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ABSTRACT

This study aims to compare simulated soil moisture anomalies derived from different versions of theGlobal

Land Data Assimilation System (GLDAS), the standardized precipitation index (SPI), and a new multi-

satellite surface soil moisture product over southern South America. The main motivation is the need for

assessing the reliability ofGLDASvariables to be used in the characterization of soil state and its variability at

the regional scale. The focus is on the southeastern part of South America (SESA), which is part of the La

Plata basin, one of the largest basins of the world, where agriculture is the main source of income. The results

show thatGLDASdata capture soil moisture anomalies and their variability, taking into account regional and

seasonal dependencies and showing correspondence with other proxies used to characterize soil states. Over

large portions of the domain, and particularly over SESA, the correlation with the SPI is very high, with the

second version of GLDAS, version 2 (GLDAS-2 v2), exhibiting the highest values regardless of the season.

Similar results were obtained by comparing the surface soil moisture anomalies from theGLDAS land surface

model (LSM) against the satellite estimations for a shorter period of time. This work documents that the

precipitation dataset used to force each LSM and the choice of the LSM are of major relevance for repre-

senting soil conditions in an adequate manner. The results are considered to support the use of GLDAS as an

indicator of soil moisture states and for developing new soil moisture–monitoring indices that can be applied,

for example, in the context of agricultural production management.

1. Introduction

Soil moisture is a key variable of the earth–atmosphere

system that not only reflects the soil conditions of a given

region (e.g., as an indicator of agricultural droughts), but

also influences the atmospheric variability from seasonal
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to synoptic time scales (e.g., Kanamitsu et al. 2003; Betts

2009; Seneviratne et al. 2010). Accurate observations

and estimations of soil moisture are thus of high im-

portance. In spite of this, global observational datasets

(e.g., Robock et al. 2000) are very sparse in space and do

not have temporal continuity over long periods of time.

There are some exceptions over particular regions, as in

the case of the Ukraine, North America (Robock et al.

2005), or China (Li et al. 2005). Many of these in situ

measurements can be obtained through the International

Soil Moisture Network (Dorigo et al. 2011; http://ismn.

geo.tuwien.ac.at), which is a data hosting center where

globally available ground-based soil moisture measure-

ments are collected, harmonized, and made available to

users. Still, observational data scarcity is a major issue

that prevents the analysis of soil conditions, and it par-

ticularly stands out in South America, as shown by

Seneviratne et al. (2010).

Land surface model (LSM) simulations are useful al-

ternatives to analyze soil moisture variability. In par-

ticular, when LSM simulations are run uncoupled to an

atmospheric model (e.g., forced with observations), they

are devoid of biases generated by these models. Exam-

ples of this are the Global Soil Wetness Project, version

2 (GSWP-2; Dirmeyer et al. 2006); the Global Offline

Land Surface Dataset, version 2 (GOLD-2; Dirmeyer

and Tan 2001); and the Global Land Data Assimilation

System, version 1 (GLDAS-1) and the first and second

version of GLDAS, version 2 [GLDAS-2 v1 (no longer

available) and GLDAS-2 v2, respectively; Rodell et al.

2004]. GLDAS uses multiple LSMs, comprises a longer

period than other datasets, and provides different config-

urations where precipitation datasets used to force the

LSM are changed. In this sense, GLDAS becomes valu-

able as a first approach to study soil moisture variability at

regional scales, including the analysis of its representation

by diverse models and forcings. Still, some kind of vali-

dation is desirable before using anymodel-driven product.

The lack of soil moisture observations limits the pos-

sibility to validate GLDAS at regional scales, such as,

for instance, over South America. Nevertheless, a few in

situ validations of GLDAS-1 were carried out. For ex-

ample, Kato et al. (2007) performed an evaluation of

four sites of the Coordinated Enhanced Observing Pe-

riod (CEOP). They focused on the validation of 1 year of

daily surface soil moisture from three different LSMs

from GLDAS-1 and performed an intermodel compar-

ison to highlight sensitivities to changes in precipitation,

radiation, vegetation, and soil type. The authors ob-

served that, in general, soil moisture is poorly repre-

sented by LSMs, and they attribute the discrepancies to

differences between in situ observations and simulated

soil depths. In their validation, soil moisture correlated

well with precipitation and was more sensitive to pre-

cipitation during June–August (JJA) and September–

November (SON) seasons. Their results also show

important model dependency, highlighting that LSM

choice is the most important influence on the simulation

of water and energy partitioning. Another relevant

evaluation of GLDAS was performed by Zaitchik et al.

(2010) using global river discharge data and a source-to-

sink routing scheme, proving their ability to simulate the

water cycle process under different geographies and cli-

mate conditions. More recently, Xia et al. (2014) per-

formed a validation of the North American Land Data

Assimilation System, phase 2 (NLDAS-2), against Illinois

and Oklahoma Mesonet. The authors documented that

the different LSMs were capable to capture the seasonal

and interannual variability of observed soil moisture.

Given our interest to assess GLDAS over South

America, where a direct and long-term validation with

in situ measurements is unfeasible, we confront the

following question. What kind of dataset can be used to

assess GLDAS soil moisture variability representative-

ness? A first alternative could be to compare GLDAS

soil moisture variability against a well-known proxy of

the water deficit/excess over land, like the standardized

precipitation index (SPI). A second alternative could be

a comparison against remote sensing estimations. Even

though long-termmultisatellite estimations may present

some drawbacks, as will be explained later in the paper,

they offer valuable information about surface soil

moisture conditions. Using both datasets will provide

complementary assessment, since the comparison with

the SPI will disclose climatological aspects of GLDAS,

given the possibility of long-term comparison. On the

other hand, satellite estimations will account for physi-

cal processes (e.g., those related with soil and vegetation

interactions) that are missing in the SPI.

The SPI was developed by McKee et al. (1993) for

drought definition and monitoring, and it quantifies the

number of standard deviations that accumulated rain-

fall in a given time scale deviates from the average

value of a location in a particular period. The World

Meteorological Organization (WMO) states that, in

primary agricultural regions, a 3-month SPI (SPI3)

might be more effective in highlighting available

moisture conditions than other current hydrological

indices (WMO 2012), and it has also been recom-

mended by the Lincoln Declaration on Drought In-

dices (Hayes et al. 2011). Furthermore, the SPI was

successfully used for comparison between precipitation

and soil moisture indices in several regions of the world

(e.g., Szalai et al. 2000; Ji and Peters 2003; Sims et al.

2002; Mueller and Seneviratne 2012). In particular,

Mueller and Seneviratne (2012) used the SPI from
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global precipitation datasets as a soil moisture deficit

proxy for determining the influence of previous soil con-

ditions on heat waves. They focused on the SPI3 and de-

scribed the advantages of using SPI rather than estimations

derived from satellite measurements, like the Soil Mois-

ture Ocean Salinity (SMOS) or the Advanced Microwave

Scanning Radiometer for Earth Observing System

(AMSR-E). As with any proxy, pros and cons should be

taken into account: the SPI is useful for describing surface

moisture imbalances (Quan et al. 2012), but it does not

consider nonlinear processes or evapotranspiration/gravity

drainage that actually affect soil moisture.

Besides possible disadvantages of satellite estimations

(e.g., nonstationary time series), important efforts are

continuously beingmade to create long-term surface soil

moisture estimations derived from satellite measure-

ments. In this sense, a relatively new surface soil mois-

ture product covering 1979–2010 has been derived that

merges different passive and active microwave sensors

[SM-MW, as presented in Wagner et al. (2012) and Liu

et al. (2012) to indicate soil moisture microwave]. De-

spite these estimates only representing a thin superficial

layer (from 1mm to 2 cm) of the soil moisture content,

which usually does not correspond to the LSM’s super-

ficial layer, they provide a reference and independent

surface soil moisture variability estimation. For exam-

ple, Dorigo et al. (2012) analyzed and compared the

global soil moisture trends of the SM-MW product

against the Interim European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-Interim; Dee et al. 2011), GLDAS-1 Noah

LSM, precipitation [Global Precipitation Climatology

Project (GPCP); Adler et al. 2003], and the normalized

difference vegetation index (NDVI; Tucker and Sellers

1986), for 1988–2010. The authors document that the

major trends observed in SM-MWwere also observed in

the other datasets, with differences in the spatial extent.

They also observed a strong drying tendency in all soil

moisture products, which is not observed in the pre-

cipitation dataset. The authors also suggest that the ef-

fect of evaporation, vegetation, and soil type on soil

moisture variations could be important, although pre-

cipitation is considered the main driver for the soil

moisture variations. In Albergel et al. (2013), SM-MW

temporal variability is compared to the land surface

component of ERA-Interim (ERA-Interim/Land,

hereinafter ERA-Land; Balsamo et al. 2012), an up-

dated reanalysis version of ERA-Interim with focus on

the soil/surface variables. Globally, the authors docu-

ment that SM-MW is relatively stable compared to

ERA-Land, with good agreement found especially in

semiarid regions, while poor agreement is observed in

tropical regions and in high latitudes.

Besides the necessity of drought monitoring and other

applications that could be derived from better knowl-

edge of soil moisture variability, it is also clear that ag-

riculture producers would benefit from the availability

of information on soil moisture amounts. In this context,

the aim of this study relies on the need of assessing the

representativeness of GLDAS-derived soil moisture

anomalies over South America. We chose this dataset

because it is the only one that encompasses the whole

region and is consistent in terms of statistical properties.

Our underlying hypothesis is that, if GLDAS soil

moisture variability corresponds well with other proxies

and/or measurements—generally accepted to describe

soil conditions worldwide—then this dataset can be

further employed to complement other descriptions of

soil moisture at the regional level, where there is a lack

of reliable measurements.

The evaluation of GLDAS soil moisture anomalies is

carried out through their comparison with the SPI and

SM-MW. On one side, this assessment will show how

closely precipitation and soil moisture anomalies are

related (from the model perspective). On the other side,

it will show how closely these anomalies are compared

to ‘‘direct’’ surface soil moisture estimations. Both as-

sessments will also provide useful information regarding

similarities and differences between the LSMs’ behav-

iors over the region. These are the first steps needed to

advance toward a more comprehensive validation using

in situ measurements, since this study will not evaluate

actual soil moisture amounts.

A special interest is set within an area inside south-

eastern South America, which is part of the La Plata

basin (LPB), one of the largest basins of the world and

reservoir of high biological diversity, where agriculture

is the main source of incomes.

This work is structured as follows: section 2 describes

data and methodology, section 3 exposes the results, and

section 4 presents the discussion and main conclusions.

2. Data and methodology

Our study focuses on the southern part of South

America (south of 208S) and employs monthly values of

GLDAS soil moisture from January 1980 to December

2008 and the Global Precipitation Climatology Centre

(GPCC; Schneider et al. 2011) observational precipitation

dataset, both with 18 3 18grid spacing. The GPCC com-

prises 558 land grid points over the area of interest that

were used to calculate the SPI over the same period.

The principal features of these datasets are detailed in

Table 1, including the different LSMs, their corre-

sponding soil layers, and the precipitation forcing data-

sets. The GLDAS system uses four LSMs: Noah;
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Common Land Model, version 2 (CLM2); Variable In-

filtration Capacity (VIC); and Mosaic (Table 1). The

main difference between the GLDAS versions is that

GLDAS-2 (v1 and v2) is climatologically more consis-

tent (driven by the global meteorological forcing dataset

from Princeton University) than GLDAS-1. In other

words,GLDAS-1 switches the forcing data sources several

times over the record from 1979 to present, introducing

unnatural trends (Rui and Beaudoing 2014). In turn,

GLDAS-2 (v2) uses a new version of the Noah LSM that

includes an improved snow parameterization and the land

surface parameters are based on the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) and the Ad-

vanced Very High Resolution Radiometer (AVHRR)

instead of using only the AVHRR as in GLDAS-1 and

GLDAS-2 (v1). Following the recommendation of Rui

and Beaudoing (2014), the period spanning 1995–97 was

removed from GLDAS-1 because of high uncertainties

in the forcing datasets used in the computation. Based

on these datasets, we calculated the standardized soil

moisture anomaly (SSMA) for comparison with the SPI.

The SPI is a powerful, flexible index that is simple to

calculate and was widely used in southern South

America, proving to be a good estimator of both wet and

dry soil conditions (Seiler et al. 2002; Krepper and

Zucarelli 2010; Penalba and Rivera 2013). It was de-

signed to quantify the precipitation deficit for multiple

time scales, which is essentially a standardized trans-

formation of the probability of observed precipitation

for any desired time scale duration (1, 3, 6, 12 months,

etc.). A detailed description of the calculation of the SPI

can be found in Lloyd-Hughes and Saunders (2002).

Several approaches were used for comparison of the SPI

with soil moisture indices. For example, Sims et al.

(2002) compared normalized soil moisture and nor-

malized SPI derived from in situ observations in North

Carolina (United States). They conclude that short-term

SPI (1–3 months) gives the highest correlation with

10-cm surface soil moisture and infer that deeper soil

layers may show better correlation with longer time

scales. They also conclude that the SPI can be used as

a surrogate for obtaining soil moisture information.

Ji and Peters (2003) assessed the vegetation response

to drought in the United States using the NDVI. They

suggested that the SPI on a time scale of 3 months is the

best for determining drought severity and duration in

vegetation cover, given the lag between precipitation

and soil moisture deficits. In Hungary, Szalai et al.

(2000) indicated that agricultural drought characterized

by a decline in soil moisture content was better repli-

cated by the SPI on a scale of 2–3 months.

The satellite soil moisture estimation, SM-MW, is

a combination of several sensors, covering 1979–2010.

The main features of SM-MW are shown in Table 2.

Details of the merging technique and a complete de-

scription of the missions and sensors can be found in

Wagner et al. (2012), Dorigo et al. (2012), and Liu et al.

(2012). Nevertheless, it is important to highlight some

characteristics of this dataset. For example, none of these

sensors covers the entire period or provides complete

spatial coverage, which is necessary for a global climate

assessment. In turn, system retrieval algorithms and

mission design differences entail a spatial and temporal

variability of the data quality (Dorigo et al. 2012).

A drawback of SM-MW for defining soil moisture

amounts is that it uses climatological data from Noah

TABLE 1. LSMs and data characteristics.

Product LSM Precipitation dataset used Soil layers

GLDAS-2 v1 Noah, version 2.7 (v2.7; Chen et al.

1996)

Princeton University [Climatic Research Unit,

version 2 (CRU2.0) 1 Tropical Rainfall

Measuring Mission (TRMM) 1 GPCP 1
National Centers for Environmental

Prediction–National Center for

Atmospheric Research (NCEP–NCAR)

reanalysis; Sheffield et al. (2006)]

4 (0–10, 10–40, 40–100,

and 100–200 cm)

GLDAS-2 v2 Noah, version 3.3 (v3.3)

GLDAS-1 Noah (v2.7) Combination of CPC Merged Analysis of

Precipitation (CMAP) 1 Global Data

Assimilation System (GDAS) 1 ECMWF [see

Rodell et al. (2004) for details]

4 (0–10, 10–40, 40–100,

and 100–200 cm)

Mosaic (Koster and Suarez 1996) 3 (0–2, 2–150, and 150–

350 cm)

VIC (Liang et al. 1994, 1996) 3 (0–10, 10–160, and 160–

190 cm)

CLM2 (Bonan et al. 2002) 10 (0–1.8, 1.8–4.5, 4.5–9.1,

9.1–16.6, 16.6–28.9,

28.9–49.3, 49.3–82.9,

82.9–138.3, 138.3–229.6,

and 229.6–343.3 cm)

SPI GPCC (Schneider et al. 2011)
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GLDAS-1 to define the range of variability of estimated

soil moisture. According to Liu et al. (2012), this only

influences the absolute value of soil moisture and not the

dynamics and trends of this variable. As it is also men-

tioned in Liu et al. (2012), the adjustment and combi-

nation of different sensors depends on the temporal

overlap between them, which was hardly possible for the

Scanning Multichannel Microwave Radiometer (SMMR)

sensor (1979–87). These authors also conclude that the

SM-MW ismore reliable over periods where the estimates

wereobtainedusingC-band frequency sensors (seeTable 2).

In this sense, and based on a preliminary results (not

shown), the period 1988–91 shows large uncertainty as-

sociated possibly with the Special Sensor Microwave

Imager (SSM/I; Ku band), while the period 1992–96

shows significant changes in the variance compared with

1997–2008. Based on these results, we will use monthly

averages only for 1997–2008.

The GPCC precipitation dataset used to construct the

SPI has been first validated against observational data

provided by the Europe–South America Network for

Climate Change Assessment and Impact Studies in La

Plata Basin (CLARIS LPB) project (Penalba et al.

2014). Figure 1 shows annual mean precipitation fields

(1980–2008) and correlation coefficients between monthly

time series of both datasets. It can be observed that the

GPCC provides a good representation of precipitation

amounts, in particular over the southeastern part of

South America (hereinafter referred to as SESA; 358–
258S, 638–508W). Over SESA, correlations are signifi-

cant and generally higher than 0.7. In the southern part

of the domain, there is also good agreement between

datasets, but the lack of observations is notorious.

3. Results

a. GLDAS SSMA versus SPI

Given the various time scales in which precipitation

and soil moisture interact, it is worthwhile to first per-

form a sensitivity analysis of the time scale of maximum

correlations between the SPI and SSMA, in order to

TABLE 2. SM-MW main features. DMSP is the Defense Meteorological Satellite Program, TMI is the TRMM Microwave Imager,

SCAT is the EuropeanRemote Sensing Satellite (ERS) Scatterometer, andASCAT is theMeteorological Operation (MetOp)Advanced

Scatterometer.

SM-MW

Passive microwave Active microwave

SMMR SSM/I TMI AMSR-E SCAT ASCAT

Platform Nimbus-7 DMSP TRMM Aqua ERS MetOp

Period Jan 1979–Aug 1987 Sep 1987–Dec 2007 Jan 1998–Dec 2008 Jul 2002–Dec 2010 Jul 1991–Dec 2006 Jan 2007–Dec 2010

Channel 6.6GHz (C band) 19.3GHz (Ku band) 10.7GHz (X band) 6.9–10.7GHz

(C and X band)

5.3GHz (C band) 5.3GHz (C band)

Units m3m23 m3m23 m3m23 m3m23 Degree of

saturation (%)

Degree of

saturation (%)

FIG. 1. Spatial distribution of (left) observed and (middle) GPCC annual precipitation, and (right) correlation coefficients between

monthly time series of both datasets for the period 1980–2008.
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identify which SPI is more adequate for this study. Prior

to the correlation computation, linear trends were re-

moved to avoid spurious correlations. Figure 2 shows

the correlation coefficients between the SPI—for 1–

12-month time scales—and monthly SSMA from dif-

ferent GLDAS/LSMs. At the most superficial layer

(Fig. 2a), high correlations (r . 0.8) are found for time

scales between 2 and 5 months for both versions of

GLDAS-2. Different model responses with SPI time

scale are apparent: maximum correlation values occur

earlier for VIC and CLM2 and considerably later for

Mosaic. There are also diverse responses among Noah

LSM versions, although the functional dependence with

SPI time scale is similar. The origin of these discrep-

ancies is hard to explain without going into parameter-

ization details, which is out of the scope of this analysis.

For example, CLM2 and VIC exhibit strikingly similar

responses, but CLM2 represents a thinner surface layer

than VIC. In turn, Mosaic and CLM2 show an opposite

behavior with respect to the SPI, although they repre-

sent similar surface layer depths, and something similar

happens if VIC and Noah are compared (at least for the

first 6 months or so). This figure suggests that the su-

perficial layer does not exhibit consistent behavior

among models with respect to the SPI and that it may

not be appropriate for our purposes (e.g., the assessment

is too model dependent).

When deeper soil depths are considered (Fig. 2b), as

expected, correlations tend to peak at longer time scales

and the LSM response is more coherent, with maximum

correlations around 4- and 5-month SPI (SPI4 and SPI5,

respectively) for GLDAS-2. Comparing both figures,

GLDAS-2 maintains a similar relationship with SPI

time scales regardless of layer depth, but this is not the

case for the other datasets. This result shows that an

individual analysis is needed before defining which SPI

should be used, since this will depend on eachmodel and

layer depth. To provide further arguments to support

our choice of one SPI, the correlation seasonal de-

pendence at the intermediate layer is presented. Table 3

highlights that the SPI3 shows the closest relationship

with SSMA in summer and SPI4 in autumn. Taking into

FIG. 2. Correlation between the SPI at different time scales and the SSMAs for all the LSMs

in the (a) surface (see Table 1) and (b) intermediate layer (0–100 for Noah, 0–160 for VIC,

0–150 for Mosaic, and 0–138.3 cm for CLM2).
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consideration that, from an agricultural point of view,

SESA is a region of many summer and autumn crops

(e.g., soy, wheat, and sunflowers; Andrade and Sadras

2000), we consider that the SPI3 can be used as a refer-

ence dataset for this evaluation. This choice is in

agreement with previous studies like Szalai et al. (2000),

Ji and Peters (2003), Mueller and Seneviratne (2012),

among others. Moreover, for applications concerned with

superficial soil layers (e.g., comparison with satellite esti-

mates), the SPI3 exhibits the largest correlation with re-

spect to GLDAS-2 SSMA. Note that the Noah GLDAS-2

v1 and v2 are the most consistent datasets in terms of their

functional dependencewith the SPI at different layers. The

following discussion focuses on GLDAS-2 and its com-

parison with the other datasets for soil depths as shown in

Fig. 2b (0–100cm for Noah, 0–138.3 cm for CLM2, 0–

150 cm for Mosaic, and 0–160 cm for VIC).

Previously, GLDAS-2 v1 and v2 were identified as the

datasets with higher correlation with the SPI at diverse

time scales, including 3 months (i.e., SPI3). Important

differences between LSMs show up, some of which may

be related with the use of different forcing datasets (e.g.,

GLDAS-2 v1 and GLDAS-1). To address this question,

GLDAS-1 and GLDAS-2 precipitation fields are com-

paredwithGPCCdata. Figure 3 shows that their relative

differences with respect to GPCC have similar spatial

patterns and are larger over the Andes and in the

southern tip of the continent. Over SESA, these differ-

ences are mostly positive and do not exceed 30%. The

anomaly correlation between GPCC and GLDAS-2 is

higher than that for GLDAS-1, and this is mostly ex-

plained by a better representation of precipitation var-

iability. This figure shows that GLDAS-2 precipitation

forcing is more representative of the observations, in

agreement with previous findings (Spennemann and

Saulo 2014, manuscript submitted to Int. J. Climatol.),

and further supports our choice of GLDAS-2 as a reli-

able estimate of surface states among those analyzed in

our region of study.

Figure 4 shows the spatial pattern of the correlation

between the SPI3 and simulated SSMA from all

available datasets included in Table 1 and for the full

period. The highest correlations are obtained with both

versions of GLDAS-2 that depict more than 97% of the

grid points with significantly positive values. Despite

slight differences, the LSMs exhibit regional coherence

and spatial patterns resemble those obtained for the

correlation between GPCC and GLDAS precipitation,

locatingmaximum values in central SESA. In particular,

GLDAS-2 v2 shows the highest values over this area.

Among GLDAS-1 LSMs, the highest correlations are

obtained with the Noah and VIC, followed by CLM2

and Mosaic, which is in agreement with Fig. 2b. Mini-

mum correlation coefficients were found over arid and

mountainous regions.

Similarity of correlation patterns between Figs. 3 and 4

highlights the importance of precipitation as the main

driver of simulated soil moisture anomalies. Higher

correlations with both GLDAS-2 versions might be re-

lated with the fact that precipitation data used in

GLDAS-2 and in the SPI are much alike.

Given the precipitation seasonality in southern South

America and, therefore, in soil moisture and crops, the

correlations at different seasons have been analyzed.

Figure 5 shows the correlation coefficients using Noah

GLDAS-2 v1, Noah GLDAS-1, and Mosaic GLDAS-1

for each season. This choice seeks to highlight the sea-

sonal response if the same LSM is used but the forcing

dataset is changed (e.g., comparison of GLDAS-2 and

GLDAS-1) and if the same forcing dataset with differ-

ent LSMs is used (Mosaic was selected because VIC and

CLM2 correlations were too similar to Noah). For these

LSMs, the highest correlation coefficients are observed

over SESA in summer and autumn, followed by spring.

With changing seasons, the areal coverage of high cor-

relation values decreases and is at minimum in winter.

This behavior is replicated by all the LSMs, suggesting

the impact of the precipitation seasonal cycle on these

correlations and illustrating the results already shown in

Table 3 (e.g., correlation with the SPI tends to peak at

longer time scales as the year progresses). Comparing

the results for both datasets using Noah (GLDAS-2 v1

TABLE 3. Seasonal correlation coefficients between SSMA and SPI at different time scales [3-, 4-, 5-, 7-, 8-, 9-, and 10-month SPI

(SPI3, SPI4, SPI5, SPI7, SPI8, SPI9, and SPI10, respectively)] over SESA. The SPI time scale with the highest correlation coefficient

(in parentheses) is indicated for every LSM and season considered.

LSM and GLDAS version SSMA depth (cm) Summer (DJF) Autumn (MAM) Winter (JJA) Spring (SON)

Noah v3.3 GLDAS-2 v2 0–100 SPI3 (0.89) SPI4 (0.88) SPI5 (0.79) SPI7 (0.81)

Noah v2.7 GLDAS-2 v1 0–100 SPI4 (0.88) SPI4 (0.88) SPI7 (0.82) SPI8 (0.83)

Noah v2.7 GLDAS-1 0–100 SPI3 (0.82) SPI4 (0.83) SPI7 (0.79) SPI8 (0.79)

VIC GLDAS-1 0–160 SPI4 (0.89) SPI5 (0.90) SPI7 (0.88) SPI8 (0.86)

Mosaic GLDAS-1 0–150 SPI9 (0.73) SPI5 (0.79) SPI8 (0.77) SPI10 (0.73)

CLM2 GLDAS-1 0–138.3 SPI3 (0.83) SPI4 (0.87) SPI8 (0.82) SPI8 (0.83)
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and GLDAS-1), it becomes clear that precipitation, as

mentioned before, is a key input for LSM response,

giving higher correlations whenever precipitation data-

sets are similar. Meanwhile, Noah and Mosaic correla-

tion coefficients show similar spatial patterns, but with

important differences in their magnitude, emphasizing

the impact of using one LSM or another, as indicated by

Kato et al. (2007).

Figures 6a and 6b show the areal averaged temporal

evolution of the SPI3 and the twoSSMAs ofGLDAS-2 v2

and VIC between 1980 and 2008. This result underlines

the resemblance between both time series variability. In

particular, very good agreement is observed for the ex-

treme drought that took place during 1988–89 over the

region. Figure 6c shows the temporal evolution of the

SPI3 and the SSMA of CLM2 and Mosaic over SESA.

Despite the fact that bothLSMs are able to capture excess

and deficit periods, the magnitude shown by Mosaic is

smaller in comparison with CLM2.

b. GLDAS SSMA versus SM-MW

The variability of SM-MW surface soil moisture esti-

mations, averaged over SESA for 1997–2008, is shown in

Fig. 7. The noise associated with the estimation and the

mean monthly percentage of grid points with data are

also shown. It is clear that, depending on the period of

analysis, the percentage of grid points with data is lower

than 10%. In addition, themagnitude of errors related to

the estimation itself changes over time, as mentioned in

Dorigo et al. (2012). It is interesting to draw the atten-

tion to the last period, where the highest estimation er-

rors are observed in combination with the highest

percentage (near 50%) of grid points with data. As in the

previous section, where a comparison against a soil

FIG. 3. (top left)GPCCmeanprecipitation (mmmonth21). Relative difference (%) of (topmiddle)GLDAS-1 and (top right)GLDAS-2

compared to GPCC, and (bottom) temporal correlation of the precipitation anomalies. Years 1995–97 have been disregarded (see text

for details).
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moisture condition proxywas carried out, in this case the

representativeness of this estimation must also be taken

with caution, given the lack of sustained coverage.

To compare this estimate of soil moisture variability

with that obtained with different LSMs from GLDAS,

the surface layer from each LSM (see Table 1) was

chosen. In Fig. 8a the temporal series of GLDAS-2 v2,

Noah GLDAS-1 surface layer SSMA, and SM-MW are

shown. In general, GLDAS-2 v2 and Noah GLDAS-1

show a similar behavior compared with SM-MW, except

for 2002–03.

Figure 8b shows GLDAS-1 Mosaic, VIC, and CLM2 in

comparison with SM-MW. In general, GLDAS-1 LSMs

show larger differences for 2007–08, as was also observed

in Fig. 6 (i.e., compared with the SPI3). Furthermore, as it

was observed from the comparison against SPI3, Mosaic

also shows the largest differences compared with SM-MW

estimations. During 2002–03, all the LSMs show a relative

maximum, while SM-MWshows a relativeminimum. This

opposite behavior could be relatedwith errors in theLSMs

(although they reflect the same as the SPI3) or with a lack

of representativeness of SM-MW data, given the lack of

information during this specific period.

Table 4 summarizes SSMA variability for the different

LSMs and their correlation with the SM-MW. It is in-

teresting tomention that NoahGLDAS-1 andGLDAS-2

v2 show the highest correlation (r 5 0.71), while Mosaic

presents the lowest values. In terms of SSMA variability,

all LSMs show similar values to SM-MW estimations. In

particular, the VIC shows the lowest variability.

4. Concluding remarks

Motivated by the need to use a reliable soil moisture

dataset to document the climatology and variability at

diverse time scales over South America, an assessment

FIG. 4. Correlation (significant at 0.01 level; shaded) between SSMA from the different LSMs and the SPI3 for the full period (1995–

97 have been disregarded; see text for details): (top left) GLDAS-2 v1, (top middle) GLDAS-2 v2, (top right) GLDAS-1 Noah,

(bottom left) GLDAS-1 Mosaic, (bottom middle) GLDAS-1 VIC, and (bottom right) GLDAS-1 CLM2. Contour line denotes cor-

relations of 0.6.
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FIG. 5. Correlation (significant at 0.01 level; shaded) between SSMA from (left) GLDAS-2 v1

(Noah v2.7), (middle) GLDAS-1 Noah v2.7, and (right) GLDAS-1 Mosaic against SPI3 for (first

row) summer [December–February (DJF)], (second row) autumn [March–May (MAM)], (third

row) winter (JJA), and (fourth row) spring (SON). Contour line denotes correlations of 0.6.
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of various GLDAS datasets, including distinct forcings

and LSMs, has been carried out. Our underlying hy-

pothesis was thatGLDAS-2 (Noah LSM)would provide

the most appropriate dataset, given that a climatological

consistent atmospheric forcing was used to run this LSM

during the period of analysis. The other hypothesis was

that the standardized precipitation index, widely ac-

cepted as a measure to monitor droughts, could be

employed as a proxy for soil water excess/deficit, and as

such, its variability would go along with that of soil

moisture. As the SPI does not consider important pro-

cesses affecting soil moisture, like evapotranspiration or

gravity drainage, a complementary multisatellite soil

moisture estimation product (SM-MW) was used to

improve the analysis.

While doing so, it is implied that only modeled soil

moisture anomalies would be evaluated against the SPI

and SM-MW, since there is no possibility to compare soil

moisture amounts.

After validating precipitation fields used to force the

LSMs, it has been shown that GLDAS-2 precipitation is

in better agreement with the observations. Another in-

teresting analysis arose from the comparison between

the SPI at various time scales and soil moisture anom-

alies from different LSMs and layers, with a focus over

SESA. Besides different responses between LSMs, it

was evident that longer SPI time scales better correlate

with deeper-layer soil moisture anomalies. This behav-

ior also exhibits seasonal dependence: during the rainy

season (October–April), correlations between soil

FIG. 6. Temporal series of (a) SPI andGLDAS-2 v2 SSMA(0–100 cm), (b) SPI andGLDAS-1

VIC (0–160 cm), and (c) the difference of three LSMs from GLDAS-1 (Noah, CLM2, and

Mosaic) with respect to VIC, area averaged over SESA (358–258S, 638–508W).

FIG. 7. SM-MWvolumetric soil moisture (m3m23; red line) temporal series, associated noise

band (dotted line), and the percentage of grid pints with data for the region of SESA (gray bars)

for 1997–2008.
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moisture anomalies and the SPI peak at shorter time

scales (e.g., around 3 and 4 months), while in winter

(JJA) this maximum occurs later, generally for the SPI7.

Following our interest to focus this assessment over

SESA, and keeping in mind the relevance of summer

and autumn agricultural production in the region, we

selected the SPI3 to conduct the evaluation. A comple-

mentary assessment was carried out using the SM-MW

surface soil moisture estimation for a shorter time pe-

riod. In general, a good agreement was observed be-

tween simulated soil moisture and SM-MW estimations.

Some LSMs, for example, the GLDAS-2 v2 (Noah) and

the Noah GLDAS-1, showed the closest resemblance

with SM-MW over SESA. Nevertheless, SM-MW pres-

ents considerable errors for particular time windows, re-

lated to the estimation itself and with the low percentage

of grid points with data. Thus, it is difficult to infer if the

differences observed are in fact due to large errors ob-

served in SM-MW or to inadequate LSM performance.

Our first conclusion is that the GLDAS-2 dataset

employing the Noah LSM is a useful tool to describe soil

moisture anomalies over southern South America, but

the degree of representativeness exhibits regional and

seasonal dependences that should be taken into account.

Comparing the results obtained from GLDAS-1 and

GLDAS-2 (v1 and v2), it is clear that the precipitation

dataset used to force the LSMs is of major relevance,

followed by the impact of using different LSMs with

equal atmospheric forcing. This result is clearly affected

by our particular selection of the SPI3 as the reference

dataset.

The use of simulated soil moisture values for drought

research, drought monitoring, and other applications is

growing steadily [e.g., Huang et al. 1996; Mo 2008;

Sheffield and Wood 2008; Quan et al. 2012; Houborg

et al. 2012; Pozzi et al. 2013; the Climate Prediction

Center (CPC) droughtmonitoring]. This work shows the

potential usefulness of GLDAS outputs for the analysis

FIG. 8. SSMA for (a) SM-MW, GLDAS-2 v2, and Noah GLDAS-1; and (b) CLM2, Mosaic,

VIC LSM, and SM-MW for 1997–2008.

TABLE 4. Correlation between the SSMAs of SM-MW and the different GLDAS LSMs (95% confidence interval). The SSMA std dev is

also shown.

LSM

GLDAS-1

SM-MW Noah VIC Mosaic CLM2 GLDAS-2 GLDAS-2 v2

Correlation 1 0.71 0.67 0.62 0.66 0.70 0.71

Std dev 0.96 0.94 0.87 0.95 0.91 0.95 0.95
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of droughts and their main features (i.e., spatial distri-

bution, frequency, and intensity) over South America

but particularly over SESA.We consider that our results

support the use of GLDAS for the development of new

soil monitoring indices that can be applied in the context

of agricultural production management.
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