
Journal of Theoretical Biology 421 (2017) 28–38 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtbi 

Effects of rainfall on Culex mosquito population dynamics 

L.D. Valdez 

a , b , ∗, G.J. Sibona 

a , b , L.A. Diaz 

c , d , M.S. Contigiani d , C.A. Condat a , b 

a Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba 
b Instituto de Física Enrique Gaviola, CONICET, Ciudad Universitaria, 50 0 0 Córdoba, Argentina 
c Instituto de Investigaciones Biológicas y Tecnológicas–CONICET–Universidad Nacional de Córdoba, Córdoba, Argentina 
d Laboratorio de Arbovirus–Instituto de Virología “Dr. J. M. Vanella”–Facultad de Ciencias Médicas–Universidad Nacional de Córdoba, Córdoba, Argentina 

a r t i c l e i n f o 

Article history: 

Received 25 October 2016 

Revised 22 February 2017 

Accepted 25 March 2017 

Available online 27 March 2017 

Keywords: 

Culex 

Rainfall 

Arbovirus 

Mosquito abundance 

Mathematical modeling 

a b s t r a c t 

The dynamics of a mosquito population depends heavily on climatic variables such as temperature and 

precipitation. Since climate change models predict that global warming will impact on the frequency and 

intensity of rainfall, it is important to understand how these variables affect the mosquito populations. 

We present a model of the dynamics of a Culex quinquefasciatus mosquito population that incorporates 

the effect of rainfall and use it to study the influence of the number of rainy days and the mean monthly 

precipitation on the maximum yearly abundance of mosquitoes M max . Additionally, using a fracturing 

process, we investigate the influence of the variability in daily rainfall on M max . We find that, given a 

constant value of monthly precipitation, there is an optimum number of rainy days for which M max is a 

maximum. On the other hand, we show that increasing daily rainfall variability reduces the dependence 

of M max on the number of rainy days, leading also to a higher abundance of mosquitoes for the case of 

low mean monthly precipitation. Finally, we explore the effect of the rainfall in the months preceding the 

wettest season, and we obtain that a regimen with high precipitations throughout the year and a higher 

variability tends to advance slightly the time at which the peak mosquito abundance occurs, but could 

significantly change the total mosquito abundance in a year. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Mosquito-transmitted flaviviruses are an increasing health

threat. In particular, members of Culex species (Diptera: Culici-

dae) such as Cx. quinquefasciatus and Cx. interfor are responsible for

transmitting the West Nile and St. Louis encephalitis (SLEV) viruses

to humans and domestic animals ( Beltrán et al., 2015; Diaz et al.,

20 08; 2016; Gubler, 20 02; Gubler et al., 2007; Lumsden, 1958 ). For

instance, the SLEV is endemic in Argentina, where the principal

vector is postulated to be Cx. quinquefasciatus ( Diaz et al., 2013 ).

In the last decades, mosquito-borne diseases have emerged and

re-emerged as a result of multiple factors such as increasing ur-

banization, international travel, and climate change ( Harrigan et al.,

2014; Kilpatrick, 2011 ). The development of mathematical models

is essential to quantify the effect of each of these factors on the

dynamics of the mosquito population, and to determine the most

effective strategies to control the epidemic outbreaks transmitted

by mosquito vectors ( Anderson et al., 1992; Ewing et al., 2016; Lord

and Day, 2001a; 2001b; Marini et al., 2016 ). 
∗ Corresponding author. 

E-mail address: lvaldez@famaf.unc.edu.ar (L.D. Valdez). 
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Multiple studies have shown that the life cycle of the Cx.

uinquefasciatus is closely related to temperature ( Almirón and

rewer, 1996; Ciota et al., 2014; Gunay et al., 2011; Loetti et al.,

011; Strickman, 1988 ). Strickman (1988) demonstrated that its re-

roductive activity increases with temperature, and Almirón and

rewer (1996) showed that this species can only live in environ-

ents with a temperature above 10 °C. Other studies have found

hat temperature has a strong influence on the development and

urvival of both adult and immature mosquitoes ( Ciota et al., 2014;

unay et al., 2011; Loetti et al., 2011 ). In turn, it was observed that

x. quinquefasciatus does not enter diapause, but it may undergo

uiescence or remain gonoactive in protected (indoor or under-

round) habitats ( Almirón and Brewer, 1996; Nelms et al., 2013 ).

rbanization therefore helps quinquefasciatus populations survive

he mild winters of temperate regions. 

Similarly, rainfall is an important climatological variable to pre-

ict the abundance of Culex mosquitoes, since its copiousness and

istribution determine the production and size of mosquito breed-

ng sites. Reisen et al. (2008) studied the changes in the Cx. tarsalis

opulation in California and found that, in most regions, it is pos-

tively correlated with an increase in total precipitation. However,

hese authors also found that in some places of the driest region

f California, the correlation between these two variables was neg-

http://dx.doi.org/10.1016/j.jtbi.2017.03.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.03.024&domain=pdf
mailto:lvaldez@famaf.unc.edu.ar
http://dx.doi.org/10.1016/j.jtbi.2017.03.024
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tive. On the other hand, Olson et al. (1983) showed that a very

arge rainfall is not always accompanied by proportionately large

ncreases in the abundance of Cx. tritaeniorhynchus and Cx. gelidus .

n consequence, these results indicate that there exists a nonlinear

elationship between rainfall and Culex abundance, which should

e modeled in order to predict mosquito abundance. Additionally,

ince the climatological projections suggest that global warming

ill alter the frequency and intensity of rainfall, it is crucial to un-

erstand how different rainfall patterns will affect mosquito popu-

ations. 

In this paper we develop a dynamic model of the Cx. quinque-

asciatus population, adapting a fracturing procedure ( Finley and

ilkki, 2014 ) to describe the rainfall distribution. We use a system

f compartmental ordinary differential equations that describe the

mmature and adult mosquito populations, in which we introduce

he influence of temperature and rainfall on the reproduction rate.

o study the influence of different rainfall patterns, we use a syn-

hetic time series of rainfall based on the amount of rainfall per

onth and the monthly number of rainy days. We find that, for

 given constant value of monthly precipitation, there is an opti-

um number of rainy days for which the maximum M max in the

osquito population is highest. 

On the other hand, we also study the variability of daily rain-

all intensity through a fracturing process ( Finley and Kilkki, 2014 ),

hich allows us to study homogeneous and heterogeneous rain-

all regimes, including those characterized by heavy rain events.

e show that increasing daily rainfall variability reduces the de-

endence of M max on the number of rainy days, leading also to a

igher abundance of mosquitoes for the case of low mean monthly

recipitation. 

Finally, we explore the effect of different winter precipitation

egimes on the mosquito abundance in the summer season, obtain-

ng that a higher variability tends to advance slightly the peak time

f mosquito abundance. Interestingly, we predict that the accumu-

ated abundance of mosquitoes will decrease in a regime with high

ariability in the rainfall intensity. 

The boundary of the Cx. quinquefasciatus habitat in South Amer-

ca runs across central Argentina. This region is thus expected to

xhibit intense changes in mosquito populations due to the under-

oing climatic change; this is likely to have a strong impact on fla-

ivirus prevalence. For this reason, we use the climatic data for the

ity of Córdoba to calibrate our model in the period 20 08–20 09. 

The paper is organized as follows: in Section 2.1 we present

he model of the dynamics of mosquito population and in

ection 2.2 and 2.3 we explain the methods for generating two dif-

erent synthetic time series of rainfall. Then in Section 3 we show

ur results and finally we present our conclusions in Section 4 . 

. Methods 

.1. The model of mosquito abundance 

In this section, we construct a compartmental, ordinary differ-

ntial equation model for the mosquito abundance. We consider

hat the total vector population is stage-structured with an imma-

ure class consisting of all aquatic stages, and a mature or adult

lass . We assume that these population groups are restricted only

o female mosquitoes as the reproductive sex. 

In our model, the total birth rate, i.e . the total number of new

mmature female mosquitoes per unit of time, is proportional to

he number of adult mosquito females and to βL λ( t ) θ ( t ), where βL 

orresponds to the reproduction rate in optimal conditions of tem-

erature and water availability, and λ( t ) and θ ( t ) are normalized

actors describing the influence of rainfall and temperature on the

otal birth rate, respectively. In Section 2.1.1 we will explain how

e construct these factors. In addition, we assume that the total
irth rate is also regulated by a carrying capacity effect that de-

ends on the occupation of the available immature habitats. There-

ore we propose that the immature population growth is logistic-

ike with a carrying capacity K L . Additionally, immature individu-

ls either go to the mature class with rate m L or die at a rate

L . We stress that the ratio 1/ m L gives the average development

ime from immature mosquito to adult. Finally, adult mosquitoes

ie with a mortality rate μM 

. For simplicity, we assume that m L ,

L and μM 

do not depend on temperature or rainfall. With these

efinitions, we propose the following dynamic mass-balance equa-

ions for the abundance of immature mosquitoes, L ( t ), and adult

osquitoes, M ( t ), 

 (t + �t) = L (t) + �t 

[
βL θ (t) λ(t) M(t) 

(
1 − L (t) 

K L 

)

−m L L (t) − μL L (t) 
] 
, (1) 

nd 

(t + �t) = M(t) + �t [ m L L (t) − μM 

M(t) ] , (2) 

here �t is the time step size. Here we use �t = 0 . 1 [days].

q. (1) can be easily derived by assuming that the fraction of the

arrying capacity corresponding to female immature mosquitoes is

he same as the fraction of females in the immature population.

able 1 summarizes the different state variables and parameters

sed in this paper. 

.1.1. Effect of temperature and rainfall on the total birth rate 

We add the effect of the temperature through a tempera-

ure factor θ ( t ). Several studies have shown that Cx. quinque-

asciatus can breed only at temperatures above 10 °C ( Almirón

nd Brewer, 1996; Ribeiro et al., 2004 ) and that the number of

gg rafts collected per day is closely correlated with temperature

 Strickman, 1988 ). Therefore we propose that the factor θ (t) is a

iecewise linear function, 

(t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

T (t) − T A 
T B − T A 

if T A � T (t) � T B 

1 if T (t) > T B 
0 if T (t) < T A , 

(3) 

here T ( t ) is the average daily temperature and T A = 10 °C cor-

esponds to a minimum temperature below which the net birth

ate vanishes. The choice of the function θ ( t ) is not unique: for in-

tance, a power law may be used instead ( Ewing et al., 2016 ). Here

e assume that the positive effect of the temperature on the birth

ate saturates at T B , since it was observed by Oda et al. (1980) that

he number of egg raft per female does not significantly change

etween 21 °C and 30 °C. 

On the other hand, mosquito reproduction is also triggered by

ainfalls since these increase the number of breeding sites, such as

emporary ground pools. In order to introduce the effect of rainfall

n the mosquito birth rate, we compute the accumulated amount

f rainwater H , whose variation is given by the total daily rainfall

 ( t ) minus the evapotranspiration E ( t ) ( Gong et al., 2011 ), 

(t + 1) = H(t) + [ R (t) − E(t) ] . (4) 

he function H ( t ) is a convenient measure of the quantity of wa-

er available for breeding sites. It should represent the average

evel of puddles, ponds, drains, small streams, and underground

ources such as waste water channels in urban environments. As

e will explain below, Eq. (4) is applied on a daily time scale. The

erm of evapotranspiration is estimated using the Ivanov model

 Romanenko, 1961; Valipour, 2014 ) which is based on the mean

emperature and the relative humidity [ Hum ( t )], and it is given

y 

(t) = 6 . 10 

−5 (25 + T (t)) 2 (100 − Hum (t)) . (5) 
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Table 1 

The variables and parameters for Eqs. (1) –(9) . 

Quantity Definition Value Refs. 

L Number of immature female mosquitoes –

M Number of adult female mosquitoes –

βL Birth rate of immature female mosquito per female adult 

mosquito in optimal conditions of temperature and 

water availability (1/days −1 ) 

13.5 fitted (see Appendix A ) 

θ Effect of the temperature on the birth rate of mosquitoes –

λ Effect of the water availability on the birth rate of 

mosquitoes 

–

m L Rate at which immature mosquitoes develop into adults 

(1/days −1 ) 

0.098 Loetti et al. (2011) 

μL Immature mortality rate (1/days −1 ) 0.03 Loetti et al. (2011) 

μM Mosquito mortality rate (1/days −1 ) 0.078 David et al. (2012) 

K L Carrying capacity of the immature female population 16.2 fitted (see Appendix A ) 

H max Maximum daily amount of accumulated rainwater [mm] 9.86 fitted (see Appendix A ) 

H min Minimum daily amount of accumulated rainwater [mm] 0.067 fitted (see Appendix A ) 

H Accumulated amount of rainwater [mm] –

R Daily rainfall [mm] –

E Daily evapotranspiration [mm] –

T Average daily temperature [ °C] –

Hum Daily relative humidity –

P max Total rainfall in the wettest month [mm] –

P min Total rainfall in the driest month [mm] –

D max Total number of rainy days in the wettest month [days] –

D min Total number of rainy days in the driest month [days] –
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Note that the evapotranspiration E ( t ) is a monotonically increasing

function of temperature and a decreasing function of humidity. In

particular, E ( t ) vanishes for Hum = 100 %. In addition, we assume

that the level of accumulated water H varies only between a min-

imum ( H min ) and a maximum ( H max ) boundary level, i.e ., 

H ( t + 1 ) 

= 

⎧ ⎨ 

⎩ 

H min if H ( t ) + R ( t ) − E ( t ) ≤ H min 

H max if H ( t ) + R ( t ) − E ( t ) ≥ H max 

H ( t ) + R ( t ) − E ( t ) otherwise . 

(6)

Here, H min represents a minimum amount of water that is al-

ways available for mosquito breeding, for instance in permanent

streams or in the drainage system, while H max is a level of water

above which the breeding sites overflow ( Karl et al., 2014 ). 

Finally, the factor λ( t ) that takes into account the effect of rain-

fall on the birth rate (see Eq. (1) ), is the normalization of H ( t ): 

λ(t) = 

H(t) 

H max 
. (7)

Note that the minimum value of λ( t ) is H min / H max . 

Although we take the integration time step to be �t = 0 . 1 days,

the data of temperature, rainfall and humidity are available only

on a daily time scale. Therefore, for all the integration time steps

within a day “d ” (i.e. d ≤ t < d + 1 ), we set λ( t ) and θ ( t ) to have the

values computed through Eqs. (6) and (5) using the corresponding

meteorological data at day “d ”. 

2.2. Model of synthetic rainfall using the monthly number of rainy 

days and the monthly precipitation 

The amount of average rainfall P and the number of days D with

rain per month are two parameters commonly used to characterize

the long-term precipitation trend ( Madsen et al., 2009; Owusu and

Waylen, 2013; Zhai et al., 2005 ). In this section, we show how they

can be used to construct a synthetic rainfall time series. 

The average monthly rainfall is assumed to follow a sinusoidal

function, 

P (m ) = 

P max − P min 

2 

cos 

(
2 π

12 

(m − m 0 ) 
)

+ 

P max + P min 

2 

, (8)
here m = 1 , . . . , 12 represents the month (with m = 1 for January

nd m = 12 for December), m 0 corresponds to the month of max-

mum rainfall, P max is the total precipitation of the wettest month

 0 , and P min is the total precipitation of the driest month, corre-

ponding to m = m 0 + 6 . Note that for a higher value of either P max

r P min there is an increase in the annual amount of precipitation

ut, while a higher P max enhances the precipitation difference be-

ween the rainy and dry seasons, a higher P min reduces this differ-

nce. 

Similarly, we propose that the number of rainy days is given

y 

 (m ) = 

D max − D min 

2 

cos 

(
2 π

12 

(m − m 0 ) 
)

+ 

D max + D min 

2 

, (9)

here D max and D min correspond to the number of rainy days in

he months labeled by m 0 and m 0 + 6 , respectively. Choosing m 0 =
 , this distribution would be suitable for the city of Córdoba. In

ig. 1 (a) and (b) we show a schematic of the parameters used in

qs. (8) and (9) . 

From Eqs. (8) and (9) we construct the amount of daily rainfall

 ( t ) (see Eq. (4)) , placing the rainy days in each month at random

nd assuming that the amount of rain specified in Eq. (8) is equally

istributed over these days. Then we calculate the factor λ( t ) and

ntegrate Eqs. (1) and (2) . For simplicity we use in these equations

he values of humidity and temperature obtained from meteoro-

ogical data. 

It is important to note that, by construction, R ( t ) is a stochastic

ime series since the rainy days for each month are chosen at ran-

om; therefore our results for the effect of the synthetic series R ( t )

n the mosquito abundance must be averaged over a large num-

er (we take 10 4 ) of realizations. Using this model of time series of

ainfall, we measure the highest peak of mosquito abundance M max 

nd the time τmax at which this peak is reached (see Fig. 1 (c)). 

In the following section, we explain how to introduce variability

n the amount of daily rainfalls. 

.3. Model of synthetic rainfalls with variable daily intensity of 

recipitation 

In general, the daily rainfall intensity can range from driz-

les with less than 1 mm to torrential downpours exceeding
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Fig. 1. Schematic representation of Eq. (8) (panel (a)) and Eq. (9) (panel (b)), where 

P ( m ) is the monthly amount of rainfall and D ( m ) is the number of rainy days per 

month (blue circles). In these plots we also show the average monthly precipitation 

and number of rainy days in the city of Córdoba in the period 2001–2015 (black 

squares) ( Wunderground (2016) ). Panel (c) is a cartoon of M ( t ) indicating the maxi- 

mum abundance of mosquitoes M max and the time τ max (in day units) at which this 

peak is reached. Dotted lines are to guide the eye. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 2. Distribution of length segments P( ̃  � ) , using � = 150 mm (total length) and 

D = 10 (number of rainy days) for different values of α: 0.1 (black), 0.5 (red), and 

0.9 (blue). These distributions were obtained over 2.10 4 realizations. In the inset, 

we show P( ̃  � ) for α = 0 . 9 in log-log scale, and the dashed line corresponds to a 

power-law fit with an exponent 0.22. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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00 mm ( Lei et al., 2008; Li et al., 2013 ). Various distributions,

uch as Weibull ( Suhaila and Jemain, 2007 ), lognormal ( Cho et al.,

004 ) and generalized Pareto ( Deidda, 2010 ), have been proposed

o model the precipitation amount. While the above-mentioned

istributions could be used to generate a sequence of rainfalls

ith variable or heterogeneous intensity, the disadvantage of this

pproach is that the total monthly rainfall is also a stochastic

ariable. In order to isolate the effect of the heterogeneity of

he rainfalls, we will use a fracturing or fragmentation process

FT), which allows us to maintain the total monthly rainfall con-

tant. This method is related to a cascading procedure that was

sed by physicists to study the fragmentation of brittle mate-

ial ( Hernandez, 2003 ). Recently the FT process was also applied

o obtain empirical distributions with a finite tail ( Finley and

ilkki, 2014 ). From a geometrical point of view ( Borgos, 20 0 0; Fin-

ey and Kilkki, 2014 ), this process performs a sequential break-

ge of a segment or interval of length � to obtain D subintervals

ith variable length 

˜ � , which can be used to decompose the total

onthly rainfall into daily rainfalls with heterogeneous intensity.

n this representation, � and 

˜ � stand for the total amount of rain-

all in a month and in a day, respectively. In Appendix B we explain

he steps of the FT process in detail. 

This method depends on a parameter α ∈ [0, 1] which controls

he heterogeneity of the segment length. In particular: 

• α = 0 corresponds to the case where an interval is split into

two subintervals of equal length 

˜ � = �/ 2 , 
• α = 1 corresponds to the special case where two ”intervals” are

generated, one of length zero and the other of length 

˜ � = � . 

In Fig. 2 we show how α controls the shape of the fragment

ength distribution P( ̃  � ) , using � = 150 mm and D = 10 . Note that

he resulting length of each subinterval corresponds to the inten-

ity of rainfall in one day. 

For small values of α the distribution is concentrated around

he mean value close to � / D , while for intermediate values of α,

he distribution of lengths has a longer tail. Finally, for high values

f α, P( ̃  � ) has a peak near � which depicts a regime where most

f the corresponding month total rainfall is confined to one day.

nterestingly, we also note that in this case the rainfall distribution

as a region in which it decays as a power law. 
In order to model the temporal variation of precipitation R ( t )

see Section 2.1.1 ), we apply a fracturing process (FT) for each

onth, partitioning an interval whose length is the amount of

onthly precipitation given by Eq. (8) and where the number of

ubintervals (the number of rainy days) is given by Eq. (9) . See

ppendix B for further details on the construction of R ( t ). 

. Results 

.1. Calibration 

We calibrate our model of mosquito abundance using a

etropolis-Hastings algorithm (see Appendix A ) with the num-

er of female Culex quinquefasciatus mosquitoes collected in Cór-

oba city (31 °24 ′ 30 ′ ′ S, 64 °11 ′ 02 ′ ′ W, Córdoba province, Argentina)

very two weeks from January 2008 to December 2009 (see

atallán, 2013; Batallán et al., 2015 for details on the data and

heir sources). The climate of Córdoba is temperate with dry win-

ers and hot rainy summers. The mean annual temperature ranges

etween 16 °C and 17 °C and the mean annual rainfall is 800 mm

 Jarsún et al., 2003 ). The temperature [ T ( t )], relative humidity

 Hum ( t )], and rainfall [ R ( t )] data for Córdoba were obtained from

he website ( Wunderground, 2016 ). We calibrate the following pa-

ameters: βL , H max , H min , and K L . In Appendix C we perform a sen-

itivity analysis of these calibrated parameters. 

As initial conditions of Eqs. (1) and (2) , we set M(t) = L (t) = 20 .

o attenuate the effect of these initial conditions, the integration

f the equations starts 12 months before we implement the fitting

nd study our model. 

Fig. 3 (a) shows the fit of our model to the data, where the

bundance M ( t ) is given as the number of female mosquitoes per

ight per trap. We observe that the mosquito population, which

s assumed to be proportional to M ( t ), increases in summer as ex-

ected. Although there are no daily abundance data to compare

ith, we remark that our model predicts day-to-day changes in the

bundance of adult mosquitoes M ( t ) due to fluctuations in temper-

ture, humidity, and rainfall. 

In Fig. 3 (b) we plot the evolution of the immature population

f mosquitoes L ( t ) which shows that temperature and precipita-

ion lead to more abrupt fluctuations in this group than in the

ompartment of adult mosquitoes. This was to be expected, since

hese climatic variables are directly introduced into the equation

f the population of immature mosquitoes (see Eq. (1) ). In turn,
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Fig. 3. Panel (a): Evolution of the abundance M ( t ) of adult mosquitoes obtained from the fitted compartmental model. Large tick marks correspond to Jan 1. The blue circles 

represent the number of female mosquitoes collected in the city of Córdoba, and the black line corresponds to the model fit. Inset: main plot on a larger vertical scale 

showing an extremely high abundance data point. Panel (b): Evolution of the number of immature mosquitoes obtained from Eqs. (1) –(7) . The dashed line represents the 

carrying capacity, K L . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Maximum number of mosquitoes M max in the plane P max − D max (a) and M max as a function of D max (b) for P max = 10 mm (black), P max = 50 mm (red) and P max = 

190 mm (blue). Dotted lines are to guide the eye. The results were obtained from Eqs. (1) –(7) and 10 4 stochastic realizations. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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we find that after a rainfall event, there is a large increase in the

abundance of this group which frequently approaches the carrying

capacity, leading to a subsequent population decline due to com-

petition among immature mosquitoes ( Roberts and Kokkinn, 2010;

Suleman et al., 1982 ). 

In the following section we study how different rainfall patterns

affect the mosquito population dynamics. 

3.2. Effect of different rainfall regimes on M max 

The proposed model of synthetic rainfall allows us to explore

the evolution of mosquito abundance under possible scenarios in

which the weather becomes, for instance, rainier, or with persis-

tent drought conditions. In this Section we discuss how different

rain regimes influence the mosquito population when it is at its

highest (see Fig. 1 (c)). To do this, we first assume that the total

rainfall P ( m ) (see Eq. (8) ) is equally distributed in D ( m ) days (see

Eq. (9) ), the remainder of the days in the month being rainless. 

In Fig. 4 (a) we consider the weather data of the austral sum-

mer season 20 08–20 09 (temperature and humidity), to show the

influence of P max and D max on the highest peak M max of mosquito

abundance, with fixed values of the parameters P min = 10 mm and

D min = 1 . 

From Fig. 4 (a), we note that, for a fixed number of rainy

days D max , the highest peak of mosquito abundance increases as

P max grows since, as expected, a greater amount of water pro-

motes breeding sites for mosquitoes. Similarly, it can be seen from

Fig. 4 (a) and (b) that for P max ≈ 190 mm, M max is an increasing

function with D max , because a higher frequency of rainfall events
rovides more opportunities for mosquitoes to breed. The opposite

appens for the lowest level of precipitation ( P max ≈ 10 mm) as

here is very little daily rainfall in this regime and the accumulated

ater evaporates quickly. Interestingly, we find that at moderate

recipitation levels M max has a maximum at an intermediate value

f the number of rainy days. If the rainfall is equally distributed

ver a few days, the mosquito population will increase with more

ainy days, but, beyond certain point, the rain becomes too thin

o maintain all breeding sites active and the mosquito population

ust decrease. However, as it was mentioned above, the intensity

f daily rainfalls is usually far from uniform ( Wunderground, 2016 ),

nd recent studies suggest that the amount of mosquitoes de-

end on the distribution of precipitation ( Bomblies, 2012; Bomblies

t al., 2008; Cheng et al., 2016; Wang et al., 2016 ). Therefore, in the

ollowing we study how heterogeneity in the daily rainfall affects

he dynamics of mosquito abundance. 

In Fig. 5 , using the weather data of the austral summer sea-

on 20 08–20 09 (temperature and humidity), we show the peak

osquito abundance for different values of P max , D max , and α, as

btained from the Eqs. (1) –(7) . For simplicity, we use the same

alue of α for each month. 

From Fig. 5 (a), (b) and (d), we note that, similarly to the case of

onstant rainfall intensity, the abundance M max is a decreasing (in-

reasing) function with D max for a low (high) amount of monthly

recipitation P max . Furthermore, Fig. 5 (b)–(d) show that a higher

ariability in the intensity of rainfalls reduces the dependence of

 max with D max with respect to the case of homogeneous rain-

all. In particular, for P max = 10 mm (see Fig. 5 (b)), we note that

 max is higher in the heterogeneous case ( α > 0) than in the ho-
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Fig. 5. Panel (a): Maximum number of mosquitoes M max in the plane P max − D max for α = 0 . 5 and fixed values of the parameters D min = 1 and P min = 10 mm. Panel (b): 

M max as a function of the number D max of rainy days in the wettest month for P max = 10 mm for different values of α. Rainy days have either the same amount of rainfall 

intensity (black), or α = 0 . 1 (red), α = 0 . 5 (blue), or α = 0 . 9 (green). Panels (c) and (d) show the same as (b) for P max = 50 mm and P max = 190 mm, respectively. Averaging 

was made over 10 4 realizations of the rainfall time series R ( t ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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b  
ogeneous one, since a greater variability tends to confine most

f the total monthly precipitation to a few days, in which there

s a higher level of water (see Eq. (6) ) available for the immature

osquito population. In contrast, for P max = 190 mm (see Fig. 5 (d))

he heterogeneity diminishes the abundance M max with respect to

he homogeneous one. In this case, even if a higher amount of

recipitation in a few days would increase the rate of immature

osquito birth, the effect of the intense rain days is limited by the

hreshold H max because the impact of precipitation saturates for a

recipitation higher than H max ( i.e ., λ(t) = 1 , see Eqs. (6) and (7) ).

oreover, there are more rainy days with low precipitation in this

egime which further reduces the growth of mosquito population.

s a consequence, the heterogeneity in the intensity of rainfall im-

lies that the monthly total precipitation is a more relevant vari-

ble for the prediction of the maximum abundance of mosquitoes

han the number of rainy days. 

Another aspect of relevance for the prediction of vector-borne

iseases is the effect of the rainfall in the dry-season (winter) on

he future abundance of mosquitoes in summer. To study this re-

ationship, we measure the maximum abundance of mosquitoes

 max and the timing τmax at which the peak of mosquito abun-

ance is reached (see Fig. 1 (c)), for different values of P min and

 min , which correspond to the parameters that control the inten-

ity and frequency of rainfall in the driest month, respectively.

ere, we keep fixed the parameters P max = 150 mm and D max = 10 ,

nd assume that February is always the wettest month of the year

 m 0 = 2 , see Eq. (8) ). We note from Fig. 6 (a) and (c) that, in the

ase of a homogeneous distribution of rainfalls, the time of peak

max moves forward for high values of P min and D min , because in

his case the rainfalls are regular and abundant throughout the

ear, which favors mosquito breeding. However, for the explored

alues of P min and D min , the position of this peak is in late February

r March, i.e ., just after the wettest month of the year. On the other

and, in a scenario of heterogeneous rainfalls with α = 0 . 9 (see

p  
ig. 6 (b) and (d)), τmax is moved forward by only approximately

0 days with respect to the homogeneous intensity case. Corre-

pondingly, for constant values of α (0.1, 0.5 and 0.9) the changes

n P min and D min only affect M max by less than 5% (not shown here).

herefore these results suggest that the peak of abundance of

osquitoes and τmax are mainly determined by summer weather

onditions and the carrying capacity of the system and not by the

ntensity and distribution of precipitation throughout the year. De-

pite the weak effect of P min on M max , Fig. 6 (e) and (f) show, as

xpected, that an increasing value of P min could have a remarkable

ffect on the accumulated abundance of mosquitoes (one measure

f which is the time integral of M ( t ) over the period of interest),

ince from P min = 10 mm to P min = 130 mm, it could increase by

ore than 40%. However, for the case of a fixed value of P min and

igher values of α we obtain that the accumulated abundance of

osquitoes diminishes down to a 50% of the value for a homoge-

eous rain distribution. Consequently, the heterogeneity could help

o attenuate the enhancement of the mosquito population. There-

ore, these findings suggest that in order to predict the total annual

bundance, it is not only necessary to take into account the overall

mount of rainfall throughout the year but also the heterogeneity

n daily rainfall intensity. 

. Discussion 

Since projections of climate change ( Nuñez et al., 2009 ) suggest

hat for the late twenty-first century in regions of South America,

uch as Córdoba province, the pattern of precipitation will change

owards a regime with rainier autumns and an increase in the ex-

reme events, it is crucial to study how this variation would affect

he mosquito abundance. 

In this paper we studied the effects of the total intensity, num-

er of rainy days and heterogeneity of rainfall on the mosquito

opulation. We found that for a regime with a low total rainfall,
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Fig. 6. Panels (a) and (b): Time τ max (measured in days, where τmax = 0 corresponds to January 1, 2009) at which the peak of mosquito abundance is reached in the plane 

P min − D min for a homogeneous intensity distribution of rainfalls (a) and α = 0 . 9 (b). Panels (c) and (d): τ max as a function of the number of rainy days in the driest month, 

D min , for a homogeneous intensity distribution of rainfalls (c) and α = 0 . 9 (d) for various values of P min : 10 mm (black), 50 mm (red) and 130 mm (blue). Panels (e) and (f): 

accumulated mosquito abundance between July 2008 and July 2009 as a function of D min , with P min = 10 mm (e) and P min = 130 mm (f) for: homogeneous rainfall intensity 

(black), α = 0 . 1 (red), α = 0 . 5 (blue) and α = 0 . 9 (green). The dotted lines are a guide to the eye. The figures were obtained averaging over 10 5 realizations of the rainfall 

time series R ( t ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the abundance of mosquitoes is a decreasing function with the

number of rainy days, while for a high total rainfall regime it is an

increasing function of this number. Interestingly, for an intermedi-

ate precipitation regime, we found that there is a halfway number

D max of rainy days for which M max is optimized. Since P max is fixed,

fewer rainy days would imply dry intervals, leading to a lessening

of the mosquito abundance. If the number of rainy days exceeds

the optimal value of D max , a considerable fraction of the rainwater

resulting from the typically meager rainfall would disappear due

to evapotranspiration, again leading to a reduction of the mosquito

abundance. 

In order to study the effect of the heterogeneity in the daily

rainfall, we used a fracturing process that keeps constant the to-

tal amount of monthly precipitation. We observed that a higher

heterogeneity reduces the dependence of M max on the number of

rainy days. However, an increasing variability favors the mosquito

production in the low rainfall regime, while the opposite behav-

ior takes place in the case of high precipitation P max . Therefore, if

climatic models predict the intensification of storms, but not an
ncrease in the total amount of precipitation, our model predicts

hat the enhancement of mosquito abundance would be more sig-

ificant in semiarid areas than in humid climates. 

Finally we study the effect of an increasing amount of rainfall

n the dry season on the mosquito abundance dynamics, obtaining

hat high precipitation throughout the year does not significantly

lter the maximum abundance or the time at which this peak

ccurs, but it could notably increase the accumulated abundance

f mosquitoes. However, we also observed that a regime with a

igher variability of rainfall intensity could reduce this increase. 

While our model captures multiple relationships between rain-

all and mosquito population, additional extensions could be con-

idered. For instance, there is evidence that rainfalls reduce the

mmature population in the short term due to flushing of breed-

ng sites ( Gardner et al., 2012; Strickman, 1988 ) and affect the bac-

erial concentration used as food by mosquito larvae ( Chaves and

itron, 2011 ); therefore, it would be interesting to study the rele-

ance of these effects on the dynamic of mosquito population. 
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We think that our findings could be used as support and ref-

rence guidance for the assessment of the influence of different

ainfall regimes on the mosquito population dynamics, using the

eather data for any specific region. Such an assessment would

mpact positively on our ability to make predictions for the spread

f various possible arboviruses. It is also known that rainfall could

ave a substantial effect on insecticide residence times ( Allan et al.,

009 ). The model presented here can be used to optimize the ef-

cacy of mosquito control campaigns, using temperature and rain-

all data to select the best times for the application of population

eduction procedures. 
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ppendix A. Calibration 

The Metropolis-Hastings (MH) algorithm is a stochastic opti-

ization tool for fitting statistical models to data that has been

sed in cosmology ( Christensen et al., 20 01; 20 04; Lewis and Bri-

le, 2002 ), epidemiology ( Merler et al., 2015 ), and in the study of

osquito population dynamics ( Marini et al., 2016 ). This algorithm

llows us to estimate the unknown values of some parameters 


 
 represents either a single parameter or a parameter set), by

eans of a stochastic search in the parameter space that gener-

tes a sequence or chain 
( i ) , where i represents the step number

f the MH algorithm ( Bonamente, 2013 ). Each value of this chain

s sampled from a proposal distribution and accepted with a prob-

bility σ defined by an acceptance function, which depends on the

ikelihood function of the observations. 
ig. A.1. Posterior distribution obtained in the steady state of the MH algorithm from 2.1

 min (c), and K L (d). In the insets we show the boxplot obtained from the posterior distri

lgorithm). 
In our model we estimate the parameters βL , H max , H min and K L 

sing a MH algorithm and the data for adult mosquito abundance

rom Córdoba city in the period 20 08–20 09 ( Batallán, 2013; Batal-

án et al., 2015 ). We propose that the likelihood of the observations

s given by 

 = 

n ∏ 

j=1 

p(x j (H max , H min , K L , βL ) ; k j ) , (A.1) 

here n is the number of data points and p ( x j ( H max , H min , K L , βL );

 j ) is the probability to observe the abundance k j of mosquitoes

btained from the data. Here we assume that p ( ·) follows a Pois-

on distribution whose mean x ( H max , H min , K L , βL ) is the number

f adult mosquitoes predicted by Eqs. (1) –(7) . 

The MH algorithm implemented in this paper has the following

teps: 

• Step 1: Initialize the starting value of the parameters 
(i =0) ,

using a uniform distribution in order to avoid favoring any ini-

tial value. 
• Step 2: Generate a new sample of the parameters, 
New start-

ing from a proposal distribution that indicates a candidate for

the next sample value. To ensure that the new values of the pa-

rameters are positive, we use as a proposal distribution a log-

normal density which has a mean equal to the logarithm of the

current value parameter and constant variance δ. The value of

this variance is chosen in order to guarantee an acceptance rate

between 10% and 30% in the burn-in period. 
• Step 3: accept the new candidate 
New with probability σ : 

σ = min 

{ 

1 , 
L (
New ) 

L (
(i ) ) 

} 

. (A.2) 

• Step 4: repeat steps 2 and 3 until convergence is reached. 

We perform 2.10 6 iterations and check convergence by visual

nspection of the chain 
( i ) . In order to construct the posterior dis-

ribution of the parameters, we discard the first 10 5 iterations as a
0 6 iterations, using 10 5 iterations as a burn in for the parameters βL (a), H max (b), 

bution in the steady state for 5 different initial conditions (see step one of the MH 

http://dx.doi.org/10.13039/501100002923
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Fig. B.1. Schematic of the construction of R ( t ) corresponding to February. At the top 

of the figure we show the FT process and at the bottom the construction of R ( t ), in 

which each square represents a day in February. The FT process stops when the 

required number of subintervals (given by Eq. (9) ) is reached. The length of each of 

these segments represents the rainfall in one day in February, which is randomly 

chosen. Those days that are not associated with any length of the FT process, have 

R (t) = 0 . 

Fig. B.2. Observed February rainfall distribution in Córdoba during the period 

2001–2015 (symbols) and distribution of segment lengths P( ̃  � ) for � = 150 mm, and 

D = 10 , and α = 0 . 43 (solid line) obtained over 2.10 4 realizations. 
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Table C.1 

Variation of the maximum abundance of mosquitoes ( M max = 

17 . 3 ) when it is applied a one-way sensitivity analysis. 
burn-in and we only keep every 20 th sampled value of the remain-

ing iterations to reduce autocorrelation within successive samples.

Finally, the values of the parameters that we will use in our model

are the averages of the medians of the posterior distributions ob-

tained from 5 different initial conditions (see step one of the MH

algorithm). 

Fig. A.1 shows the posterior distribution obtained for the pa-

rameters βL , H max , H min and K L . We note that all of these distribu-

tions are unimodal, except for H max . Although in this paper we set

H max = 9 . 86 mm, since it is the average value of the median ob-

tained from the MH algorithm, we also check our model for H max 

≈ 7 mm and H max ≈ 13 mm which are the positions of the highest

peaks of the posterior distribution (see Fig. A.1 (b)). For these cases,

our results presented in Section 3 do no qualitatively change. 

Appendix B. Fracturing process 

Fracturing process (FT) is a stochastic iterative process which

generates a finite sequence of numbers with the property that

their sum is always a constant ( Borgos, 20 0 0; Finley and Kilkki,

2014 ). From a geometrical point of view, this method consists of

partitioning an interval of length � in a number D of subintervals

or segments, with the property that the sum of their lengths is

always � . Following Finley and Kilkki (2014) , the FT process starts

with an interval or segment of length � which is split into two

subintervals of lengths ˜ � and � − ˜ � , where ˜ � is a stochastic variable

generated by the following function: 

˜ � = � ×

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

ρ
1 − α

α
if 0 ≤ ρ < 

α

2 

1 

2 

+ 

(
ρ − 1 

2 

)
α

1 − α
if 

α

2 

≤ ρ ≤ 1 − α

2 

1 − ( 1 − ρ) 
1 − α

α
if 1 − α

2 

< ρ ≤ 1 

(B.1)

Here ρ is a uniform random variable and α ∈ (0, 1) is a pa-

rameter that controls the average length 

˜ � . In a second step, the

partition function, Eq. (B.1) , is applied again on the intervals re-

sulting from the previous step, generating a total of 4 intervals.

This procedure is repeated until the required number of intervals

is reached 

1 . 

In order to model the variability in the daily rainfall R ( t ), we

apply a FT process for each month, in which, 

• the length of the initial segment � is given by Eq. (8) , i.e ., the

monthly precipitation, 
• the number D of subintervals is given by Eq. (9) , i.e ., the num-

ber of rainy days. 

After we apply the fracturing process, the length of each result-

ing interval ˜ � i (with i = 1 , · · · , D ) represents the total amount of

water that falls in the day d i , which we choose at random as it is

shown in the schematic of Fig. B.1 , and then we set R (d i ) = ̃

 � i . 

In Fig. B.2 we plot the distribution of segment lengths obtained

from an FT process for � = 150 mm and D = 10 , which are the av-

erage rainfall and the number of rainy days in February, respec-

tively. Here we use the value of α = 0 . 43 which gives the best fit

to the February rainfalls in the city of Córdoba in the period 2001–

2015. 

Appendix C. Sensitivity analysis 

A sensitivity analysis allows us to measure the impact of dif-

ferent parameters on the relevant variables of our model. In this
1 For example, in order to generate a total of five subintervals, three iterations 

of the fracturing process must be performed: step 1) the initial interval is divided 

into two subintervals, step 2) each of the previous subintervals is divided into two 

parts, and finally step 3) one randomly chosen subinterval of the previous step is 

split into two subintervals. 
ection, we perform a one-way sensitivity analysis on the model of

ection 2.1 , by varying a ± 25% of the baseline values of individ-

al parameters one at a time, while keeping the other parameters

onstant in order to analyze their individual impact on the max-

mum abundance of mosquitoes M max . The parameters examined

re: βL , H max , H min , and K L . The results of the sensitivity analysis

re summarized in Table C.1 . 

It shows, as expected, that for higher values of βL , H max , H min ,

nd K L the abundance M max increases. Although the influence

f the first three is rather weak, M max is heavily influenced by

 L , which is therefore a critical parameter for the estimation of

osquito abundance. 
Parameter −25% + 25% 

βL −2.1% + 1% 

H max −0.4% + 0.9% 

H min −0.7% + 0.6% 

K L −25% + 25% 
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