considering the Einstein equations for an ideal energy-momentum tensor
T μ

ν = diag{−ρc2, p, p, p}, these equations, so-called TOV because of the pioneer
work of [29] and [20], can be expressed as:

dm(r)

dr
= 4πr2ρ(r) (2)

d p(r)

dr
= c2ρ(r) + p(r)

2Gm(r) − c2r
G

(
4π

c2 r2 p(r) + m(r)

r

)
(3)

e−2�(r) = 1 − 2Gm(r)

c2r
(4)

d�(r)

dr
= − 1

(c2ρ(r) + p(r))

d p(r)

dr
, (5)

where m(r) is the total relativistic mass enclosed in a sphere of radius r . The functions
ρ(r) and p(r) are, respectively, the mass-energy density and the pressure at this radius.
We explicitly keep the gravitational constant, G, and the velocity of light, c, since the
quantities are considered with their full-dimensions for integration purposes. Giving
an explicit relation between ρ and p, the so-called EoS, the TOV equations can be
solved assuming a value for the central density, ρ(r = 0) = ρc, and integrating the
system until the pressure vanishes, p(r = R�) = 0. Here R� is the radius of the star
and M� = m(R�) the stellar mass. Every ρc generates a couple of values M� and R�.
Then, varying the parameter ρc, a mass-radius (M� − R�) relation is defined for every
EoS.

The modified TOV equations can be obtained from the gravitational field equations.
Adding the new term to the Hilbert–Einstein action, we have:

S = c4

16πG

∫
d4x

√−g(R + αR2) + Smatter, (6)

where g is the determinant of the metric gμν .
Working in the metric formalism, the variation of the action with respect to the

metric yields fourth-order differential equations of gμν . This poses an enormous obsta-
cle to solve the problem thoroughly. For this reason, we adopt the perturbative approach
presented by [7] and [2]. Rewriting f (R) = R + αR2 = R(1 + β), we consider
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774 M. Orellana et al.

the f (R) function as a perturbation of a GR background. Hence, the dimensionless
quantity β ≡ αR comprises the deviation from GR and the perturbative method can
be applied as long as |β| � 1. Under this condition, we can work with equations of
motion up to first order in β without imposing any constrain at the level of the action
and ensuring the nature of the variational principle [6]. Neglecting terms with O(β2)

or higher, the field equations reduce, for this particular choice of f (R), to

Gμν + α

[
2R

(
Rμν − 1

4
Rgμν

)
+ 2

(
gμν�R − ∇μ∇ν R

) ]
= 8πG

c4 Tμν, (7)

where Gμν = Rμν − 1
2 Rgμν is the Einstein tensor. In the limit α −→ 0, β −→ 0,

and the field equations of GR are recovered (see e.g. [5]).
We also assume a static and spherically symmetric line element, given by Eq. (1).

The perturbative approach allows to expand the functions present in the metric into a
leading term (unperturbed), denoted with subscript 0, plus a corrective one, denoted
with subscript 1, that is of first order in β: � = �0 + β�1 and Φ = Φ0 + βΦ1.
The hydrodynamic quantities are also defined perturbatively: ρ = ρ0 + βρ1 and
p = p0 + βp1 [2]. Hence, new restrictions are imposed over the value of β by the
constraints βΦ1 � Φ0, β�1 � �0, βρ1 � ρ0, and βp1 � p0. From now on, we
use the prime for radial derivatives.

Following [6] and [2], we define the mass assuming that the solution for the metric
has the same form as the exterior Schwarzschlid solution in GR, i.e.

e−2�(r) = 1 − 2G M∗
c2r

, for r > R�. (8)

For the interior solution,

e−2�(r) = 1 − 2Gm(r)

c2r
, for r < R�, (9)

where m also admits a perturbative expansion m = m0+βm1, with m0 the zeroth-order
mass that is obtained integrating (2).

With this considerations, and taking into account that ρ0 and p0 satisfy Einstein’s
equations, the derived modified TOV equations are:

dm

dr
= 4πr2ρ − 2β

⎡
⎢⎢⎢⎣

A/2︷ ︸︸ ︷
4πr2ρ0 − c2

8G
r2 R0 +

+
(

2πρ0r3 − c2

G
r + 3

2
m0

)
R′

0

R0︸ ︷︷ ︸
B/2

− r

(
c2

2G
r − m0

)
R′′

0

R0︸ ︷︷ ︸
−C/2

⎤
⎥⎥⎥⎦ . (10)
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d p

dr
= c2ρ + p

2Gm − c2r
G

{ (
4π

c2 r2 p + m

r

)
− 2β

[
4π

c2 r2 p0 +

+ c2

8G
r2 R0 +

(
2π

c2 p0r3 + c2

G
r − 3

2
m0

)
R′

0

R0

]}
. (11)

Note that 2β
[
...

]
indicate the first order correction in β into the gradients dm/dr and

d p/dr , respectively. In order to work up to first order in β, terms between the brackets
have been evaluated at order zero. It is important to note that d p/dr does not depend
on R′′

0 . Mass-derivative terms are indicated, giving: dm/dr = 4πr2ρ−β
[
A+ B +C

]
.

We study each term contribution below.
Exact Eqs. (10) and (11) are impractical because β involves other derivatives

through R, which makes β r -dependent in a complicated way.1 Thus, we integrate
Eqs. (10) and (11) assuming that β is well approximated by β 
 β̂ ≡ αR0, where R0
is the Ricci scalar locally calculated in GR and α is a constant parameter with squared
distance units, compatible with other authors approach (for instance [2]). Note that

R0 = 8Gπ

c4 (ρ0c2 − 3p0), (12)

and then, contrary to the GR case, the derivatives of the EoS, d p/dρ and d2 p/dρ2,
also enter into (10) and (11), through R′

0 and R′′
0 .

In f (R)-gravity the weight of the perturbation is adjusted by the value of the α

parameter. In our work, we restrict ourselves to the constraints reported by [24], and
references therein, which points to 108cm2 < α/3 < 1010cm2, based on astronomical
observations and nuclear experiments in terrestrial laboratories.

3 Equations of state and numerical methods

To solve the system of equations given by (10) and (11) is necessary to bring a relation
between the pressure p and the density ρ or the energy density ε, the so-called EoS.
The EoS contains the information of the behaviour of matter inside NSs through
several orders of magnitude in density. Because the properties of the matter at the
highest densities in the central region of NSs are not well understood, different EoS
are proposed and then constrained with observations of masses and radii of actual
NSs.

An analytical representation of the EoS is required for solving the structure of NSs
in modified theories of gravity, where hydrostatic equilibrium equations are of fourth-
order. In such cases the usual interpolation technique fails to accurately represent

1 The Ricci scalar in terms of the functions of the metric (1) is:

R =
2 e−2�

[
r2

{
Φ ′�′ + (Φ ′)2+ Φ ′′}+2r

(
Φ ′ − �′ ) − e2�+ 1

]
r2 .
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high-order derivatives [13]. Analytical representations of several EoS have been
obtained through a consistent procedure by [14], who calculated the best-fit coeffi-
cients of a polynomial expansion both in the crust and core density regimes. However,
it must be emphasized that these analytical EoS are approximations obtained by fitting
only the zeroth-order relation between ρ and p, because it is the relation needed to
calculate the structure of NSs in GR. Thus, special care should be taken if high-order
derivatives of these expressions are used during the calculation, as in the case we are
interested in here (i.e. d p/dρ and d2 p/dρ2).

Taking this into account, and in order to compare our results with those already
published in the literature, we calculate mass-radius (M� − R�) relations considering
two different EoS: SLY [12,14] and POLY [26].

The first one is a realistic EoS that properly represents the behaviour of nuclear
matter at high density. Its analytic parametrization is given by

ζ = a1 + a2ξ + a3ξ
3

1 + a4 ξ
f0(a5(ξ − a6)) + (a7 + a8ξ) f0(a9(a10 − ξ))

+(a11 + a12ξ) f0(a13(a14 − ξ)) + (a15 + a16ξ) f0(a17(a18 − ξ)),

(13)

where

ξ = log(ρ/g cm−3), ζ = log(P/dyn cm−2), (14)

f0(x) = 1

ex + 1
, (15)

and the coefficients ai are tabulated [14]. This is the same expression used by [2], and
we use it here to test our results. The second EoS is a simpler polytropic approximation
given by

ζ = 2ξ + 5.29355. (16)

Despite the latter is not a realistic EoS that thoroughly represents NSs, it is a toy
model that allows to study zeroth-order modified gravity effects, separating them from
more tricky effects arising in the case of a realistic EoS, with its complex analytical
expression and from which the error propagating to the derivatives is out of our control.
The precise value of the adiabatic index, � = d log p/d log ρ = dζ/dξ , is not relevant
as � remains a derivable function. The reader is referred to [22] for tighter constraints
on � that point to a somewhat larger value than the one adopted here.

3.1 Numerical method

Solving the system of ordinary differential equations formed by the Eqs. (10) and
(11) implies their integration from the centre to the NS surface, using the chosen
EoS. Once the solution is found, a couple of values for the mass, M�, and the radius,
R�, are established. In order to perform the integration, we use a numerical code based
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Structure of neutron stars in R-squared gravity 777

on a fourth-order Runge–Kutta method on the radial coordinate. For this coordinate we
implement a variable step which is systematically shortened close to the NS surface,
to account for rapid variations of the physical parameters in this region.

During the Runge–Kutta loop, we also solve the differential equations correspond-
ing to the metric components: gtt and grr , which are involved in the criteria for the
validity of the perturbative approach. In each step, we first integrate the TOV equa-
tions in the frame of GR to obtain zeroth-order values that then we use to calculate
the first-order perturbative solution.

We start the numerical integration from the centre with a given central density, ρc,
and we finish the integration at the surface, defining the NS radius, R�, and mass, M�,
when the density reaches ρ = 106 gr cm−3. This density corresponds to the outer
boundary of the NS crust and is the limit of validity for these kind of EoS, as they
were conceived beginning with a model for nuclear matter at high densities.

4 Results

In Fig. 1 we present the mass-radius (M� − R�) relations obtained for SLY and POLY
EoS (left and right panels, respectively), using seven values of the α parameter between
–0.2 and +0.2 km2 and considering central densities, ρc, ranging from 1014.6 to
1015.9 gr cm−3. Maximum masses achieved are indicated by crosses in each curve,
assuming a necessary condition for equilibrium: dM/dρc > 0. Our results for SLY
EoS are in accordance with those previously presented by [2]. Values of α < 0 km2

(α > 0 km2) can accommodate higher (lower) maximum masses than GR. In partic-
ular, POLY configurations are less sensitive to the value of α than those from SLY
EoS.

In Fig. 2 we present the internal profiles found for the density, ρ(r), and mass,
m(r), for our α extreme values and the GR case. The density and the pressure follow

Fig. 1 Mass-radius (M� − R�) relations for the two selected EoS: SLY and POLY (left and right, respec-
tively), considering seven values for the α parameter, which are indicated above in km2 units. All the curves
correspond to values of central density, ρc , in the range 1014.6–1015.9 gr cm−3. The crosses indicate the
maximum mass for each curve, assuming a necessary condition for equilibrium: dM/dρc > 0
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778 M. Orellana et al.

rather usual (resembling GR) profiles, where both magnitudes monotonously decrease
with radius. However, particular effects of f (R) are reflected in the mass profiles for
the realistic SLY EoS, and become more pronounced for the high-mass NSs (ρc =
1015.4 gr cm−3).

These effects are evident close to the NS surface (at r ∼ 10 km) where, in a narrow
layer (�r ∼ 0.2 km), an unexpected (counter-intuitive) decrease in m(r) appears
before (α > 0 km2) or after (α < 0 km2) a dip (peak) in the profile. In Fig. 3 we
present a zoom of the mass and density profiles (left and right panels, respectively)
close to the NS surface, obtained using the SLY EoS for log ρc [gr cm−3] = 15.4 and
14.6. Besides the modification of M∗ is higher for high central density stars, the relative
change in the total mass with respect to the GR case is roughly 10 % in both high/low
central density cases.

In the frame of GR, a decreasing mass profile could only be accomplished by
a fluid of negative density, because dm/dr = 4πr2ρ(r). However, in f (R)-gravity

Fig. 2 Profiles of the internal structure of NSs for two extreme cases of low and high central densities,
ρc = 1014.6 and 1015.4 gr cm−3, and for three different values of the α parameter (+ 0.2, 0.0 and −0.2 km2),
where α = 0.0 corresponds to GR case. On the left (right) panel profiles corresponding to the SLY (POLY)
EoS are shown. A zoom-in of the mass profile close to the NS surface is shown in Fig. 3. At low central
density values the effect on the integrated mass can still represent a deviation as much as ≤ 10% from the
GR mass

Fig. 3 Zoom-in of the the mass and density profiles close of the surface of the NS for the SLY EoS shown
in Fig. 2, for ρc = 1015.4 and 1014.6 gr cm−3. For the value of the α parameter −0.2 km2 (+ 0.2 km2)
the mass increases (decreases) roughly 10 % respect to de GR case (α = 0), for both low and high central
densities
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these profiles can be explained as a consequence of the modified geometry. In contrast,
no such features are present in the profiles obtained with the POLY EoS for all the
values considered for the parameters.

In Fig. 4 we present the profile of the ratio g0
rr/grr with the density through all

the NS interior for the SLY EoS, considering the same densities of Fig. 2. We recall
that this ratio should be close to 1.0 as a necessary condition for the validity of the
pertubative method. On the upper panel of this figure we also plot the first and second
logarithmic derivatives of the SLY EoS. From the comparison of the trend, a strong
coupling of the perturbative deviations of grr with the second-order derivative of the
EoS is evident. The modification in the metric radial component is mild, and only
perceptible when the second-order derivative becomes important, strongly oscillating,
in the 1011 − 1014 gr cm−3 density range. Such behaviour is not present for the POLY
EoS, which logarithmic second derivative is null, maintaining g0

rr/grr 
 1 all through
the NS interior. It is important to note that the function �(r) in the time component of
the metric is actually reflecting the behaviour of the pressure, whereas �(r) is governed
by the mass, and it is the mass but not the pressure the one requiring evaluations of
R′′

0 , and thus depending on high-order derivatives of the EoS.
To further analyse the origin of the deviations from the GR we explore the contri-

bution to dm/dr of the four terms involved in Eq. (10), which we call: 4πr2ρ (GR)
and A, B, C (perturbative terms). In Fig. 5 we present each term contribution when
α = +0.2 km2 for SLY (upper-left panel) and POLY (upper-right panel) EoSs, in
the case of a high central density star (log ρc [gr cm−3] = 15.4). For the SLY EoS and
for values of radii r � 9.5 km, dm/dr is dominated by the GR term. Closer to the
NS surface, for r > 9.5 km, the term C ∝ R′′

0/R0 becomes dominant, causing the
fluctuation in the mass profile. On the contrary, for the POLY EoS, which derivatives
are strictly bounded smooth functions, this counter-intuitive effect is not present and
the trend of dm/dr is dominated by the GR term, with very small modifications due

Fig. 4 Top panel: Profile of the
of the first (dotted line) and
second (continuous line)
logarithmic derivatives of the
SLY EoS in the NS interior.
Middle and Bottom panels:
Profiles of the ratio between the
radial component of the metric
at order zero (GR), and at first
order (g0

rr /grr ) for α = +0.2
and −0.2 km2, which should be
close to 1.0 as a necessary
condition of the pertubative
method. The perturbative
deviations are closely related
with the behaviour of the
second-order derivative of the
EoS
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Fig. 5 Profile of the mass gradient, dm/dr (thick line), close to the surface of the NSs for SLY (left panel)
and POLY (right panel) EoSs. Deviations of the mass profile from the GR case are much more importance
for the realistic SLY EoS. Note that the dashed line indicates zeroth-order (GR) term and the continuous
with plus signs line indicates the contribution of the C ∝ R′′

0/R0 term. Lower panels zoomed-in to show
in detail the contribution of the minor perturbative terms, indicated in the legend

Fig. 6 Same as Fig. 5 for other three SLY cases: log ρc [gr cm−3]=15.4 (top left) and 14.6 (bottom left and
right). The bottom left and right plots compare the effects of changing the sign of α, which is indicated in km2

units. The same values, i.e. α=−0.2 (left) and +0.2 (Fig. 5, left panel) are shown for a large central density
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to the perturbative terms. In the lower panels of Fig. 5 we zoom-in the upper panels
to show the behaviour of the minor perturbative terms.

In Fig. 6 we extend this analysis to compare the behaviour of the mass derivative
in four SLY cases: log ρc [gr cm−3] = 15.4 and 14.6 for α = +0.2 and −0.2 km2.
For low central density stars, the effect of the second-order derivative (C term), is
relatively less important than in the high central density case. The fluctuations in this
term occur in the density range where the second order logarithmic derivatives of
the EoS become relevant, which in this case corresponds to a wider radial band 7–
10.5 km, as the density changes in smoother way than in the high central density case.
In the latter the density drastically decays in a narrow and superficial range from 9.7
to 10.2 km.

In all cases studied here, the other terms, namely A and B, which correspond to
∼ R0 and ∼ R′

0 contributions, respectively, are orders of magnitude lower.

5 Conclusions

With the aim to investigate whether f (R)-theories are viable to describe astrophysical
scenarios like NSs, we have studied the particular R-squared case using both simplified
and realistic EoS. We have followed the general steps presented by [7] and [2] using
a perturbative approach applied to solve the fourth order field equations. Concerning
the mass-radius (M� − R�) relations, we have obtained results consistent with former
studies, finding that for the highest absolute values admitted for the α parameter,
f (R)-theories can accommodate heavier NSs than GR for every EoS. In this sense, it
is important to remark that there is no agreement on the maximum mass achievable
by NSs before they collapse to black holes, based on the uncertainties present on the
behaviour of nuclear matter at the highest densities through their EoS. This problem
can not be split out from our lack of understanding of gravity [30].

Notwithstanding, our most notorious result concerns the details of the internal
structure of NSs considering the largest acceptable value for the α parameter (i.e.
the stronger perturbation allowed to GR by the actual constrains). We find that the
behaviour of the metric, which in R-squared gravity depends not only on the EoS,
but also on its higher-order derivatives, leads to a region where the mass enclosed
decreases with the radius.

Despite the fact that, in the frame of GR, this effect could only be explained by
means of a negative-density fluid, in f (R) theories, it arises as a natural consequence
of the coupled space-time geometry and matter content. Adopting a simple polytropic
EoS, with strictly bounded higher-order derivatives, no anomalous behaviours of the
internal profiles of the NS structure are observed, and the final effect of modified
gravity is reduced.

We emphasize that the uncertainties on the adopted EoS could have an enhanced
effect on the solutions. Therefore we add a word of caution, as it remains unclear
whether the spikes in the mass profiles arise as a consequence of the analytical rep-
resentation of the EoS, the perturbative approach or the geometry of squared-gravity.
In any case, our results raise new questions in the topic. Further research is needed to
disentangle these different possibilites.
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782 M. Orellana et al.

Finally, we suggest that a thorough study of the stability of the calculated structures
would be very important to ensure that these particular configurations can be real-
ized under R-squared gravity. Such a work, as well as the study of the astrophysical
implications, is beyond the scopes of this paper.
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