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ASR1 transcription factor and its role in metabolism

Pia Guadalupe Dominguez and Fernando Carrari*
Instituto de Biotecnolog�ıa; Instituto Nacional de Tecnolog�ıa Agropecuaria (IB-INTA); and Consejo Nacional de Investigaciones Cient�ıficas y T�ecnicas (CONICET);

Castelar, Argentina.

Asr1 (ABA, stress, ripening) is a plant
gene widely distributed in many spe-

cies which was discovered by differential
induction levels in tomato plants subjected
to drought stress conditions. ASR1 also
regulates the expression of a hexose trans-
porter in grape and is involved in sugar
and amino acid accumulation in some
species like maize and potato. The control
that ASR1 exerts on hexose transport is
interesting from a biotechnological per-
spective because both sugar partitioning
and content in specific organs affect the
yield and the quality of many agronomi-
cally important crops. ASR1 affect plant
metabolism by its dual activity as a tran-
scription factor and as a chaperone-like
protein. In this paper, we review possible
mechanisms by which ASR1 affects metab-
olism, the differences observed among tis-
sues and species, and the possible
physiological implications of its role in
metabolism.

Plant primary metabolism includes
those pathways that are essential for plant
growth and development, in opposition to
secondary metabolism that provides adap-
tive advantages.1 The importance of pri-
mary metabolism lies on the control of all
the basic processes in the life of plants:
photosynthesis, respiration, solute trans-
port, protein synthesis, etc. The primary
metabolic pathways are ubiquitous, unlike
the secondary ones which are specific to
certain species. Additionally, primary
metabolism regulation has significant con-
sequences for agronomically important
species through their effect on the physiol-
ogy of the plants. In this context, tran-
scription factors provide an attractive
solution to control complex traits,

although in certain cases undesired pleio-
tropic effects are manifested.2

Genes of the Asr (ABA, stress, ripening)
family were initially characterized by their
strong induction under stress conditions
and during tomato fruit ripening.3,4 Their
members harbor the ABA/WDS (abscisic
acid/water deficit stress) domain (Pfam
entry PF02496) as a common denomina-
tor. This protein family is widely distrib-
uted in the Plantae kingdom, both in
angiosperms and in gymnosperms, but
not in all species. Members of the ASR
family are present in Solanaceae, grape,
maize and conifers, but surprisingly the
model plant Arabidopsis thaliana lacks
structural homologs.5 The organization of
the family varies among the species: 5
paralogs have been described in tomato,6,7

9 in maize,8 3 in potato,9 6 in rice,10 4 in
banana11 and one in melon.12 In general,
the ASR proteins are small (molecular
mass of tomato ASR1 is 13 kDa) and,
specifically, tomato ASR1 is intrinsically
unstructured.13 Some authors propose
that ASR proteins belong to the LEA (late
embryogenesis abundant) protein group
because of their small size, their physico-
chemical properties and participation in
stress pathways.14

Functional Roles of Asr1

Functional analyses on this family have
been historically centered on the first
described member, Asr1. The Asr1 ortho-
logs have been extensively described as
functionally involved in stress responses.
In a wide variety of species, including
strawberry,15 tomato,3,16 grape,17 rice18

and lily,19 the expression of Asr1 can be
induced by ABA. In addition, Asr1 expres-
sion levels increase under different stress
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conditions in a wide range of species.
Among others, this increase occurs in
tobacco and tomato by osmotic and
drought stress;4,16,20-22 in rice by drought,
saline and osmotic stress;10,23,24,25 and in
plantain and banana by osmotic and biotic
stress.11,26,27 Only a few physiological stud-
ies with transgenic tomato,28 tobacco,22

maize,29 and rice18 plants have proved the
involvement of ASR1 in stress tolerance.

It has been proposed that the stress tol-
erance observed in plants over-expressing
ASR1 is conferred by at least 2 mecha-
nisms, which presumably operate simulta-
neously. On one hand, ASR1 acts as a
chaperone-like protein in the cytoplasm.
Indeed, in vitro assays showed that
tomato, plantain and lily ASR1 proteins
can prevent enzyme denaturation after
heating or freezing-thaw cycles.26,30,31 On
the other hand, ASR1 acts as a transcrip-
tion factor. This proposed dual function is
supported by ASR1 localization both in
the nucleus and in the cytosol,4,17,32,33 as
well as by its role as a DNA-binding pro-
tein.17,33-35 Moreover, ASR1 was recently
found to interact physically with regula-
tory regions of genes related to cell wall
synthesis and remodeling as well as with
channels implicated in water and solute
flux, such as aquaporins.36 These findings
support 2 physicochemical studies that
suggest that the tomato ASR1 acts as a
chaperone-like protein in the cytosol while
being unstructured and as a transcription
factor in the nucleus after acquiring its
quaternary structure.13,31

However, ASR1 is also expressed under
many other physiological conditions, such
as tomato and strawberry fruit ripen-
ing.3,4,15 This indicates that ASR1 may
have other functions beyond its role in
stress. More than a decade ago, Çakir
et al.17 proved that a grape ASR1 ortholog
called MSA recognizes specific sites in the
regulatory region of the hexose transporter
1 gene (Ht1 is described in Hayes et al.37

Vignault et al.38 and Fillion et al.).39 In
that study, it was also shown that Asr1
expression is regulated by ABA and sugar
in grape fruits. However, the physiological
relationship between ASR1 and hexose
content was first demonstrated in potato
Asr1 transgenic plants. These plants
showed altered glucose levels correlating
with the levels of a hexose transporter

mRNA in tubers.40 Later studies revealed
that Asr1-silenced tobacco plants showed
increased glucose levels and lower Ht1
mRNA levels in source leaves41 and that
the heterologous over-expression of plan-
tain ASR1 in Arabidopsis increased total
soluble sugar levels in leaves.26 In addi-
tion, Asr1 overexpression in maize plants
increased yield and reduced sugar and
amino acid levels; which suggests that
ASR1 also participates in plant growth
through the regulation of this kind of
metabolites.29

The Role of Asr1 in Sugar
Metabolism Differs Among

Species

ASR1 functional analyses through the
use of transgenic plants have shown that
the metabolic effects depend not only on
the species but also on the tissue under
study. ASR1 levels are inversely related to
glucose levels in tobacco and maize leaves
of Asr1 transgenic plants.29,41 Moreover,
Ht1 mRNA levels are reduced in the Asr1-
silenced tobacco leaves.41 HT1 is a plasma
membrane transporter with high affinity
for glucose, and is involved in the retrieval
of hexoses from the apoplast in the
phloem region of vascular bundles of
grape leaves, petioles and fruits.38,42,43

These findings suggest that ASR1 induces
the expression of Ht1 in tobacco leaves
and that in this way it regulates the glu-
cose uptake from the apoplast into the
phloem companion cells. However, sugar
levels of Asr1 transgenic potato plants
remained almost unaltered in leaves.40

Differences among species could be due to
variations in gene regulation. Indeed,
although the coding region of Asr1 is
highly conserved among the different spe-
cies of Solanum, their response to drought
stress is different; which suggests that their
regulatory regions and/or regulatory pro-
teins are not conserved.44 This could also
be true for the role of Asr1 in leaf metabo-
lism. In spite of the results reported for
potato leaves, Asr1-silenced potato tubers
showed increased glucose and fructose lev-
els as well as increased levels of Ht1
mRNA. Accordingly, over-expressing
potato lines showed reduced glucose and
fructose levels and reduced Ht2 (an Ht1

homolog) mRNA levels in tubers. These
results suggest that ASR1 suppresses the
expression of hexose transporters in
tubers, in opposition to the observed func-
tion of ASR1 in leaves. In other words,
ASR1 could have antagonistic effects on
source and sink tissues in sugar metabo-
lism. This duality in the effect of ASR1
could be caused by the interaction of
ASR1 with different factors that regulate
gene expression.

ASR1 is Involved in Sugar-
hormone Crosstalk and in

Sugar Signaling

As mentioned before, grape ASR regu-
lates a hexose transporter and its expres-
sion is controlled by ABA and sugar;17

which pinpoint this transcription factor to
be involved in sugar trafficking whose sig-
nals are sugar and ABA. This is particu-
larly interesting because the signaling
mechanisms of sugar-hormone interaction
are not completely known.45 Evidence of
the involvement of Asr1 in sugar-hormone
crosstalk has been also found in other spe-
cies. For instance, Joo et al.18 demon-
strated that Asr1 mRNA levels in rice
leaves increased significantly after sucrose
and ABA treatment, whereas Asr3 (an
Asr1 paralog) mRNA levels in roots
increased after sucrose, glucose and gib-
berellic acid treatment. The characteristics
of the cis-acting elements present in the
regulatory regions of OsAsr1 and OsAsr3
suggest that stress, sugar and hormones
are the key regulators of the expression of
these rice paralogs.18 In the same line,
P�erez-D�ıaz et al.46 found that OsAsr1,
OsAsr2 and OsAsr3 regulatory regions
have a motif of sugar repression, whereas
all rice ASR paralogs (Asr1 to Asr6) have
an element of sugar induction and gibber-
ellin repression in their regulatory regions.
These data suggest that other paralogs of
ASR1 could be involved in sugar-hor-
mone crosstalk as well. In some species
and under certain physiological condi-
tions, sugar-hormone cross-talk has been
described as being linked by 2 of the most
relevant proteins in sugar signaling, hexo-
kinase 1 and SnRK1 (Snf1-related
kinase).45,47,48 Moreover, Saumonneau
et al.49 have found evidence of the
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regulation of the expression of grape Asr1
by ABA, glucose, hexokinase1 and
SnRK1. In that study, a model was pro-
posed where MSA (grape ASR) expression
is inhibited by hexokinase 1 and stimu-
lated by ABA at high glucose levels,
whereas the inhibition by hexokinase 1 is
released at low glucose levels in grape pro-
toplasts. On the other hand, Asr1-silenced
tobacco plants not only showed high glu-
cose levels in leaves but also showed
altered ABA and gibberellin levels.41

These plants also had high hexokinase 1
and low SnRK1 mRNA levels. The high
glucose and hexokinase1 levels of these
plants suggest that ABA and gibberellin
catabolism is enhanced, although other
sugar signaling pathways might be
involved.

Asr1 is Involved in Amino Acid
Metabolism in Different Species

and Tissues

As mentioned previously, the altera-
tions in Asr1 expression lead to changes in
amino acid metabolism. In potato tubers,
for instance, both Asr1-overexpressing and
silenced plants showed reduced levels of
amino acids.40 Indeed, glutamine, phenyl-
alanine, threonine, proline and valine
were reduced in Asr1-silenced tubers,
whereas phenylalanine, GABA and threo-
nine were reduced in Asr1-overexpressing
lines. Furthermore, the main metabolic
changes observed in tomato fruits from
Asr1-overexpressing and silenced plants
correspond to amino acids (Dominguez
et al., unpublished data); which suggests
that the amino acid metabolism is directly
affected by ASR1 rather than being a sec-
ondary effect related to alterations in sugar
content. Similarly, leaves from Asr1-over-
expressing maize plants showed reductions
in amino acid levels including branched-
chain amino acids (BCAAs: isoleucine,
leucine, valine), aromatic amino acids
(phenylalanine, tryptophan) and the glu-
tamate family amino acids (asparagine,
glutamine, proline).29 Interestingly, in the
same study, the protein levels of some
enzymes belonging to different metabolic
pathways were altered in the maize leaves,
whereas their mRNA levels remained
unaltered. In agreement with these results,

the authors suggest that the mechanism of
action of ASR1 on certain enzymes is
through its chaperone-like activity. How-
ever, in the case of the BCAAs, the data
support the idea that ASR1 acts both as a
transcriptional regulator and as a chaper-
one-like protein. Actually, alterations in
BCAA content were accompanied by
alterations in the transcriptional levels of
BCAA biosynthetic genes and in the pro-
tein levels of other enzymes involved in
this pathway.

Metabolic Pathways Involved in
ASR1 Stress Responses

In spite of the clear participation of
Asr1 in the stress response, the metabolic
pathways that are involved remain
unclear. However, there is evidence sug-
gesting that ASR1 has a role in the antiox-
idant activity of the cell. For instance, the
overexpression of wheat ASR1 in tobacco
enhances the expression of ROS-related
(reactive oxygen species-related) and
stress-responsive genes under osmotic
stress.20 In addition, these transgenic lines
exhibit improved tolerance to oxidative
stress by activating the antioxidant system.
Moreover, rice ASR1 can scavenge
ROS,50 whereas soybean ASR1 buffers
metal ions and thus provides antioxidant
protection.51 Therefore, ASR1 is probably
involved in ROS depuration through sev-
eral different mechanisms. Regarding
other stress-related pathways, significant
reductions in proline contents have been
described in Asr1-overexpressing tobacco
leaves under salt stress.22 Also, as men-
tioned before, important alterations in
amino acid contents occurred in Asr1-
overexpressing maize leaves29 as well as in
Asr1-silenced and overexpressing potato
tubers.40 Many amino acids, including
proline and BCAAs, participate in the
response to several types of stresses.52

Although these metabolites usually accu-
mulate under stress conditions, their final
accumulation depends on the sort of stress
and the combination of different types of
stresses. However, the alteration in amino
acid contents suggests that ASR1 may also
participate in the metabolic response to
stress by regulating the amino acid con-
centrations. On the other hand, glucose is

associated to certain types of stresses (like
K deficiency and freezing tolerance) and
sucrose is usually increased under most
stress conditions.52 Although sucrose was
not altered in Asr1 transgenic tobacco and
potato plants,41,40 its level was reduced in
maize leaves;29 which suggests that its reg-
ulation might take part in the Asr1
response to stress in this species.

Conclusions and Perspectives

The role of Asr1 on metabolism is
increasingly being studied. Evidence
shows that Asr1 controls the expression of
a hexose transporter and glucose levels in
different species, although this control
seems to be exerted differently on source
and sink tissues. This is particularly inter-
esting from a biotechnological perspective
because sugar contents affect the quality
of many agronomically important crops.
Moreover, Asr1 expression is regulated by
sugars and hormones, and it can be pro-
posed that it represents a point of conver-
gence in the sugar-hormone crosstalk. On
the other hand, Asr1 controls amino acid
levels, which have a role in growth and
stress. Although metabolomics studies on
transgenic plants have broadened our
knowledge of the role of Asr1 in metabolic
pathways, there is still a need of a deeper
study on a higher number of species and
tissues.

As for Asr1 control of metabolism dur-
ing stress, some evidence indicates that it
has an effect on the amino acid metabo-
lism and reactive oxygen species depura-
tion. Nevertheless, broader physiological
studies on metabolism under stress condi-
tions are still lacking.

Altogether, it is tempting to speculate
that ASR1 mechanism of action on
metabolism is a combination of its activity
as a transcription factor and as a chaper-
one-like protein. However, further experi-
mental studies are needed to completely
elucidate the mechanisms.
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