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Abstract

We study a generalization of Morán’s sum sets, obtaining information

about the h-Hausdorff and h-packing measures of these sets and certain

of their subsets.
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1 Introduction

In [Mo 89] Morán introduced the notion of a sum set,

Ca =

{

∞
∑

i=1

εiai : εi = 0, 1

}

,

the set of all possible subsums of the series
∑

an where a = (an) is a sequence of
vectors in R

p with summable norms. The classical Cantor middle-third set is one
example with ai = 3−i2. Assuming a suitable separation condition, in [Mo 94]
Morán related the h-Hausdorff measure of Ca to the quantities Rn =

∑

i>n ‖ai‖.
In this paper, we generalize Morán’s sum set notion to permit a greater

diversity in the geometry. (See (1) for the definition of the generalization.)
For example, our generalization includes Cantor-like sets in R which have the
property that the Cantor intervals of a given level (but not necessarily the gaps)

1Partially supported by NSERC 44597
2Partially supported by NSERC
3Partially supported by CONICET

1

http://arxiv.org/abs/1503.08842v1


are all of the same length. Moreover, unlike Morán’s sets, our generalized sum
sets can have Hausdorff dimension greater than one.

We obtain the analogue of Morán’s results on h-Hausdorff measures for these
generalized sum sets and prove dual results for h-packing measures. We show
that for any of these sum sets there is a doubling dimension function h for which
the sum set has both finite and positive h-Hausdorff and h-packing measure. We
give formulas for the Hausdorff and packing dimensions, and show that given
any α less than the Hausdorff dimension (or β less than the packing dimension)
there is a sum subset that has Hausdorff dimension α (or packing dimension β).
In fact, there is even a sum subset with both Hausdorff dimension α and packing
dimension β provided α/β is dominated by the ratio of the Hausdorff dimension
to the packing dimension of the original set. Furthermore, if the Hausdorff
and/or packing measure is finite and positive (in the corresponding dimension),
then we can choose this sum subset to have finite and positive Hausdorff and/or
packing measure.

2 Preliminaries

Let sn > 0 with
∑

n sn < ∞. Fix N ∈ N and for each n ∈ N let the nth digit
set Dn = {0 = dn1 , d

n
2 , . . . , d

n
N} ⊂ R

p be given. We define Cs,D by

Cs,D = {
∞
∑

i=1

sibi : bi ∈ Di}, (1)

the set of all possible sums with choices drawn from Dn and scaled by sn.
Morán’s sum set is the special case when si = ||ai||, N = 2 andDi = {0, ai/||ai||}.
This generalized sum set is the main object of study in this paper.

For each n define

κn = max{‖dni − dnj ‖ : 0 ≤ i, j ≤ N, i 6= j}

and
τn = min{‖dni − dnj ‖ : 0 ≤ i, j ≤ N, i 6= j}.

In Morán’s case, κn = τn = 1. We assume that κ := supn κn < ∞, as well as
τ := inf τn > 0; the intent is that the sequence sn controls the decay rate, not
the (possibly varying) geometry of the digit sets Dn. In addition, we assume
the rapid decay condition

sup
n

κRn

τsn
= M < 1, (2)

where Rn =
∑

i>n si. This is the analogue of Morán’s separation condition.
The quantity Rn is very important for describing the geometry of Cs,D.

In certain situations where we have precise information about the geometry
ofDn, it is possible to assume something weaker than (2) and still have a suitable
separation property to allow for dimensions to be calculated; see Example 8.
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Example 1. 1. A very simple example is the classical Cantor set with sn =
2 · 3−n and D = {0, 1}.

2. Consider a finite set D ⊂ R
p, a real number r < d/(2D) (where d = min D̃,

D = max D̃ and D̃ = {‖d − d′‖ : d, d′ ∈ D, d 6= d′}), a matrix O ∈ R
p×p

orthogonal and the contractions Sd(x) = rO(x + d). The attractor of this
IFS is Cs,D with sn = rn and Dn = OnD.

We now examine some basic properties of Cs,D. First we argue that Cs,D is
a compact and perfect set. To do this, let Ξ = {1, 2, . . . , N}N with the product
topology induced by the discrete topology on each factor. Further, for n ∈ N

let Ξn = {1, . . . , N}n. We note that Ξ is a totally disconnected, perfect metric
space. Define the function Φ : Ξ → R

p by

Φ(σ) =
∑

i

sid
i
σi
.

Then the range of Φ is Cs,D. Since Ξ is compact and perfect, we need only show
that Φ is continuous and injective to show that Cs,D is compact and perfect.
Let Φn : Ξ → R

p be defined by Φn(σ) =
∑

i≤n sid
i
σi
. Then Φn is constant on

each of the sets Ξα = {σ ∈ Ξ : σi = αi, 1 ≤ i ≤ n} for any fixed α ∈ Ξn.
This means that each Φn is continuous. Furthermore, ‖Φn(σ) − Φ(σ)‖ ≤ κRn

and thus Φn → Φ uniformly on Ξ and so Φ is also continuous. Thus Cs,D is
compact.

If n is the first place where σ and σ′ disagree,

‖Φ(σ)− Φ(σ′)‖ = ‖
∑

i

si(d
i
σ(i) − diσ′(i))‖

≥ ‖sn(dnσ(n) − dnσ′(n))‖ − ‖
∑

i>n

si(d
i
σ(i) − diσ′(i))‖

≥ snτ − κRn > 0. (3)

This means that Φ is injective and is thus a homeomorphism, so that Cs,D is
also totally disconnected and perfect.

For a given n ∈ N and σ ∈ Ξn, we define

xσ =
∑

i≤n

sid
i
σi

and
Cσ,n = xσ + {

∑

i>n

sibi : bi ∈ Di}.

Our condition (2) ensures the non-overlapping of the sets Cσ,n.
Using this notation, we see two very important facts. First, Cσ,n = xα −

xσ +Cα,n for any σ, α ∈ Ξn. That is, for a fixed n the collection of Cσ,n are all
translates of each other. Secondly, we can decompose Cs,D into Nn copies of
Cσ,n as

Cs,D =
⋃

σ∈Ξn

Cσ,n = {xσ : σ ∈ Ξn}+ C1,n,

3



where by 1 ∈ Ξn we mean the element all of whose terms equal to 1.
An elementary estimate gives that

|Cσ,n| ≤ ‖
∑

i>n

sibi −
∑

i>n

sib
′
i‖ ≤ κ

∑

i>n

si = κRn (4)

where |C| means the diameter of the set C.

3 Hausdorff and packing measures

We first recall some facts about Hausdorff and packing measures (see [Ro 98,
Ma 95]). For us, a dimension function is a continuous non-decreasing function
h : [0,∞) → [0,∞) with h(0) = 0. It is said to be doubling if there is some
constant c > 0 so that h(2x) ≤ c h(x) for all x > 0.

For two dimension function f, g we say that f ≺ g if

lim
t→0+

g(t)/f(t) = 0.

For each δ > 0, a δ-covering of a set E is a countable collection {Bi} of
subsets of Rp with diameters dominated by δ, that is |Bi| ≤ δ, and for which
E ⊆ ∪iBi. We define

Hh
δ (E) = inf{

∑

i

h(|Bi|) : {Bi} is a δ-covering of E}

and the Hausdorff h-measure as

Hh(E) = lim
δ→0

Hh
δ (E).

Notice that in the definition of Hh
δ it is sufficient to consider coverings by balls.

Now we turn to the h-packing measure Ph. A δ-packing of a set E is a
disjoint family of open balls {B(xi, ri)} with xi ∈ E and ri ≤ δ. The h-packing
pre-measure is given by

Ph
0 (E) = lim

δ→0
Ph
δ (E)

where
Ph
δ = sup{

∑

i

h(|Bi|) : {Bi} is a δ-packing of E}.

Unfortunately Ph
0 is not a measure as it is in general not countably additive.

Thus we need one more step to construct the packing measure Ph,

Ph(E) = inf{
∑

i

Ph
0 (Ei) : E ⊂

⋃

i

Ei}.

The next Theorem gives estimates for the Hausdorff and packing measures
of Cs,D. The first two claims about the Hausdorff measure of Cs,D are given in
[Mo 94] for the special case of Dn containing two digits.
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Theorem 2. Suppose that h is a doubling dimension function.

1. If lim inf Nnh(κRn) = α then Hh(Cs,D) ≤ α.

2. If lim inf Nnh(κRn) = α > 0 then Hh(Cs,D) > 0.

3. If lim supNnh(κRn) = α < ∞ then Ph(Cs,D) ≤ Nα.

4. If lim supNnh(κRn) = α > 0 then Ph(Cs,D) > 0.

Remark 3. If h is doubling and 0 < lim inf Nnh(Rn) < ∞, then 0 < Hh(Cs,D) <
∞ and so Cs,D is an h-Hausdorff set. Similarly, if lim supNnh(Rn) is positive
and finite, then Cs,D is an h-packing set. Finally, if lim inf Nnh(Rn) is pos-
itive and lim supNnh(Rn) is finite, then Cs,D is both an h-Hausdorff and an
h-packing set.

Proof. Item 1) is trivial by considering the coveringCI,n for all I ∈ {0, 1, . . . , N}n,
which consists of Nn sets all of diameter at most κRn.

To prove the rest of the statements, we will use the fact that there is a Borel
measure µ supported on Cs,D for which µ(Cσ,n) = N−n for each σ and n. This
measure is often called the natural probability measure.

2): Let β < α so that we have Nnh(κRn) > β for all large n. Now choose
x ∈ Cs,D and δ > 0 and let n be such that κRn < δ ≤ κRn−1. By a simple
modification of Lemma 2 in [Mo 89] there is a q ∈ N so that the number of Cσ,n

which intersect B(x, δ) is less than q (independent of B and δ). (This is where
the condition (2) is used.) But then we have

µ(B(x, δ)) ≤ qµ(Cσ,n) = q N−n <
q

β
h(κRn) <

qh(δ)

β
.

By the mass distribution principle (see [Fal 86]), we have Hh(Cs,D) ≥ α/q.

3) Let β > α so that we have Nnh(κRn) < β for all large n. Now choose
x ∈ Cs,D and δ > 0 and let n be such that κRn < δ ≤ κRn−1. We know
that x ∈ Cσ,n for some σ and, since |Cσ,n| ≤ κRn < δ, we have that Cσ,n ⊆
B(x, κRn) ⊆ B(x, δ). But then

µ(B(x, δ)) ≥ µ(Cσ,n) = N−n =
N−(n−1)

N
>

h(κRn−1)

Nβ
≥ h(δ)

Nβ
,

since h is a nondecreasing function. But then we have that

lim inf µ(B(x, δ))/h(δ) ≥ (Nα)−1

and so Ph(Cs,D) ≤ Nα by Theorem 3.16 in [C 95].

4) Let 0 < β < α. Then there are nj so that Nnjh(κRnj
) > β for all j. Let

x ∈ Cs,D be given. For any j we have x ∈ Cσj ,nj
for some σj . By the same

simple modification of Lemma 2 in [Mo 89], there is a q ∈ N so that for any
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δ > 0 and any ball B of radius δ, if m ∈ N is the smallest value with κRm < δ
then the number of CI,m which intersect B is less than q (independent of B and
δ). Let δ = κRnj−1, so κRnj

< δ = κRnj−1. Then

µ(B(x, κRnj
)) ≤ µ(B(x, δ)) ≤ q µ(Cσj ,nj

) = q N−nj < q h(κRnj
)/β

and thus lim inf µ(B(x, δ))/h(δ) ≤ q/α. By Theorem 3.16 in [C 95], it follows
that Ph(Cs,D) ≥ cα/q, where c is the doubling constant for h.

Remark 4. Since κsn+1 < κRn ≤ Mτsn < κsn, for any doubling dimen-
sion function h, we could instead relate the two quantities, lim inf Nnh(sn) and
lim supNnh(sn), to the h-Hausdorff and h-packing measure of Cs,D.

Theorem 5. For any sequence sn and collections of digits Dn which satisfy
(2), there is a doubling dimension function h for which Cs,D is simultaneously
both an h-Hausdorff set and an h-packing set.

Proof. Following the pattern in [CMMS 04, Section 5], we define the function
h : [0, κR0] → R by h(0) = 0 and h(x) = 1/f−1(x) where f(x) is given by

f(x) = κRn +
κRn+1 − κRn

Nn+1 −Nn
(x−Nn), x ∈ [Nn, Nn+1).

Clearly h is non-decreasing and continuous, so we only need to show that h is
doubling. For x > 0, let n,m ∈ N be such that κRm+1 < x ≤ κRm < κRn ≤
2x < κRn−1. Then κRi ≤ τMsi ≤ κ τM

κ Ri−1 for all i. Letting θ = τM/κ < 1,

θn−m ≤ κRn

κRm
<

2x

x
= 2

and so we have m− n ≤ − ln(2)/ ln(θ). As f(N j) = κRj ,

h(2x)

h(x)
=

f−1(x)

f−1(2x)
≤ Nm+1

Nn−1
≤ N2−ln(2)/ ln(θ),

and so h is doubling.
Since Nnh(κRn) = 1 for all n, we have Cs,D is an h-Hausdorff set and an

h-packing set for this dimension function h, as desired.

The next theorem is a simple consequence of some known results. However,
it shows that the set of dimensional subsets of Cs,D is an initial segment in the
partially ordered set of all doubling dimension functions.

Theorem 6. Let f, h be doubling dimension functions and assume f ≺ h.

1. If 0 < Hh(Cs,D) < ∞, then for any t > 0 there is a compact and perfect
subset E ⊂ Cs,D so that Hf (E) = t.

2. If 0 < Ph(Cs,D) < ∞, then for any t > 0 there is a compact and perfect
subset E ⊂ Cs,D so that Pf(E) = t.

6



Proof. 1. From Theorem 40 in [Ro 98], we have that Hf (Cs,D) = ∞. Then by
Theorem 2 in [La 67] there is some closed subset E′ ⊂ Cs,D for which Hf (E′) =
t. As E′ is a closed subset of a perfect set, it is the union of a perfect set E and
a countable set, so Hf (E) = Hf (E′) = t and E is a perfect subset of Cs,D.

2. By the same argument as Theorem 40 in [Ro 98], but adapted to packing
measures, we have that Pf (Cs,D) = ∞. Now, if we obtain a closed subset
E′ ⊂ Cs,D for which Pf(E′) = t, then we find a perfect subset in a similar way
to the case 1 before. In [JP 95], Joyce and Preiss proved that if a set has infinite
h-packing measure (for any given h ∈ D), then the set contains a compact subset
with finite h-packing measure. With a simple modification of their proof, (in
particular their Lemma 6), we obtain a set of finite packing measure greater
than t. By Lyapunov’s convexity theorem, there is a subset whose h-packing
measure is exactly t [Ru 91, Theorem 5.5].

We now specialize to the “usual” dimension functions hs(x) = xs and let
dimH and dimP denote the “usual” Hausdorff and packing dimension. In anal-
ogy with the case of a “cut-out” Cantor subset of R (see [BT 54, CMMS 04,
GMS 07], we have the following Proposition.

Proposition 7. We have that

dimH(Cs,D) = lim inf
−n ln(N)

ln(sn)
and dimP (Cs,D) = lim sup

−n ln(N)

ln(sn)
.

Proof. First, we note that

lim inf
−n ln(N)

ln(κRn)
= lim inf

−n ln(N)

ln(Rn)
= lim inf

−n ln(N)

ln(sn)
,

with a similar equality for the limit superior.

If β > α := lim inf −n ln(N)
ln(κRn)

, then there is a subsequence (nj) so that

Nnj (κRnj
)β < 1. Thus lim inf Nn(κRn)

β < 1 and so dimH(Cs,D) ≤ α by
Theorem 2.

Conversely, if γ < α, then for large n we have Nn(Rn)
γ > 1 and thus

lim inf Nn(Rn)
γ > 1 and so dimH(Cs,D) ≥ α by Theorem 2.

The proof for packing dimension is similar.

Example 8. For any α ∈ [0, p), it is possible to construct a sum set, Cs,D ⊂ R
p,

with dimH(Cs,D) = α. The simplest way of doing this is to choose Dn =
{(ǫ1, ǫ2, . . . , ǫp) : ǫi ∈ {0, 1}}, the set of all corners of a p-dimensional unit
cube, and set sn = λn where λ = 2−p/α. This will generate a self-similar set,
Cs,D, that is a product of classical Cantor sets. The problem is that condition (2)
requires that λ < 1/(1 +

√
p), which does not allow the full range of dimensions

(and, in fact, gets worse as p increases). However, from the simple geometry
of this example, we can see that the sets Cσ,n are non-overlapping provided
sn > Rn. Under this (weaker) assumption, Cs,D is a self-similar set satisfying
the open set condition and hence its dimensions are as stated in the previous
proposition. This separation condition allows for any λ ∈ [0, 1/2).

7



In the case of the “usual” dimension functions hs, Theorem 6 has a stronger
form in that not only is there a Cantor subset with the correct dimension but
this subset corresponds to all the subsums of a subsequence of (sn).

Theorem 9. Suppose that dimH(Cs,D) = A and dimP (Cs,D) = B. Then for
any 0 ≤ α ≤ A and 0 ≤ β ≤ B, with α/A ≤ β/B, there is a subsequence (tn) of
(sn) such that dimH(Ct,D) = α and dimP (Ct,D) = β.

Proof. We will assume 0 < α < A, 0 < β < B and leave the details of the
endpoint cases for the reader. Choose ni and mi to be disjoint sequences of
indices such that

lim
i

−ni ln(N)

ln(sni
)

= A and lim
i

−mi ln(N)

ln(smi
)

= B.

If necessary, we take subsequences in order to assure that n1 ≥ 100, mi ≥ 2ni ,
and ni+1 ≥ 2mi . To obtain the new sequence tk, we remove terms from sn in
segments, each in a “uniform” manner with some density ξ ∈ (0, 1). To explain,
suppose the segment is the set of indices {q, q+1, . . . , ℓ} ⊂ N. Then to uniformly
remove terms with density ξ from this segment, we remove all the terms of the
form q + ⌊i/ξ⌋ for i = 0, . . . , ⌊ξ(ℓ− q)− 1⌋ (to make sure we do not remove ℓ).
Note that removing with density ξ is the same as retaining with density 1− ξ.

From the set of indices {1, 2, . . . , n1}, we remove terms in a “uniform” way
with density 1 − α

A . Then from the set of indices {n1 + 1, . . . ,m1} we remove

terms in a “uniform” way with density 1− β
B . We continue alternating, removing

terms with density 1− α
A from {mi + 1, . . . , ni+1} and with density 1− β

B from
{ni + 1, . . . ,mi}. Call the resulting sequence tℓ where we have tℓ = sn, with
ℓ = nΘ(n) where Θ : N → [α/A, β/B] is a measure of the “local scaling” of
the index. From the construction we have Θ(nj) ≈ α/A, Θ(mj) ≈ β/B, Θ is
increasing on {ni + 1, . . . ,mi} and decreasing on {mi + 1, . . . , ni+1}. Further,

−ℓ ln(N)

ln(tℓ)
= θ(n)

−n ln(N)

ln(sn)
.

From here it is straightforward to show that lim inf −ℓ ln(N)
ln(tℓ)

= α and also that

lim sup −ℓ ln(N)
ln(tℓ)

= β, as desired. The condition α/A ≤ β/B is used to check the

new liminf and limsup. Since the original sequence satisfies condition (2), it is
easy to see that any subsequence will as well.

Of course, this construction does not guarantee that Ct,D will satisfy 0 <
Hα(Ct,D) < ∞ even if it has the proper dimension. Comparing Theorem 6 with
Theorem 9, we trade the ability to specify the Ht-measure of the subset with
the ability to ensure that the subset is of a particularly nice form, in Theorem
9 being the full set of subsums of some subsequence. However, if we assume a
bit more on Ct,D we can obtain a substantially stronger result.

Theorem 10.

8



1. Suppose that 0 < HA(Cs,D) < ∞. Then for any 0 ≤ a ≤ A there is a
subsequence (tn) of (sn) such that 0 < Ha(Ct,D) < ∞.

2. Suppose that 0 < PB(Cs,D) < ∞. Then for any 0 ≤ b ≤ B there is a
subsequence (tn) of (sn) such that 0 < Pb(Ct,D) < ∞.

3. Suppose that 0 < HA(Cs,D) < ∞ and 0 < PB(Cs,D) < ∞. Then for any
0 ≤ a ≤ A and 0 ≤ b ≤ B with a/A ≤ b/B, there is a subsequence (tn) of
(sn) such that 0 < Ha(Ct,D) < ∞ and 0 < Pb(Ct,D) < ∞.

Proof. We prove the third statement as it is the most involved. The other two
are similar. As in Theorem 9 we work with sn rather than Rn.

Letmi, ni ∈ N be such that limNmjsBmj
= lim supNnsBn = S and limNnjsAnj

=

lim inf NnsAn = I. In addition, we assume that nj < mj < nj+1 < mj+1,
mj/nj → ∞, and nj+1/mj → ∞. The two cases a/A = b/B and a/A < b/B
require different techniques and so we do them separately.

Case 1: a/A = b/B
If a/A = 1, then there is nothing to prove. We define our subsequence (tn)

by defining the indexing function π : N → N such that tn = sπ(n). Define
π̂ : N → N by π̂(i) = ⌊(A/a)i⌋. If mj , nj ∈ π̂(N) for all j, then we let π = π̂.
Otherwise, suppose that mj /∈ π̂(N). Then i := ⌊mja/A⌋ < mja/A, so we define
π(i) = mj . We do the same procedure for any nj /∈ π̂(N). Since A/a > 1 we
know that π̂ is injective. If we assume that |nj−mk| > 2A/a for all j and k then
π is also guaranteed to be injective. Since [k, k +A/a+ 1] ∩ π̂(N) is nonempty
for any k, we know that −1 ≤ π(i)− (A/a)i ≤ A/a+ 1 or, more useful for us,

−1− a

A
+ π(i)

( a

A

)

≤ i ≤ a

A
+ π(i)

( a

A

)

.

This means that

N itai = N isaπ(i) ≥ N−1−a/ANπ(i)(a/A)s
(a/A)A
π(i) = N−1−a/A

(

Nπ(i)sAπ(i)

)a/A

≥ N−1−a/A(I − ǫ)a/A > 0,

for large enough i. Thus lim inf N itai > 0 and soHa(Ct,D) > 0. By construction,
there is a sequence qj ∈ N so that π(qj) = nj and so

N qj taqj ≤ Na/ANπ(qj)(a/A)s(a/A)A
nj

= Na/A
(

NnjsAnj

)a/A

≤ Na/A(I+ǫ)a/A < ∞.

Thus Ha(Ct,D) < ∞ as well. The proof that 0 < Pb(Ct,D) < ∞ is similar.

Case 2: a/A < b/B
Let

γ0 =
B
b − 1
A
a − 1

and then choose δ > 0 so that γ := γ0 + δ < 1. Define

n′
j =

⌊

nj

γ

⌋

and m′
j = ⌊γmj⌋

9



and notice that n′
j > nj and m′

j < mj. For notational ease, let

Pj = mj −
⌈

(1− b

B
)mj

⌉

, P ′
j = m′

j −
⌈

(1 − b

B
)m′

j

⌉

,

Qj = nj −
⌊

(1− a

A
)nj

⌋

, and Q′
j = n′

j −
⌊

(1− a

A
)n′

j

⌋

.

Further, let

dj =
P ′
j + ⌈(1− b

B )mj⌉ − (Q′
j + ⌊(1− a

A )nj⌋)
P ′
j −Q′

j

and

ej =
Qj+1 + ⌊(1− a

A )nj+1⌋ − (Pj + ⌈(1− b
B )mj⌉)

Qj+1 − Pj
.

Define π : N → N by

π(i) =



















i+ ⌊(1− a
A )nj⌋ if Qj ≤ i < Q′

j

i+ ⌈(1− b
B )mj⌉ if P ′

j < i ≤ Pj

Q′
j + ⌊(1− a

A )nj⌋+ ⌊kdj⌋ if i = Q′
j + k, k = 0, . . . , P ′

j −Q′
j

Pj + ⌈(1− b
B )mj⌉+ ⌈kej⌉ if i = Pj + k, k = 1, . . . , Qj+1 − Pj − 1.

We define ti = sπ(i). The choice of nj,mj , and γ ensure that Qj < Q′
j < P ′

j <
Pj < Qj+1. We also have π(Qj) = nj and π(Pj) = mj . It is straightforward
but quite tedious to check that π is injective and also that

B

b
≤ π(i)

i
≤ A

a
(5)

for all large i. We remark that the strict inequality a/A < b/B is necessary in
order to show (5) for the last two cases in the definition of π.

Thus for ǫ > 0 small and all large enough i, we have

N itai = N isaπ(i) ≥ Nπ(i)(a/A)s
(a/A)A
π(i) =

(

Nπ(i)sAπ(i)

)a/A

≥ (I − ǫ)a/A > 0,

and thus Ha(Ct,D) > 0. For i = Qj , we have π(i) = nj and Qj ≤ (a/A)nj + 1
and so

N itai = NQjsanj
≤ N (a/A)njsanj

N = N
(

NnjsAnj

)a/A

≤ N(I + ǫ)a/A < ∞

and so Ha(Ct,D) < ∞. The argument that 0 < Pb(Ct,D) < ∞ is similar.

Example 11. The simple Example 1 will show that in general we cannot find a
subsequence which will give a subset of arbitrary measure. Recall that it was sn =
2/3n and Dn = {0, 1} for all n. It is known that dimH Cs,D = d = ln(2)/ ln(3)
and Hd(Cs,D) = 1. The key observation is that if tn is a subsequence of sn
constructed by removing only K terms from sn, then Hd(Ct,D) = 2−K, since
Cs,D is the union of 2K disjoint copies of Ct,D (these copies correspond to the
possible subsums of the removed terms). But this means that it is impossible to
find a subsequence tn with Hd(Ct,D) = 1/3.
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