
Ann Math Artif Intell (2016) 76:375–408
DOI 10.1007/s10472-015-9476-4

A quantitative approach to belief revision in structured
probabilistic argumentation

Gerardo I. Simari1 ·Paulo Shakarian2 ·
Marcelo A. Falappa1

Published online: 19 September 2015
© Springer International Publishing Switzerland 2015

Abstract Many real-world knowledge-based systems must deal with information coming
from different sources that invariably leads to incompleteness, overspecification, or inher-
ently uncertain content. The presence of these varying levels of uncertainty doesn’t mean
that the information is worthless – rather, these are hurdles that the knowledge engineer must
learn to work with. In this paper, we continue work on an argumentation-based framework
that extends the well-known Defeasible Logic Programming (DeLP) language with prob-
abilistic uncertainty, giving rise to the Defeasible Logic Programming with Presumptions
and Probabilistic Environments (DeLP3E) model. Our prior work focused on the problem
of belief revision in DeLP3E, where we proposed a non-prioritized class of revision opera-
tors called AFO (Annotation Function-based Operators) to solve this problem. In this paper,
we further study this class and argue that in some cases it may be desirable to define revi-
sion operators that take quantitative aspects into account, such as how the probabilities of
certain literals or formulas of interest change after the revision takes place. To the best of
our knowledge, this problem has not been addressed in the argumentation literature to date.
We propose the QAFO (Quantitative Annotation Function-based Operators) class of opera-
tors, a subclass of AFO, and then go on to study the complexity of several problems related
to their specification and application in revising knowledge bases. Finally, we present an

� Gerardo I. Simari
gis@cs.uns.edu.ar

Paulo Shakarian
shak@asu.edu

Marcelo A. Falappa
mfalappa@cs.uns.edu.ar

1 Department of Computer Science and Engineering, Universidad Nacional del Sur (UNS) and
Institute for Computer Science and Engineering (CONICET-UNS), Bahia Blanca, Argentina

2 Arizona State University, Tempe, AZ, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10472-015-9476-4-x&domain=pdf
mailto:gis@cs.uns.edu.ar
mailto:shak@asu.edu
mailto:mfalappa@cs.uns.edu.ar

376 G. I. Simari et al.

algorithm for computing the probability that a literal is warranted in a DeLP3E knowledge
base, and discuss how it could be applied towards implementing QAFO-style operators that
compute approximations rather than exact operations.

Keywords Structured argumentation · Belief revision · Reasoning under probabilistic
uncertainty

Mathematics Subject Classification 68T30 · 68T27 · 68T37

1 Introduction and motivation

Many real-world knowledge-based systems must deal with information coming from dif-
ferent sources that invariably leads to uncertain content, be it from gaps in knowledge
(incompleteness), overspecification (inconsistency), or because the knowledge is inherently
uncertain (such as weather forecasts or measurements that are necessarily imprecise). Far
from considering such uncertain knowledge useless, knowledge engineers face the chal-
lenge of putting it to its best possible use when solving a wide range of problems. In
particular, one basic problem that needs to be investigated in depth is that of revising such
knowledge bases in a principled manner. In this paper, we continue work on that combines
the well-known Defeasible Logic Programming (DeLP) language (actually, an extension
called PreDeLP to handle presumptions) with probabilistic uncertainty, which led to the
development of the DeLP3E model (Defeasible Logic Programming with Presumptions and
Probabilistic Environments). In previous work [38, 40], we studied a class of non-prioritized
belief revision operators called AFO that allows changes to be made only to probabilistic
annotations when addressing the incorporation of an epistemic input into the knowledge
base. Here, we propose a subclass called QAFO that takes quantitative aspects into account
when performing revisions, such as how the probabilities of certain literals or formulas of
interest change after the revision takes place. To the best of our knowledge, this problem
has not been addressed in the argumentation literature to date.

The main contributions presented in this paper are briefly summarized as follows:

– As building blocks to be used in our quantitative belief revision operators, we define:
(i) warrant probability functions (WPFs), which have as domains either conjunctions or
disjunctions of ground literals that are mapped to the probability that they are warranted
in the DeLP3E program; and (ii) revision objective functions (ROFs), which take as
input two DeLP3E programs I1, I2 and an epistemic input and return a numeric score
that is interpreted as the value of obtaining I2 from I1 when revising it by the epistemic
input. ROFs generally include WPFs in their definitions.

– We propose the QAFO class of operators, a subclass of AFO that allows modifications
to the annotation function to be carried out as part of the belief revision operation, but
focusing on optimizing a given ROF, as described above.

– We study the complexity of several problems related to our approach; in particular, we
present:

(i) A new lower bound on the complexity of deciding the warrant status of a literal
or a conjunction/disjunction of literals in a (classical) PreDeLP program;

(ii) Computing WPFs in general is #P-hard;

Quantitative belief revision in structured probabilistic argumentation 377

(iii) Point (ii) holds even when computing probabilities of worlds in the environmen-
tal model can be done in polynomial time;

(iv) Computing WPFs in the special case in which Nilsson’s probabilistic logic [32]
is used is NP-complete;

(v) By combining the intuition behind the proof of point (iv) and further conditions,
we identify a class of instances for which WPFs can be computed in polynomial
time; and

(vi) Under the same conditions as point (v), we show that QAFO revisions are NP-
complete; furthermore, we show that the problem has the same complexity
even when the revision objective function is constrained to be a simple sum of
warranting probabilities for atoms in the AM.

– We present an algorithm for computing the probability that a literal is warranted
in a DeLP3E knowledge base, and discuss its application towards implement-
ing QAFO-style operators that compute approximations rather than perform exact
operations.

The rest of this paper is organized as follows: Section 2 discusses preliminary concepts
and the DeLP3E framework, which was first introduced in [38, 40]. Section 3 motivates
the specialization of AFO operators to take into account quantitative aspects, and presents
the class QAFO. Section 4 studies the complexity of several problems related to QAFO
and the application of such operators in revising DeLP3E knowledge bases. Section 5
studies a novel approach to reasoning about probabilities of literals in DeLP3E, called
warranting formulas, and their application in the implementation of QAFO-style opera-
tors that address the high computational cost issuess by applying heuristics the trade off
optimality for tractability. Finally, Sections 6 and 7 present related work and conclusions,
respectively.

Throughout the entire paper, we illustrate the presentation via a running example that
is inspired on the use of DeLP3E in medical diagnosis, which is the kind of real-world
application in which we envision our work being of most use; we have also explored its
application in the related scenario of solving the attribution problem1 in cyber security
and cyber warfare [39], with encouraging feedback from the community as to its potential
impact.

2 Preliminaries on the DeLP3E framework

The DeLP3E framework is comprised of two distinct, but interrelated models of the world.
The first is called the environmental model (referred to from now on as the “EM”), and
is used to describe uncertain knowledge about the domain that is subject to probabilistic
events. The second one is called the analytical model (referred to as the “AM”), and contains
knowledge that is either strict or defeasible, as described below – this will be useful in the

1Essentially, given a cyber event of interest, the attribution problem involves finding out who was responsible
for it. This is especially well suited for argumentation and belief revision due to the ease with which a
potential culprit can plant false or misleading clues, hence giving rise to an inconsistent knowledgebase.
See [37] for further discussion.

378 G. I. Simari et al.

analysis of competing hypotheses that can account for a given phenomenon (what we will
generally call queries).

The AM is composed of a classical (that is, non-probabilistic) PreDeLP [31] program
in order to allow for contradictory information, giving the system the capability to model
competing explanations for a given query. In general, the EM contains knowledge such as
evidence, uncertain facts, or knowledge about agents and systems. The AM, on the other
hand, contains knowledge that may or may not be strictly valid, yet it does not depend
on probabilistic events. Indeed, dividing knowledge between the AM and EM is a knowl-
edge engineering task, and its adequate resolution will call for design decisions to be made;
note that this separation also allows for a different kind of uncertainty to be modeled –
defeasible rules and presumptions can be leveraged when there is no probabilistic informa-
tion available but we still wish to maintain that a specific portion of the knowledge base
is uncertain.

In the rest of this section, we formally describe these two models, as well as how
knowledge in the AM can be annotated with information from the EM – these annota-
tions specify the conditions under which the various statements in the AM can potentially
be true.

Basic Language We assume sets of variables and constants, denoted with V and C, respec-
tively. The language also contains a set of n-ary predicate symbols; the EM and AM use
separate sets of predicate symbols, denoted with PEM and PAM, respectively – the two mod-
els can, however, share variables and constants. As usual, a term is composed of either a
variable or a constant. Given terms t1, ..., tn and n-ary predicate symbol p, p(t1, ..., tn) is
called an atom; if t1, ..., tn are constants, then the atom is said to be ground. The sets of all
ground atoms for EM and AM are denoted with GEM and GAM, respectively; finally, we also
use notation LAM to denote the set of all (ground) literals: {a | a ∈ GAM}∪ {¬a | a ∈ GAM}.
Note that even though in general the language allows variables, for simplicity we will
assume throughout this paper that all objects are ground (propositional).

Example 1 Consider a medical diagnosis scenario2 in which a patient goes to a hospital
exhibiting certain symptoms: shortness of breath, sporadic fainting (loss of consciousness
for brief periods of time), and some signs of memory loss. Figure 1 shows the predicates
that we will use throughout the paper in the running example.

As shown in the figure (and discussed in more detail below), some of these predicates
comprise the analytical model (AM), while others are part of the environmental model
(EM). For instance, in our example, predicates stating the presence of symptoms such as
memory loss and shortness of breath, as well as those representing diagnoses, such as anx-
iety and depression, are part of the analytical model. On the other hand, the environmental
model contains predicates that are associated with uncertain events, such as false negatives
coming up when a test is performed or the risk that the patient will be affected by anxiety-
related disorders. Note that in the running example we make use of the term “at risk”

2This and all related examples in this paper, though inspired by potential real-world applications, make many
simplifying assumptions in order to allow for a concise presentation of the key concepts that we wish to
illustrate.

Quantitative belief revision in structured probabilistic argumentation 379

Fig. 1 Explanation of the meaning of the predicates used in the running example

according to the common use of this expression in the medical domain, i.e., characterized
by high risk or susceptibility, such as to a certain disease.

Given set of ground atoms, a world is any subset of atoms – those that belong to the set
are said to be true in the world, while those that do not are false. Therefore, there are 2|GEM|
possible worlds in the EM and 2|GAM| worlds in the AM. These sets are denoted with WEM

and WAM, respectively. In order to avoid worlds that do not model possible situations given
a particular domain, we include integrity constraints of the form oneOf(A′), where A′ is a
subset of ground atoms. Intuitively, such a constraint states that any world where more than
one of the atoms from set A′ appears is invalid. We use ICEM and ICAM to denote the sets of
integrity constraints for the EM and AM, respectively, and the sets of worlds that conform
to these constraints is denoted with WEM(ICEM) and WAM(ICAM), respectively.

Finally, logical formulas arise from the combination of atoms using the traditional con-
nectives (∧, ∨, and ¬). As usual, we say that a world λ satisfies formula (f), written λ |= f ,
iff: (i) If f is an atom, then λ |= f iff f ∈ λ; (ii) if f = ¬f ′ then λ |= f iff λ �|= f ′;
(iii) if f = f ′ ∧ f ′′ then λ |= f iff λ |= f ′ and λ |= f ′′; and (iv) if f = f ′ ∨ f ′′ then
λ |= f iff λ |= f ′ or λ |= f ′′. We use the notation formEM, formAM to denote the set of
all possible (ground) formulas in the EM and AM, respectively; finally, we use basicAM to
denote all possible conjunctions or disjunctions of literals from LAM, which we refer to as
basic formulas.

2.1 Environmental model

In this paper, we generalize the approach taken in our previous work [38, 40] for the envi-
ronmental model – here, we simply assume that we have a probabilistic model defined over
GEM, which represents a probability distribution over WEM.

380 G. I. Simari et al.

Fig. 2 Bayesian network used in the EM of the running example. The names of the random variables are sim-
ply the abbreviations of their corresponding atoms: AR �→ anx risk, DR �→ dep risk, FNAT �→ FN anx test,
and FNTS �→ FN tox screen

Definition 1 (Probabilistic Model) Given sets PEM, V, and C, and corresponding sets GEM

and WEM, a probabilistic model �EM is any function Pr : WEM → [0, 1] such that∑
λ∈WEM

Pr(λ) = 1.

Examples of probabilistic models that can be used are Bayesian networks (BNs) [33],
Markov logic networks (MLNs) [36], extensions of first order logic such as Nilsson’s prob-
abilistic logic [32], or even ad-hoc representations of function Pr from Definition 1. The
following is an example of a BN over the running example.

Example 2 Consider the set PEM from Fig. 1. The Bayesian network depicted in Fig. 2
describes the probability distribution Pr over all possible worlds WEM shown in Fig. 3.

So, for instance, the probability that false negatives do not arise in any of the two tests,
and that the patient is at risk for both anxiety- and depression-related disorders (world λ4)
is 0.29808.

Fig. 3 Probability distribution for the worlds in the running example

Quantitative belief revision in structured probabilistic argumentation 381

2.2 Analytical model

The DeLP3E formalism adopts a structured argumentation framework [35] for the AM.
While the EM contains probabilistic information about the state of the world, the AM
must allow for a different kind of information; in particular, it must be able to repre-
sent contradictory knowledge. This approach allows for the creation of arguments that
may compete with each other in order to reach a conclusion regarding a given query.
This is known as a dialectical process, where arguments defeat each other based on
a comparison criterion. Resulting from this process, certain arguments are warranted,
while others are defeated. Argumentation-based reasoning has been proposed and stud-
ied in depth as a natural way to manage a set of inconsistent information – its strength
lies in the fact that it closely resembles the way humans settle disputes (consider, for
instance, how convictions are decided in trials). Another highly desirable characteristic
of structured argumentation frameworks is that, once a conclusion is reached, the pro-
cess also yields an explanation of how we arrived at it, as well as information about
why a given argument is warranted. In the following, we first recall the basics of the
underlying argumentation framework used, and then go on to introduce the analytical
model (AM).

2.2.1 Defeasible logic programming with presumptions (PreDeLP)

PreDeLP, first introduced in [31], is a formalism combining logic programming with defea-
sible argumentation. We will briefly recall the basics of PreDeLP, and refer the reader to [17,
31] for the complete presentation.

The formalism contains several different constructs: facts, presumptions, strict rules, and
defeasible rules. Facts are statements that always hold (such as a patient’s symptom in our
example), while presumptions are statements that may or may not be true (such as a medical
diagnosis). Strict rules establish logical consequences (similar to material implication in first
order logic, though the semantics is not exactly the same since the contrapositive does not
follow from a strict rule). While strict rules, like facts, always hold, defeasible rules specify
logical consequences that may be assumed to be true when no contradicting information
is available. These components are used in the construction of arguments, and together
comprise PreDeLP programs.

Formally, we use the notation �AM = (�, �, �, �) to denote a PreDeLP program,
where:

– � is the set of strict rules of the form L0 ← L1, . . . , Ln, where L0 is a ground literal
and {Li}i>0 is a set of ground literals;

– � is the set of facts, written simply as atoms;
– � is the set of defeasible rules of the form L0 –≺ L1, . . . , Ln, where L0 is a ground literal

and {Li}i>0 is a set of ground literals, and
– � is the set of presumptions, which are written as defeasible without a body.

For simplicity, we will sometimes refer to �AM as a set corresponding to the union of its
components.

Recall that all atoms in the AM must be formed with a predicate from the set PAM,
and note that in both strict and defeasible rules, strong negation (i.e., classical negation
as in first-order logic) is allowed in the head, and thus may be used to represent contra-
dictory knowledge. The following is an example of a PreDeLP program over the running
example.

382 G. I. Simari et al.

Fig. 4 A ground argumentation framework

Example 3 Consider again the medical diagnosis scenario from our running example; the
DeLP3E program in Fig. 4 encodes some basic knowledge that the attending physician
might use to diagnose their patient. For instance, strict rule ω1 states that based on a negative
result when administering a test for toxins in the blood we can conclude that the patient
is not misusing sleeping aids. On the other hand, defeasible rule δ1 states that memory
loss and depression can lead to such a misuse. In this example, the set of presumptions
is empty.

Arguments Given a query in the form of a ground atom, the goal is to derive arguments for
and against its validity – derivation follows the same mechanism of logic programming [29],
and we denote such derivation with the symbol “�”. In the following, we say that such a
derivation is “strict” if it only uses facts and strict rules; otherwise, we say that the derivation
is “defeasible”. Likewise, we say that a literal is strictly (defeasible) derived if the derivation
is strict (defeasible). Finally, we say that an argument is “factual” if no presumptions are
used in it.

Since rule heads can contain strong negation, it is possible to defeasibly derive contra-
dictory literals from a program. For the treatment of contradictory knowledge, PreDeLP
incorporates a defeasible argumentation formalism that allows the identification of the
pieces of knowledge that are in conflict and, through the dialectical process discussed
above, decides which information prevails as warranted. This dialectical process involves
the construction and evaluation of arguments, formally defined next.

Definition 2 (Argument) An argument 〈A, L〉 for a literal L is a pair of the literal and a
(possibly empty) set of the AM (A ⊆ �AM) that provides a minimal proof for L meeting the
following requirements: (i) L is defeasibly derived from A; (ii) �∪�∪A is not inconsistent;
and (iii) A is a minimal subset of � ∪ � satisfying (i) and (ii), denoted 〈A, L〉.

Literal L is called the conclusion supported by the argument, and A is the support of the
argument. An argument 〈B, L〉 is a subargument of 〈A, L′〉 if B ⊆ A. An argument 〈A, L〉
is presumptive if A ∩ � is not empty. We will also use �(A) = A ∩ �, �(A) = A ∩ �,
�(A) = A ∩ �, and �(A) = A ∩ �.

Quantitative belief revision in structured probabilistic argumentation 383

Fig. 5 Example arguments based on the running example scenario

Our definition differs slightly from that of [41], where DeLP is introduced, as we include
strict rules and facts as part of arguments. We make this change because in our framework
the strict rules and facts used to construct a given argument may only be true in certain
worlds in the EM. Hence, the entire set of facts and strict rules need not be consistent in our
framework. We shall discuss how portions of the AM are assigned EM worlds in the next
section.

Example 4 Figure 5 shows example arguments based on the PreDeLP program from Fig. 4.
Argument A3 uses an additional component not present in the original program, and states
that if we can assume a negative result for a tox screen, we can conclude that the patient is
not misusing sleeping aids.

Given an argument 〈A1, L1〉, counter-arguments are arguments that contradict it. Argu-
ment 〈A2, L2〉 is said to counterargue or attack 〈A1, L1〉 at a literal L′ iff there exists
a subargument 〈A, L′′〉 of 〈A1, L1〉 such that the set �(A1) ∪ �(A2) ∪ �(A1) ∪
�(A2) ∪ {L2, L

′′} is inconsistent. A proper defeater of an argument 〈A, L〉 is a
counter-argument that – by some criterion – is considered to be better than 〈A,L〉;
if the two are incomparable according to this criterion, the counterargument is said
to be a blocking defeater. An important characteristic of PreDeLP is that the argu-
ment comparison criterion is modular, and thus the most appropriate criterion for the
domain that is being represented can be selected; the default criterion used in clas-
sical defeasible logic programming (from which PreDeLP is derived) is generalized
specificity [43], though an extension of this criterion is required for arguments using
presumptions [31]. We briefly recall this criterion next – the first definition is for gen-
eralized specificity, which is subsequently used in the definition of presumption-enabled
specificity.

Definition 3 (DeLP Argument Preference) Let �AM = (�, �, �, �) be a PreDeLP pro-
gram and let F be the set of all literals that have a defeasible derivation from �AM. An
argument 〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with A1 �PS A2 if:

(1) For all H ⊆ F , �(A1) ∪ �(A2) ∪ H is consistent: if there is a derivation
for L1 from �(A2) ∪ �(A1) ∪ �(A1) ∪ H , and there is no derivation for L1 from
�(A1)∪�(A2)∪H , then there is a derivation for L2 from �(A1)∪�(A2)∪�(A2)∪H ;
and

(2) there is at least one set H ′ ⊆ F , �(A1) ∪ �(A2) ∪ H ′ is consistent, such that there
is a derivation for L2 from �(A1)∪�(A2)∪H ′ ∪�(A2), there is no derivation for L2 from
�(A1)∪�(A2)∪H ′, and there is no derivation for L1 from �(A1)∪�(A2)∪H ′ ∪�(A1).

Intuitively, the principle of specificity says that, in the presence of two conflicting lines
of argument about a proposition, the one that uses more of the available information is more
convincing. The following extension for presumptive arguments was first introduced in [31].

384 G. I. Simari et al.

Definition 4 (Presumptive Argument Preference) Given PreDeLP program �AM =
(�,�,�,�), an argument 〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with A1 � A2 if
any of the following conditions hold:

(1) 〈A1, L1〉 and 〈A2, L2〉 are both factual and 〈A1, L1〉 �PS 〈A2, L2〉.
(2) 〈A1, L1〉 is a factual argument and 〈A2, L2〉 is a presumptive argument.
(3) 〈A1, L1〉 and 〈A2, L2〉 are presumptive arguments, and

(a) �(A1) � �(A2) or,
(b) �(A1) = �(A2) and 〈A1, L1〉 �PS 〈A2, L2〉.

Generally, if A,B are arguments with rules X and Y , resp., and X ⊂ Y , then A is
stronger than B. This also holds when A and B use presumptions P1 and P2, resp., and
P1 ⊂ P2.

Note The specificity criterions used here are not transitive [47], and therefore should not
be assumed to define an ordering over arguments. This, however, does not pose a problem
for our framework, as the criterion is only ever used to compare pairs of arguments to see
which one “wins out”. We remind the reader that the comparison criterion in our framework
is modular; if transitivity is required, the one proposed in [47] is an option.

A sequence of arguments called an argumentation line thus arises from this attack rela-
tion, where each argument defeats its predecessor. To avoid undesirable sequences, which
may represent circular argumentation lines, in DELP an argumentation line is accept-
able if it satisfies certain constraints (see [17]). A literal L is warranted if there exists a
non-defeated argument A supporting L.

Clearly, there can be more than one defeater for a particular argument 〈A, L〉. Therefore,
many acceptable argumentation lines could arise from 〈A, L〉, leading to a tree structure.
The tree is built from the set of all argumentation lines rooted in the initial argument. In a
dialectical tree, every node (except the root) represents a defeater of its parent, and leaves
correspond to undefeated arguments. Each path from the root to a leaf corresponds to a dif-
ferent acceptable argumentation line. A dialectical tree provides a structure for considering
all the possible (maximal) acceptable argumentation lines that can be generated for decid-
ing whether an argument is defeated. We call this tree dialectical because it represents an
exhaustive dialectical (in the sense of providing reasons for and against a position) analy-
sis for the argument in its root. For a given argument 〈A, L〉, we denote the corresponding
dialectical tree as T (〈A, L〉).

Given a literal L and an argument 〈A, L〉, in order to decide whether or not a literal
L is warranted, every node in the dialectical tree T (〈A, L〉) is recursively marked as “D”
(defeated) or “U” (undefeated), obtaining a marked dialectical tree T ∗(〈A, L〉) as follows:

1. All leaves in T ∗(〈A, L〉) are marked as “U”s, and
2. Let 〈B, Lq〉 be an inner node of T ∗(〈A, L〉). Then 〈B, Lq〉 will be marked as “U” iff

every child of 〈B, Lq〉 is marked as “D”. The node 〈B, Lq〉 will be marked as “D” iff it
has at least a child marked as “U”.

Given an argument 〈A, L〉 obtained from �AM, if the root of T ∗(〈A, L〉) is marked as
“U”, then we will say that T ∗(〈A, L〉) warrantsL and that L is warranted from �AM. (War-
ranted arguments correspond to those in the grounded extension of a Dung argumentation
system [11].) There is a further requirement when the arguments in the dialectical tree con-
tains presumptions – the conjunction of all presumptions used in even (respectively, odd)
levels of the tree must be consistent. This can give rise to multiple trees for a given literal,
as there can potentially be different arguments that make contradictory assumptions.

Quantitative belief revision in structured probabilistic argumentation 385

Fig. 6 An example of an annotation function over the running example

We can then extend the idea of a dialectical tree to a dialectical forest. For a given literal
L, a dialectical forest F(L) consists of the set of dialectical trees for all arguments for L. We
shall denote a marked dialectical forest, the set of all marked dialectical trees for arguments
for L, as F∗(L). Hence, for a literal L, we say it is warranted if there is at least one
argument for that literal in the dialectical forest F∗(L) that is labeled as “U”, not warranted
if there is at least one argument for the literal ¬L in the dialectical forest F∗(¬L) that is
labeled as “U”, and undecided otherwise. We shall refer to whether literal L is warranted,
not warranted, or undecided as L’s “warrant status”, and sometimes refer to the “warranted”
status as “Yes” and the “not warranted” status as “No”.

2.3 The DeLP3E framework

Our framework, originally proposed in [38], is the result of combining the environmen-
tal and analytical models (which we denote with �EM and �AM, respectively). Intuitively,
given �AM, every element of � ∪ � ∪ � ∪ � only hold in certain worlds in the set WEM

– i.e., these elements are subject to probabilistic events. Each element of � ∪ � ∪ � ∪ �

is thus associated with a formula over GEM (using conjunction, disjunction, and nega-
tion, as usual) – we use formEM to denote the set of all such formulas. The notion
of an annotation function associates elements of � ∪ � ∪ � ∪ � with elements in
formEM .

Definition 5 (Annotation Function [38]) An annotation function is any function of the
form af : � ∪ � ∪ � ∪ � → formEM . We use [af] to denote the set of all annotation
functions.

We will sometimes denote annotation functions as sets of pairs (f, af(f)) in order to
simplify the presentation. Figure 6 shows an example of an annotation function for our
running example; for instance, the annotation for rule δ2 means that this rule only holds
whenever the probabilistic event anx risk is true. If annotations are “True”, this means that
they hold in all possible worlds.

Definition 6 (DeLP3E Program) Given environmental model �EM, analytical model �AM,
and annotation function af , a DeLP3E program is of the form I = (�EM,�AM, af). We
use notation [I] to denote the set of all possible programs.

386 G. I. Simari et al.

Fig. 7 A depiction of how the DeLP3E program in the running example can be decomposed into one classical
PreDeLP program for each possible EM world (cf. Fig. 3 for the definition of worlds λ1–λ16 in terms of the
random variables in the EM)

In the following, given DeLP3E program I = (�EM,�AM, af) and λ ∈ WEM, we use
notation �AM(λ) = {f ∈ �AM s.t. λ |= af (f)}. This gives rise to a decomposed view of
DeLP3E programs, as illustrated next.

Example 5 Consider the different examples presented so far: the EM from Example 2 (with
the worlds from Fig. 3), �AM from Fig. 4, the arguments in Fig. 5, and the annotation func-
tion from Fig. 6 – these components give rise to a DeLP3E program I = (�EM,�AM, af)
Fig. 7 shows how I can be decomposed into one classical PreDeLP program �AM(λ) for
each world λ ∈ WEM.

For instance, �AM(λ7) contains θ1, θ2, θ3, ω1, ω2, ω3, ω4, and δ1 because the annotation
function associates condition True to all of these components; it contains δ2 and δ4 because
condition anx risk is true in λ7, and it does not contain δ3 because condition dep risk is false
in λ7.

The most direct way of considering consequences of DeLP3E programs is thus to con-
sider what happens in each world in WEM; that is, the defeat relationship among arguments
depends on the current state of the (EM) world.

Definition 7 (Existence of an Argument in a World) Given DeLP3E program I =
(�EM,�AM, af), argument 〈A, L〉 is said to exist in world λ ∈ WEM if ∀c ∈ A, λ |= af(c).

The notion of existence is extended to argumentation lines, dialectical trees, and dialec-
tical forests in the expected way (for instance, an argumentation line exists in λ iff all
arguments that comprise that line exist in λ).

Example 6 Consider the different examples presented so far: the worlds in Fig. 3, �AM

from Fig. 4, the arguments in Fig. 5, and the annotation function from Fig. 6.
Since argument A1 uses defeasible rule δ3, and af (δ3) = dep risk (while the other two

components have annotation “True”), we can conclude that this argument exists in worlds
in which dep risk is true, i.e., λ1–λ4 and λ9–λ12.

Quantitative belief revision in structured probabilistic argumentation 387

The idea of a dialectical tree is also extended w.r.t. worlds; so, for a given world
λ ∈ WEM, the dialectical (resp., marked dialectical) tree induced by λ is denoted with
T

λ〈A,L〉 (resp., T ∗
λ〈A,L〉). We require that all arguments and defeaters in these trees exist

in λ. Likewise, we extend the notion of dialectical forests in the same manner (denoted
with Fλ(L) and F∗

λ (L), respectively). Based on these concepts, we introduce the notion of
warranting scenario.

Definition 8 (Warranting Scenario) Given DeLP3E program I = (�EM, �AM, af) and
literal L formed with a ground atom from GAM, a world λ ∈ WEM is said to be a warranting
scenario for L (denoted λ �war L) if there is a dialectical forest F∗

λ (L) in which L is
warranted and F∗

λ (L) exists in λ.

The idea of a warranting scenario is used to formally define DeLP3E entailment. The set
of worlds in the EM where a literal L in the AM must be true is exactly the set of warranting
scenarios — these are the “necessary” worlds: necnec(L) = {λ ∈ WEM | (λ �war L)}.
Now, the set of worlds in the EM where AM literal L can be true is the following — these
are the “possible” worlds: poss(L) = {λ ∈ WEM | λ ��war ¬L}.

In the following we use notation for(λ) = ∧
a∈λ a∧∧

a /∈λ ¬a, which denotes the formula
that has λ as its only model. We now extend this notation to sets of worlds: for(W) =∨

λ∈W for(λ). Entailment can then be defined as follows:

Definition 9 (DeLP3E Entailment) Given DeLP3E program I = (�EM, �AM, af), AM
literal L and probability interval p ∈ [�, u], we say that I entails L with probability p ∈
[�, u] if the probability distribution Pr yielded by �EM is such that � ≤ ∑

λ∈nec(L) Pr(λ)

and
∑

λ∈poss(L)λ Pr(λ) ≤ u.

2.4 Consistency of DeLP3E programs

Finally, one of the central topics of this paper is that of inconsistencies, which can arise in
our framework in more than one way [38]. In this paper, we assume that the probabilistic
model is consistent, and focus on inconsistencies that arise in the AM. Towards this end,
we use the following notion of (classical) consistency: PreDeLP program � is said to be
consistent if there does not exist a ground literal a s.t. � � a and � � ¬a. For DeLP3E
programs, the interaction between the annotation function and facts and strict rules may
cause conflicts, as defined next.

Definition 10 (Consistency of DeLP3E Programs) A DeLP3E program I =
(�EM,�AM, af), with �AM = 〈�,�, �, �〉, is consistent if: given probability distribution
Pr for �EM, if there exists a world λ ∈ WEM such that

⋃
x∈�∪� | λ|=af(x){x} is inconsistent,

then we have Pr(λ) = 0.

The intuition behind this definition is that subsets of facts and strict rules hold under the
circumstances specified by the annotation function – such circumstances can be expressed
as sets of EM worlds. Now, if there exists a world where (at least) two contradictory strict
statements are true, then the EM must assign probability zero to this world.

Example 7 Let us return to the running example; consider �AM from Fig. 4, �EM from
Fig. 2, and the annotation function from Fig. 6, with the addition of fact θ4 = pos dep test
with af (θ4) = True and fact θ5 = neg anx test with af (θ5) = ¬FN-anx test. It is now clear

388 G. I. Simari et al.

that the program is inconsistent, since there exists world λ3 (among several others) such
that

⋃
x∈�∪� | λ3|=af(x){x} warrants both anxiety (via argument with θ4 and ω3) and ¬anxiety

(via argument with θ5 and ω2).

3 Revision of DeLP3E programs based on quantitative aspects

We have finally arrived at the main problem we address in this paper – revising knowl-
edge bases. This problem can be generically stated as: given DeLP3E program I =
(�EM,�AM, af), with �AM = �∪�∪� ∪ � and a pair (f, af ′) where f is either an atom
or a rule and af ′ is equivalent to af , except for its expansion to include f 3, obtain a new
program I ′ called the revised knowledge base that addresses the incorporation of the epis-
temic input (f, af ′) into the original program; we denote this operation with the symbol “•”
– i.e., I ′ = I • (f, af ′).

Now, the problem statement as presented above is quite vague, since we did not give any
details as to how the operator “addresses the incorporation” of the epistemic input. There are
many approaches in the literature (cf. Section 6) that address this problem quite differently;
one of the main properties that characterize revision operators is whether or not they satisfy
the Success property, which states that the epistemic input must be a consequence of the
revised knowledge base. Here, we will adopt a cautious stance and assume that this property
does not hold in general; therefore, we focus on so-called non-prioritized revision operators.

The basic issue that revision operators must deal with is inconsistency (we will discuss
this in more depth shortly); as we saw in Section 2.4, inconsistency in DeLP3E programs
involves worlds that have non-zero probability and an associated PreDeLP program that is
inconsistent. In our previous work [38, 40] we identified three basic approaches that can be
taken towards solving this problem:

– Modifying the EM: Perhaps the simplest approach is to fix the problem of inconsistency
by forcing the probabilistic model to assign probability zero to all worlds that cause
inconsistencies to arise.

– Modifying the AM: Alternatively, for each world in which the corresponding PreDeLP
program is inconsistent, we can modify this program to remove the problem.

– Modifying the annotation function. Finally, as a finer-grained approach compared to the
previous one, we can alter the annotation function.

In the following, we will assume that epistemic inputs involve only strict components
(facts or rules), since defeasible components can always be added without inconsistencies
arising. Regarding these three possible approaches, in this paper we will focus on the third
one since it is a generalization of the second – if we only allow removing elements from
the AM, such an operation will have the same effect as not removing the element but modi-
fying the annotation function so that it associates the formula “⊥” to it. The generalization
of annotation function-based revision lies in that there is not always the need for such a
drastic measure; see [40] for further discussions on this, including examples. Furthermore,
operations of the first kind alone do not suffice to perform revisions, as can be seen in the
following simple example.

3That is, af ′(x) = af (x) for all x ∈ dom(af), and dom(af ′) = dom(af) ∪ {f }.

Quantitative belief revision in structured probabilistic argumentation 389

Example 8 Consider the following DeLP3E program, where the EM consists of two worlds
{a} and {¬a}, each with probability 0.5:

ω1 : p ← q af (ω1) = a

θ1 : ¬p af (θ1) = a

ω2 : ¬p ← q af (ω2) = ¬a

θ2 : p af (θ2) = ¬a

Now, suppose we wish to revise by formula θ3 : q with af (θ3) = True. Since both EM
worlds are inconsistent with the formula, it is impossible to change the allocation of the
probability mass in order to avoid inconsistencies; therefore, the only option is to reject the
input.

3.1 A recap of annotation function-based belief revision

Since the quantitative approach that we propose in this paper is related to the AFO class
of revision operators introduced in [38], in this section we provide a brief summary of the
relevant material. After recalling the relevant postulates, we present the construction of AFO
operators.

3.1.1 Rationality postulates

The following properties characterize the behavior of operators for revising annotation func-
tions; we briefly discuss them here in an informal manner, and refer the reader to [40] for
their formal presentation.

– Inclusion: For any given element g in the AM, the worlds that satisfy g’s annota-
tion after the revision are a subset of the set of worlds satisfying g’s annotation before
the revision. That is, the constraints in the revised annotations can only become more
restrictive.

– Vacuity: If simply adding the input to the program does not lead to inconsistencies,
then the operator does precisely that.

– Consistency Preservation: If the original program is consistent, then so is the revised
program.

– Weak Success: As in Vacuity, if adding the input to the program does not cause
inconsistencies, then the input must be present “as is” in the revised program.

– Relevance: Given a specific EM world, if a part of its associated AM knowledge base
is removed by the operator, then there exists a superset of the remaining knowledge
base that is not consistent with the removed element and the input. That is, removed
elements are always “relevant” to an inconsistency.

– AF Uniformity: If two different inputs are such that the same set of EM worlds lead
to inconsistencies in a given AM knowledge base, and it is the case that analogous
subsets taken in conjunction with their respective input lead to equivalent consis-
tency/inconsistency, then the models removed from the annotations elements in the
AM knowledge base are the same for both inputs. In other words, the operator must
behave in the same way when presented with inputs that have an equivalent effect on
the knowledge base.

We now continue briefly recalling the presentation of the annotation function-based operator
of [38] by discussing its construction. In order to do so, we adopt the following notation:
the program to revise is denoted with I = (�EM,�AM, af), with �AM = � ∪ � ∪ � ∪ �,

390 G. I. Simari et al.

and the epistemic input is denoted with (f, af ′), where f is either an atom or a rule and af ′
is equivalent to af , except for its expansion to include f . We denote the revision as follows:
I • (f, af ′) = (�EM,�AM, af ′′) where af ′′ is the revised annotation function. We will
slightly abuse notation in order to make the presentation clearer, and use notation to convert
sets of worlds to and from formulas. Moreover, we often refer to “removing elements of
�AM” to refer to changes to the annotation function that cause certain elements of the �AM

to not have their annotations satisfied in certain EM worlds. As we are looking to change the
annotation function for a specific subset of facts and strict rules, we specify these subsets
with the following notation:

– I ∪ (f, af ′) to denote I ′ = (�EM,�AM ∪ {f }, af ′).
– (f, af ′) ∈ I = (�AM,�EM, af) to denote f ∈ �AM and af = af ′.
– W0

EM(I) = {λ ∈ WEM | �I
AM(λ) is inconsistent} – this set contains all the EM worlds

for a given program where the corresponding knowledge base in the AM is classically
inconsistent.

– WI
EM(I) = {λ ∈ W0

EM |Pr(λ) > 0} – this is a subset of W0
EM(I) containing worlds

that are assigned a non-zero probability; i.e., the worlds where inconsistency in the AM
arises.

– wld(f) = {λ | λ |= f } – the set of worlds that satisfy formula f ; and
– for(λ) = ∧

a∈λ a ∧ ∧
a /∈λ ¬a – the formula that has λ as its only model.

– �I
AM(λ) = {f ∈ � ∪ � | λ |= af(f)} – the subset of facts and strict rules in �AM

whose annotations are true in EM world λ.

We will make use of this notation in the next section.

3.1.2 Operator construction

The basis of the construction of the class of so-called annotation function-based operators is
that any subset of �AM that is associated with a world in WI

EM(I ∪ (f, af ′)) must be modi-
fied so that consistency is ensured. For each such world λ, we make use of the following set
of “candidate replacement programs” for �AM(λ):

CandPgmaf (λ,I) = {�′
AM | �′

AM ⊆ �AM(λ) s.t. �′
AM is consistent and

��′′
AM ⊆ �AM(λ)s.t. �′′

AM ⊃ �′
AM s.t. �′′

AM

is consistent}
The intuition is that each maximal consistent subset of �I

AM(λ) is a candidate for replacing
the inconsistent program for that world. To specify the construction, we need to introduce
some more notation. Let � : WEM → 2[�]∪[�]; i.e., a function from EM worlds to subsets
of the strict components of the AM – this function will be used to choose the revised AM
for each world. For each component h in the AM there is a formula in �AM ∪ {f }, where f

is part of the epistemic input (i.e., what the operator is revising by). Given these elements,
we define:

newFor(h, �,I, (f, af ′)) = af ′(h) ∧
∧

λ∈WI
EM(I∪(f,af ′)) | h/∈�(λ)

¬f or(λi)

Intuitively, newFor provides a new annotation for each component h ∈ �AM; such formula
can be seen as the result of selecting a maximally consistent subset of �AM(λ) for each EM
world λ. We are finally able to introduce the AFO class of operators:

Quantitative belief revision in structured probabilistic argumentation 391

Fig. 8 The DeLP3E program from the running example, after adding facts θ4 and θ5. The annotation function
is provided in a separate column for convenience

Definition 11 (AF-based Operators [38, 40]) A belief revision operator • is an “annotation
function-based” (or af-based) operator (• ∈ AFO) if given program I = (�EM,�AM, af)
and input (f, af ′), the revision is defined as I • (f, af ′) = (�EM, �AM ∪ {f }, af ′′), where:

∀h, af ′′(h) = newFor(h, �,I, (f, af ′))

where ∀λ ∈ WEM, �(λ) ∈ CandPgmaf (λ,I ∪ (f, af ′)).

In [38, 40], we provide a representation theorem that states the equivalence between this
construction and the operators discussed above. We refer the reader to these articles for a
more complete and detailed presentation.

3.2 Towards a quantitative approach

Traditionally, belief revision has been addressed from a qualitative point of view rather than
a quantitative one (cf. Section 6 for a discussion on related work). A simple example of this
is the fact that, faced with the option of removing either both atoms a and b or only atom c,
classical revision operators typically declare both options to be just as good, since neither is
a subset of the other; it could be argued, then, that taking quantitative aspects into account
(such as the number of elements removed) may lead to a better solution – of course, this may
depend on other factors. As we will see, there are different ways in which such quantitative
aspects can be incorporated into revision operations. For instance, in our setting, DeLP3E
programs can be regarded in a world-by-world manner, and changes made in one world
can be compared to those made in another. The AFO operators described in Section 3.1
make decisions for each world independently; we now wish to address the issue of taking
into account different kinds of quantitative aspects when revising DeLP3E programs. The
following example motivates our approach in our medical diagnosis scenario.

392 G. I. Simari et al.

Example 9 Consider again the running example, and suppose the physician has decided to
carry out as a first step two tests, a toxin screen and an anxiety test, and that both tests
yielded negative results. Note that the validity of these tests is subject to probabilistic events
(in this case, false negatives). The new program is reproduced in Fig. 8.

Figure 9 shows the world-by-world decomposition of the new program, and the atoms
that are warranted in each case. From the information in this figure, we can compute the
following probabilities for the hypotheses that the physician is contemplating (depression,
anxiety, and misuse of sleeping aids):

Literal Probability

depression : 0.06672
sleep aid misuse : 0.05088
¬sleep aid misuse : 0.93324
anxiety : 0.06992
¬anxiety : 0.92888

Since they all have low probabilities after performing the tests, the doctor decides to test
for depression and in this case receives a positive result (atom pos dep test). For the sake of
this example, we will assume that the validity of the outcome of this test (unlike the other
two) is not subject to probabilistic events – thus, we have af (pos dep test) = True.

Now, while for the first two tests we were able to simply add the corresponding atoms and
extend the annotation function accordingly, simply adding θ6 = pos dep test with af (θ6) =
True causes inconsistencies to arise in eight of the possible worlds (λ3, λ4, λ7, λ8, λ11, λ12,
λ15, and λ16). Essentially, the problems arise because the negative anxiety test allows us
to conclude that there is no anxiety, while the positive depression test would allow us to
conclude that indeed there is anxiety. Since both derivations only involve strict components,
this leads to an inconsistent AM.

Example 9 shows an interesting case of belief revision in DeLP3E programs; when pre-
sented with new information that is in conflict with existing one, we must find a way to
address its incorporation into the existing knowledge – non-prioritized operators are very
flexible, since they always have the option of ignoring the new information. However, this
flexibility also means that – in the case of DeLP3E programs – there is no guidance with
respect to how revisions should be carried out globally, since each world is treated as a sep-
arate revision problem. Next, we discuss two kinds of functions that will prove to be useful
in addressing this situation.

3.2.1 Two building blocks

We now introduce warrant probability functions and revision objective functions, which
are later used in the definition of our new class of non-prioritized belief revision
operators.

Warrant Probability Functions As one of the building blocks to our quantitative
approach, given a DeLP3E program I we define warrant probability functions (WPFs, for
short).

Quantitative belief revision in structured probabilistic argumentation 393

Fig. 9 Atoms that are warranted in each possible EM world, given the AM and annotation function in Fig. 8

Before introducing these formulas, we need to present a simple extension to the concept
of “warrant status”, which is up to now defined for literals. The following definition is a
simple extension to conjunctions or disjunctions of literals.

Definition 12 (Warranting a Conjunction/Disjunction of Literals) Let �AM be a ground
PreDeLP program and Q be either a conjunction or disjunction of ground literals
L1, . . . , Ln. The warrant status of Q with respect to �AM is defined as follows:

1. If Q is a single literal L, then the warrant status of Q is the warrant status of L in �AM.
2. If Q = Q1 ∧ Q2 then the warrant status of Q is:

– Yes iff the warrant status of both Q1 and Q2 is Yes;
– No if the warrant status of either Q1 or Q2 is No; and
– Undecided whenever neither of the above cases hold.

3. If Q = Q1 ∨ Q2 then the warrant status of Q is:

– Yes iff the warrant status of either Q1 or Q2 is Yes;
– No if the warrant status of both Q1 and Q2 is No; and
– Undecided whenever neither of the above cases hold.

Using Definition 12, we can easily extend the nec and poss notations (cf. Page 14) to
conjunctions and disjunctions of literals.

The following result is a consequence of the fact that conflicting literals cannot be
warranted in (Pre)DeLP [17].

Proposition 1 Let �AM be a ground PreDeLP program and Q = L1 ∧ . . . ∧ Ln be a
conjunction of ground literals. Then, only one of the following cases holds: (i) P �war Q,
(ii) P �war ¬Q, or (iii) the warrant status of Q is undecided.

Proof In [17], a corresponding trichotomy result was shown for literals, i.e., the warrant
status for any literal is one and only one of Yes, No, and Undecided. Our result is a direct
consequence of this and Definition 12.

394 G. I. Simari et al.

Fig. 10 Histogram depiction of the entailment probability functions for the programs of Example 9

Warrant Probability Functions are then simply defined as partial mappings with signa-
ture:

ϒI : basicAM → [0, 1]
such that for f ∈ basicAM , ϒI(f) = p if and only if

∑
λ∈nec(f) Pr(λ) = p. 4 When the

program is clear from context, we drop the subscript and write simply ϒ . In the following,
we use notation dom(ϒ) to denote the set of formulas for which ϒ is defined. The table
shown in Example 9 is a simple example of a WPF, whose domain is a handful of literals.
The following is another example along the same vein.

Example 10 Figure 10 shows three examples of WPFs in which the domains are fixed to
the set of literals that can be warranted in the input program. These functions are related
to the revision described in Example 9: the black bars show the original probabilities, the
striped bars give the probabilities yielded by the program obtained by favoring the inclusion
of the positive depression test, while the light gray bars depict the probabilities obtained by
favoring the negative anxiety test. Figure 11 shows the three revised programs.

Revision Objective Functions The other building block allows us to effectively quantify
how good a revision is considered to be. Towards this end, we define revision objective
functions (ROFs, for short) as functions that take two DeLP3E programs I1 and I2, along
with an epistemic input (f, af), and returns a positive real number. We keep the definition
of ROFs very general in order to allow different kinds of objectives to be specified. The
following is a simple example of a ROF over our running example, which makes use of
warranting probability functions.

4Note that this definition can easily be extended to deal with probability intervals as well (i.e., using both
nec and poss); here, for simplicity of presentation, we adopt this definition in order to work with point
probabilities.

Quantitative belief revision in structured probabilistic argumentation 395

Fig. 11 The DeLP3E program from the running example, after performing three revisions: (i) The addition
of the θ4 and θ5, as discussed in Example 9; (ii) The revision by pos dep test by prioritizing this input; and
(iii) The same revision but prioritizing neg anx test

Example 11 Let us return once again to the medical diagnosis example. Suppose that we
take the three revised programs we presented (Fig. 11) – call them I1, I2, and I3 – and that
we wish to compare them with respect to the effect of the last revision over the warranted
atoms, taking the probabilities yielded by I1 as the baseline. So, we define the following
revision objective function:

�(I,I ′, (f, af ′)) = e
− ∑

L∈LAM,L �=f |ϒI (L)−ϒI′ (L)|

where ϒI is the WPF for program I .
Intuitively, this function sums up all the differences between the probabilities of liter-

als entailed by the programs, but ignores the input (if it is a literal). In this way, a distance
between the original program and the two possible revisions is obtained based on the effects
that each revision had on the probabilities with which literals are derived. So, for our
revisions, we get:

�(I1,I2, (pos dep test, af 2)) ≈ 0.0547

�(I1,I3, (pos dep test, af 3)) ≈ 0.8611

Therefore, we can conclude that the revision yielding I3 is preferred over the one yielding
I2 when this ROF is adopted.

Note that the function presented in Example 11 is just one possibility; the framework
is very flexible and allows the user to express many different functions, depending on the
specific way in which they wish to express distances between the original program and a
given revised program.

396 G. I. Simari et al.

3.2.2 The class QAFO

Given the basic constructs introduced above, we can now define the class of quantitative
annotation function-based revision operators.

Definition 13 (The Class QAFO) Let I = (�EM, �AM, af), with �AM = �∪�∪� ∪ � be
a DeLP3E program, � ∈ AFO be an annotation function-based belief revision operator, and
� be a revision objective function. Operator � is said to be a quantitative af-based operator
(denoted � ∈ QAFO) if:

Given an epistemic input (f, af ′), we have that if I ′ = I � (f, af ′) then there
does not exist DeLP3E program I ′′ = I • (f, af ′) such that �(I,I ′′, (f, af ′)) >

�(I,I ′, (f, af ′)),

where • ∈ AFO is an arbitrary operator.

So, this subclass of AFO simply takes a revision objective function and uses it to obtain
the best possible revised program. The following example, based on our previous work on
applications of DeLP3E to problems in the cyber security domain [39], shows how QAFO
operators can be applied to belief revision problems in real-world scenarios other than the
running example.

Example 12 Suppose we are modeling a cyber security scenario in which a computer worm
has been deployed and has infected millions of computers worldwide – by the time the
worm is discovered, it is very difficult to reason about the origin and even the intended
target of the attack. In this kind of situations, analysts are trying to solve the so-called attri-
bution problem: given a cyber operation of interest, determine the party that was ultimately
responsible for carrying it out [37].

Towards this end, we can model all knowledge available by means of a DeLP3E program
I = (�EM, �AM, af), in which there is one distinguished predicate condOp(A,O) in the
AM that is intuitively read as “actor A conducted operation O”. Furthermore, if we assume
that only one actor is ever responsible for an operation (an assumption that can easily be
removed), we have an integrity constraint of the form oneOf(C), where C is the set of all
ground atoms built with the condOp predicate.

Given this setup, we can define a WPF with a domain consisting of some formulas of
interest that reflect conditions that the analysts would like to remain relatively unaffected
when incorporating new information. For instance, suppose we define:

dom(ϒ) =
{

¬condOp(countryA,worm) ∧ ¬condOp(countryB,worm)

condOp(countryD,worm)
}
,

denoting the fact that neither country A nor country B are responsible for deploying the
worm, and that country D is. If we pair this WPF with the ROF from Example 11, the
corresponding QAFO operator will prefer revisions that do not affect the conclusions already
reached regarding the probabilities assigned to these statements.

In other words, this definition of dom(ϒ), with the ROF in question, causes distances
to be gauged relative to their effect on the probabilities assigned to the suspicions that (i)
neither country A nor country B carried out the attack, and (ii) country D is behind the
attack. Thus, such a setup causes the operator to prefer revisions that keep the probabilities
assigned to such suspicions as close as possible to the ones yielded by the original program.

Quantitative belief revision in structured probabilistic argumentation 397

In the next section, we study the computational complexity associated with this approach
to belief revision in the DeLP3E setting.

4 Computational complexity

In this section, we will focus on some of the computational aspects of quantitative af-based
belief revision operations.

As a first observation, we have that the problem of deciding the warranting status in a
(classical) PreDeLP program has not yet been pinpointed. In [4], the authors present a proof
for the PSPACE-completeness of the problem of marking a given dialectical tree; PSPACE
membership for deciding the warrant status is therefore a direct consequence of this result,
since a dialectical tree can be built within this budget. As a step towards finding a lower
bound for the complexity of the problem in general, we have the following.

Proposition 2 Let �AM be a ground PreDeLP program and L be a ground literal. Deciding
�AM �war L is NP-hard.

Proof By reduction from 3SAT-CNF; we therefore start with an input formula F with n

variables X1, . . . , Xn and m clauses C1, . . . , Cm. We produce a PreDeLP program �AM

with the following predicates: f , x1, . . . , xn, and c1, . . . , cm. We then set:

� = {f, ¬f, x1, ¬x1, . . . , xn,¬xn}
� = {cj –≺ xi | Xi = T makes clause Cj true} ∪

{cj –≺ ¬xi | Xi = F makes clause Cj true} ∪
{f –≺ ci | for each clause Ci}

� = � = ∅
Next, we set the comparison criterion to specificity (the default in PreDeLP), except for the
following exceptions:

〈{xi, cj –≺ xi}, cj 〉 is always preferred over 〈{¬xi, cj –≺ ¬xi}, cj 〉
〈{¬f }, ¬f 〉 is preferred over 〈{f }, f 〉
Now, we must show that �AM �war f if and only if there exists a satisfying assump-

tion for formula F . Suppose �AM �war f ; the only way this can happen is if argument
〈{¬f },¬f 〉 (the only counterargument to 〈{f }, 〉) is defeated, which happens if and only if
all arguments that defeat this argument are in turn undefeated. Note that the only arguments
capable of being in this situation are the ones using the rules with cj in the head. Therefore,
if all such arguments are undefeated it must be the case that either xi or ¬xi can be chosen
for each variable Xi in such a way that all clauses are satisfied, which holds if and only if
there exists a satisfying assumption for F .

As a corollary to Proposition 2, we have that deciding our extended notion of warrant
status remains within the same complexity bounds.

Corollary 1 Let �AM be a ground PreDeLP program and Q be either a conjunction or
disjunction of ground literals. Deciding �AM �war Q is NP-hard and in PSPACE.

398 G. I. Simari et al.

Proof (Sketch) Applying Definition 12, the warrant status of Q can be determined in poly-
nomial time based on the warrant status of its literals; therefore, the same complexity results
for determining the warrant status of a single literal apply.

Assumption Since, as stated above, the precise complexity of deciding the warrant status
of a literal in a PreDeLP program is not yet known, and with the objective of separating
the complexity of this problem from the complexity of the problems inherent to quantita-
tive belief revision in DeLP3E programs, in the following we will make the assumption that
classical warranting in PreDeLP is decidable in polynomial time. This is not an unreason-
able assumption if we consider the possibility of pre-compiling inferences [3] or having
tractable approximation algorithms to address the problem. We call this the polynomial-
time warranting (PTW) assumption. Note that, even though this assumption does not hold
in general, it is a useful tool in the analysis of the complexity of the problems studied here;
it is also with this spirit that we make use of the PTW assumption.

Unfortunately, our first result regarding the probabilistic extension of PreDeLP tells us
that computing WPFs runs into a computational tractability hurdle.

Theorem 1 Under the PTW assumption, computing the warrant probability function for a
DeLP3E program is #P-hard.

Proof We will prove the statement by reduction from #3CNF-SAT. Given formula F in
3CNF with n variables and m clauses, generate a DeLP3E program as follows: in the AM,
there is one atom f , one atom ci for each clause in F and two atoms for each variable V

in, which we denote with posV and negV . For each clause Ci in F of the form X̂ ∨ Ŷ ∨ Ẑ,
where V̂ denotes either V or ¬V , we have strict rules:

ci ← x̂

ci ← ŷ

ci ← ẑ

where v̂ denotes posV if V is positive in the clause and negV if it is negative. Next, we have
the strict rule:

f ← c1, . . . , cm

and facts posV and negV for each variable V in the input formula.
In the EM we have atoms event-posV and event-negV for each variable V in F .

The probability distribution assigns probability 0.5 to each individual event, probabil-
ity 0 to the conjunction of both events for the same variable, and probability 1 to their
disjunction.

Finally, the annotation function θ assigns formula True to all components of the AM,
except the facts, for which we have af (posV) = event-posV and af (negV) = event-negV .

Now we can see that, with this DeLP3E program, if the warranting probability function
ϒ assigns probability p to atom f , we have that:

∑
λ∈nec(f) Pr(λ) = p.

Clearly, from our construction we know that λ ∈ nec(f) iff λ corresponds to a satisfy-
ing assignment for formula F . Therefore, p = k

2n , where k is the number of satisfying
assignments for F . Solving for k, we have k = p · 2n.

Quantitative belief revision in structured probabilistic argumentation 399

The complexity class #P contains problems related to counting solutions (or, in Turing
machine terms, accepting paths) to problems in NP. The decision version of this class is
called PP, and contains problems decidable by a probabilistic Turing machine in polynomial
time, with error probability less than a certain proportion (say, 1/2). Unfortunately, Toda’s
theorem [46] tells us that a polynomial-time Turing machine with either a PP or #P oracle
can solve all problems in the polynomial hierarchy.

Though it might be surmised that the #P-hardness is caused solely by the computation
of probabilities (as is the case in many probabilistic formalisms), by analyzing the proof of
Theorem 1 we can quickly arrive at the following conclusion.

Observation 1 Computing the warrant probability function for a DeLP3E program is #P-
hard even in the special case in which probabilities associated with EM worlds can be
computed in PTIME.

Though this intractability holds in general, restricting the EM can soften the impact on
complexity. For instance, if we assume that Nilsson’s probabilistic logic [32] is used then
the complexity is lowered, as we show next; first, we introduce a lemma that will be used in
the proof of this result:

Lemma 1 ([6, 12]) If a system of m linear equalities and/or inequalities has a nonnegative
solution, then it has a nonnegative solution with at most m positive variables.

This result was first introduced in [6], and later used in [12] to show that deciding the
validity of a formula in their logic is NP-complete. We can now state our result.

Proposition 3 Under the PTW assumption, and assuming that Nilsson’s probabilistic logic
is used in the EM, computing the warrant probability function for a DeLP3E program is
NP-complete.

Proof
Membership: Lemma 1 states that a solution to a linear program is guaranteed to exist
where only a number of the variables that is linear in the number of constraints in the EM are
set to a non-zero value. This implies the existence of a number of EM worlds with non-zero
probability that is linear in the number of statements in the probabilistic model. A witness
can therefore be verified in polynomial time.

Hardness: NP-hardness is a consequence of the well-known fact that SAT is reducible to
computing probabilities in Nilsson logic (cf. [26] for a detailed proof).

The previous result gives us a hint towards reaching the next one: if we combine
the simplifying assumption that probabilities can be computed tractably with the further
assumption that the number of EM worlds that have non-zero probability is bounded by
a polynomial (condition 1 below), then we are guaranteed that computing WPFs is also
tractable.

Corollary 2 Let I = (�EM,�AM, af), with�AM = �∪�∪� ∪ �, be a DeLP3E program.
If we make the following assumptions:

1. |{λ | λ ∈ WEM and Pr(λ) > 0}| ∈ O(poly(n)), where n represents the size of the input;
2. Pr(λ) can be computed in PTIME for any λ ∈ WEM; and
3. the PTW assumption holds,

400 G. I. Simari et al.

then warrant probability functions for I can also be computed in PTIME.

Proof Direct consequence of the assumption that we have access to the polynomially many
worlds that have non-zero probability. We thus simply keep an accumulator for each element
in the domain of the WPF and iterate through the set of worlds, adding the probability of
the world to each formula’s accumulator if and only if it is warranted in the AM induced by
that world.

Unfortunately, the following result states that even in this scenario we still face an
intractable hurdle when computing optimal revisions.

Theorem 2 Let I = (�EM, �AM, af), with �AM = �∪�∪� ∪ �, be a DeLP3E program,
� ∈ QAFO, and � be a revision objective function that can be computed in polynomial time.
If we have that:

1. |{λ | λ ∈ WEM and Pr(λ) > 0}| ∈ O(poly(n)), where n represents the size of the input;

2. Pr(λ) can be computed in PTIME for any λ ∈ WEM; and

3. the PTW assumption holds,

then deciding if �(I,I � (f, af ′), (f, af ′)) ≤ k for some k ∈ R, is NP-complete.

Proof

Membership: Given I ′, we can check in polynomial whether each world with non-
zero probability induces a maximal consistent subset of I in that world; by construction,
AFO operators are only constrained to make such changes in worlds with probability
greater than zero. Furthermore, since by hypothesis we know that � can be com-
puted in polynomial time, we can decide whether or not the witness satisfies the
constraints.

Hardness: By reduction from SUBSET-SUM; we therefore start from an instance of this
problem, which consists of a set of n integers x1, . . . , xn and another integer c; the goal is
to verify if there exists a subset of the numbers that add up to c. Lets then create an instance
of our problem, starting with a DeLP3E program with one atom numi in the AM for each
xi in the input instance, as well as an auxiliary atom p; there will also be a corresponding
atom event-numi in the EM for each such atom. The probability distribution associated with
these random variables is set to an arbitrary one satisfying the condition that only a number
polynomial in n has non-zero probability.

Add as facts all atoms numi , with the annotation function defined as af (numi) =
event-numi . Next, add the strict rule:

ω : ¬numi ← p

such that af (ω) = True. Set the epistemic input to fact θin with af (θin) = event-num1 ∨
. . . ∨ event-numn. Finally, set the function to optimize to:

obj(I,I ′) =

⎧
⎪⎨

⎪⎩

1 if res = {numi | numi ∈ �AM, af ′′(numi) �|= ⊥}
is such that

∑
numi∈res xi = c

0 otherwise.

That is, the objective function only considers the revised DeLP3E program, and takes value 1
if and only if the atoms that belong to this program correspond to numbers that, taken

Quantitative belief revision in structured probabilistic argumentation 401

together, sum up to c. Thus, all we have to do is check if the optimal revision yields a value
of 1 for the objective function in order to decide the given subset-sum instance.

The reader may note that the construction used in the proof of Theorem 2 uses a very
powerful objective function that essentially encodes the NP-hard problem; furthermore, this
objective function is not based on WPFs. We now provide an alternative result that proves
NP-completeness under the same conditions, but assumes that the objective function is sim-
ply the sum of the probabilities assigned by the WPF to the set of ground atoms in the
language associated with the AM.

Theorem 3 Let I = (�EM, �AM, af), with �AM = �∪�∪� ∪ �, be a DeLP3E program,
� ∈ QAFO, and � be a revision objective function that can be computed in polynomial time.
If we have that:

1. |{λ | λ ∈ WEM and Pr(λ) > 0}| ∈ O(poly(n)), where n represents the size of the input;

2. Pr(λ) can be computed in PTIME for any λ ∈ WEM; and

3. the PTW assumption holds,

then deciding if �(I,I � (f, af ′), (f, af ′)) ≤ k for some k ∈ R, is NP-complete even when
� is defined as

∑
a∈GAM

ϒ(a).

Proof

Membership: As the ROF can still be computed in polynomial time, the membership result
of Theorem 2 still holds.
Hardness: We show NP-hardness by reduction from SIMPLE MAX CUT (SMC) [19]. The
SMC problem takes as input an undirected graph G = (V ,E) and k ≥ 0, and decides if
there exist sets V1, V2 ⊆ V such that |{(u, v) ∈ E : u ∈ V1, v ∈ V2}| ≥ k.

Let x be a the only atom in GEM. We will define a simple �EM that sets the probability of
atom x to 1.0. We specify the atoms in GAM as follows: for each vi ∈ V we create two atoms,
set1(vi), set2(vi). For each edge (vi, vj) ∈ E we create atom edge(vi, vj) (we assume that
each bi-directional edge is specified by one atom an that the order of the arguments for the
edge predicate is arbitrary but consistent). We will also have an additional atom query in
GAM, which will also act as the formula for the epistemic input. We create �AM with the
following elements:

– For each vi ∈ V add the following strict rules:

– set1(vi) ← query

– ¬set1(vi) ← query

– set2(vi) ← ¬set1(vi)

– For each edge (vi, vj) ∈ E add strict rules edge(vi, vj) ← set1(vi), set2(vj) and
edge(vi, vj) ← set2(vi), set1(vj)

For each element y ∈ �AM, we define the annotation function af (y) = True. For the
epistemic input, let af ′ be the extension of af such that af ′(query) = x. Finally, let the ROF
be defined as in the statement of the theorem. Further, for ease of notation, let af ∗ be the
annotation function returned after the belief revision operation takes place.

Clearly, this construction can be performed in polynomial time. Further, note that the
original program is consistent, since none of the rules in �AM ever fire since there are no
facts.

402 G. I. Simari et al.

Observations: We notice right away that any valid belief revision operator must return
an annotation function af ∗ such that {x} |= af ∗(query) – as this atom is needed to
ensure the objective function has a non-zero value (which is clearly possible). Fur-
ther, any optimal solution where af ∗(query) ≡ True can be replaced with a solution
where af ∗(query) = x. We also note that in any optimal solution, the size of the
set {setX(vi) | ϒ(setX(vi) = 1.0} is equal to |V | – this is how we capture the
notion that for each vertex vi , exactly one of set1(vi), set2(vi) will be warranted under
world {x}); hence, we capture the requirement from the instance of SMC that the sets
V1, V2 is a partition of V . We also note that the annotation function in the solution
af ∗ must only modify the return values for strict rules of the form set1(vi) ← query
and ¬set1(vi) ← query.

Claim 1: Let V1, V2 be an optimal solution to an instance of SMC. Then, the optimal
solution to the corresponding revision problem has an objective function whose value is
greater than or equal to |{(u, v) ∈ E : u ∈ V1, v ∈ V2}| + |V | + 1. This can clearly be
achieved by a solution where for each vi ∈ V1, af ∗(set1(vi) ← query) = x and for each
vi ∈ V2, af ∗(¬set1(vi) ← query) = ¬x.

Claim 2: Let R be the value of the objective function returned in an optimal solution to
the revision problem. Then, the number of edges returned in the corresponding instance of
SMC is greater than or equal to R − |V | − 1. By the aforementioned observations, this
claim is equivalent to saying that the number of positive literals of the form edge(vi, vj) that
are warranted in the world {x} is less than or equal to the number of edges returned in the
optimal solution to the corresponding instance of SMC. Suppose, by way of contradiction,
that the number of literals of that form that are warranted under {x} is greater than the
number of edges in the optimal solution to the corresponding instance of SMC. By the
construction, for each literal of the form edge(vi, vj), exactly one of the following pairs of
literals must also be warranted: set1(vi), set2(vj) or set2(vi), set1(vj). Therefore, we can
partition the corresponding vertices from SMC into two sets – V ′

1, V
′
2 and the number of

edges in the set {(u, v) ∈ E : u ∈ V ′
1, v ∈ V ′

2} must then be greater than the number of
edges in the optimal solution to the SMC problem. However, this is not possible, as this is
also (by construction) the same objective function that is optimized in that problem – hence,
we reach a contradiction.
The proof of hardness follows directly from Claims 1 and 2.

So, the proof of Theorem 3 illustrates that the quantified revision problem is still NP-
hard when the EM and the number of EM worlds, and (hence) the computation of the WPF
is not a source of complexity – even when the ROF used is a simple aggregate over WPFs
of atoms. Further, as we can embed the Simple Max Cut problem, the ROF – even a simple
sum over WPFs – will not necessarily be monotonic, even when using a revision operator
that satisfies the Inclusion postulate (where the set of worlds satisfying af ∗(y) ⊆ af ′(y)).
This also shows NP-completeness when the belief revision operator performs modifications
to �AM (by removing elements, as discussed in [40]) as setting af ∗(y) = ¬x can be viewed
as an operation that is equivalent to removing it from �AM.

We also note that the related problem of consolidation or contraction by falsum, where
we start with an inconsistent program and then must adjust the annotation function to
make it consistent, can also be shown to be NP-complete by a simple modification to the
proof: we fix the epistemic input to True, and change the rules of the form set1(vi) ←
query,¬set1(vi) ← query to facts of the form set1(vi), ¬set1(vi).

Quantitative belief revision in structured probabilistic argumentation 403

Fig. 12 An algorithm that takes a classical dialectical forest and computes a logical formula specifying the
possible worlds under which a given literal is warranted

5 Warranting formulas

We now focus on an algorithmic approach that can be used to compute approximate solu-
tions and therefore address the computational intractability that we have seen in the results
above.

In the following, given a dialectical forest F(L) and a node V corresponding to argument
A, we will use the notation label(V) = ∧

c∈A af (c). For a given probabilistic argumenta-
tion framework, literal, and dialectical tree, Algorithm warrantFormula in Fig. 12 computes
the formula describing the set of possible worlds that are warranting scenarios for the literal.
Intuitively, this algorithm creates a formula for every dialectical tree in the forest associated
with an argument – the algorithm iteratively builds a formula associated with the environ-
mental conditions under which the argument in the root of the tree is undefeated. It then
returns the disjunction of all such formulas in that forest. We refer to this disjunction as the
warranting formula for the literal.

The following result states the correctness of the warrantFormula algorithm.

Proposition 4 Given forest F∗(L),

nec(L) =
{
λ ∈ WEM | λ |= warrantFormula

(
F∗(L)

)}

poss(L) =
{
λ ∈ WEM | λ �|= warrantFormula

(
F∗(¬L)

)}
.

Proof (Sketch)

Claim 1: nec(L) ⊆ {λ ∈ WEM | (λ |= warrantFormula(F∗(L)))}. To prove
this claim, it suffices to show that if T

λ〈A,L〉 is a valid dialectical tree for L then
λ |= warrantFormula(F∗(L)). Suppose, BWOC, T

λ〈A,L〉 is such a tree where λ �|=
warrantFormula(F∗(L)). We note that this tree shares a root and is a subtree of a
tree in F∗(L). Also, for each node v in the tree, at line 2, we have λ |= label(v).
Hence, we can continue the proof by replacing line 2 with ∀v, label(v) = f or(λ)

and showing that warrantFormula(F∗(L)) = f alse. However, we can conclude that
warrantFormula(F∗(L)) = f or(λ) since the tree has an odd depth by definition – this is a
contradiction.
Claim 2: nec(L) ⊇ {λ ∈ WEM | (λ |= warrantFormula(I, L))}. Suppose, by way
of contradiction, that the claim is false. Then there must exist a root-sharing subtree

404 G. I. Simari et al.

Fig. 13 Dialectical forest for literal L = sleep aid misuse composed of trees T1 (left) and T2 (right)

of an element of F∗(L) such that for each v, at step 4 λ |= label(v) and does not exist in λ.
However, this is a contradiction by Definition 7.
Claim 3: The second part of the statement follows directly from Claims 1-2 and the fact
that poss(L) = WEM \ nec(¬L).

Even though warranting formulas are another way of solving the problem of comput-
ing probabilities exactly, our main motivation for developing it was to explore options for
pursuing tractable algorithms, as discussed next.

The following is an example of the warranting formula approach in the setting of our
running example.

Example 13 Consider the DeLP3E in our running example as shown in Fig. 11 with annota-
tion function af 1. If we run Algorithm warrantFormula for literal sleep aid misuse, we start
with the dialectical forest shown in Fig. 13.

Suppose that the algorithm begins with tree T1 (on the left); the only leaf of this tree
corresponds to vertex v2 for argument A2, and its label remains the conjunction of all anno-
tations of elements in the argument – label(v2) = ¬FN tox screen. The algorithm then
moves to the next node up, which is already the root, and updates the label by adding the
conjunction with the negation of its child, which yields:

label(v1) = dep risk ∧ ¬(¬FN tox screen
) = dep risk ∧ FN tox screen.

Processing tree T2 similarly yields:

label(v3) = True ∧ ¬(¬FN tox screen
) = FN tox screen.

Finally, the algorithm outputs the disjunction of these two formulas, which is simply
FN tox screen.

Outlook: towards tractable computations

By applying the warrantFormula algorithm to the dialectical forest for a given literal L, we
can obtain the sets nec(L) and poss(L) with a running time proportional to the size of
the forest and the annotation formulas – though the worst-time complexity has not been
determined exactly, it is safe to conjecture that the worst case is intractable. However,
the warranting formula approach opens the door to several possibilities for heuristics and
approximate computations that either avoid exhaustively enumerating worlds in WEM or
working with full forests (or both). When combined with existing heuristics for classical

Quantitative belief revision in structured probabilistic argumentation 405

argumentation (the AM) and probabilistic models (the EM), this provides us with a much
more efficient way to compute warranting probability functions. Experimental evaluations
for such hypotheses are currently underway.

The use of the warranting formula approach can have several impacts in the implemen-
tation of specific QAFO operators. First, warrant probability functions ϒ in this setting
can now be redefined to map elements in their domain to warranting formulas instead of
probabilities as in their original formulation. Revision objective functions now have at their
disposal formulas instead of raw numbers. This opens up the possibility for specific imple-
mentations to leverage optimizations such as applying SAT algorithms to decide whether
PrI1(L) ≥ PrI2(L) (which can be decided via the SAT check ϒI1(L) ⇒ ϒI2(L)). Such an
approach is clearly compatible with heuristic optimizations that may, for instance, sacrifice
precision for greater tractability.

An alternative class of operators can thus be defined based on the same ideas as QAFO
except that approximations are allowed instead of exact computations. There is much work
to be done in this direction, which is outside the scope of the current paper.

6 Related work

This paper continues the research line that began with two works on belief revision in struc-
tured probabilistic argumentation. In [38], we introduced the DeLP3E formalism (which
is called P-PreDeLP in that work) and annotation-function based belief revision (the class
AFO), while in [39] we studied a special case of entailment queries and showed how the
framework can be applied to a cyber-attribution problem.

As we have seen, the main problem studied in belief revision is the study of how epis-
temic states should be changed in response to epistemic inputs. Traditionally, epistemic
states have taken the form of either belief sets (sets of formulas closed under conse-
quence) [1, 18] or belief bases [22, 23] (which are not closed). Our goal is to ultimately
apply our results to real-world domains, and therefore we focus our attention on belief bases.
Epistemic states in our case consist of formulas over which argumentation-based reason-
ing is carried out and to which we couple a general probabilistic model. The relationship
between argumentation and belief revision can be traced back to [10]; in this regard, the
work that is most closely related to how we approach their combination is that of [14],
where explanation-based revision operators are studied. For a discussion on the relationship
between the two areas of study, see [15] and [13].

Regarding argumentation systems that feature some quantitative form of reasoning under
uncertainty, we point out that the combination of probabilistic reasoning with argumenta-
tion systems has been the focus of several works in the recent past. A significant portion of
this work, however, has adopted abstract argumentation systems as the basis for the prob-
abilistic extension [16, 24, 28, 44]. Contrary to structured argumentation systems like the
one adopted in this work, abstract argumentation is focused on the study of attacks among
arguments without inspecting their composition. There are also some works that combine
structured argumentation approaches with models for reasoning under uncertainty – the first
of these was [21]; the work of [27], which was developed even earlier, combines structured
argumentation with abstract uncertainty measures but does not explicitly handle probabil-
ity. Several other works followed; for instance, in [5], the authors develop a possibilistic
extension to DeLP, and [25] presents an approach based on probabilistic logic. The main
difference between these works and our own is that here we adopt a bipartite knowledge
base, where one part models the knowledge that is not inherently probabilistic – uncertain

406 G. I. Simari et al.

knowledge is modeled separately, thus allowing a clear separation of interests between the
two kinds of models. This kind of approach is not novel; it has been adopted in several
frameworks, such as the Independent Choice Logic [34] or probabilistic ontology languages
for the Semantic Web (see [20], and references within).

From a quantitative take on belief revision, which is the specific topic of this paper, there
hasn’t been much work in the precise direction taken here. Perhaps the earliest proposal
with such an idea in mind is that of maxichoice revision operators [2], which ensure that
minimal changes are made to the knowledge base when revisions are performed; in fact,
our class of AFO operators (and therefore also QAFO) perform maxichoice revision opera-
tions in each possible EM world. In the related setting of belief contraction operators, David
Makinson [30] has defended the use of maxichoice operators, explaining that some coun-
terintuitive behaviors that this approach leads to is due to its “misapplication” to belief sets
(which, we recall, are closed under consequence). Another quantitative proposal is the one
presented in [7], where revisions are carried out according to a notion of distance between
worlds, such as the number of propositional symbols that separate one model from another.
These notions, however, do not correspond directly with the one adopted here, since in our
setting we are pursuing a revision that is optimal from the point of view of its effect on the
probabilistic aspect of the consequences of the knowledge base, while the knowledge bases
in [2] are non-probabilistic. Another interesting approach to belief revision from a quantita-
tive standpoint is ranking theory [42], which is a normative theory of the dynamics of belief.
Again, this approach is not directly related to the one taken here; however, exploring how
this well-studied approach can be applied in conjunction with argumentation in the way that
probability theory is applied in this work is an interesting avenue for future work.

Along the same vein of seeking to minimize information loss, and in the closely related
setting of inconsistency management, the work of [20] proposes the notion of preferred
repair based on so-called “consistency scores”; our quantitative approach to performing
belief revision operations is loosely based on this proposal. Also in the inconsistency man-
agement literature, the recent work of [8, 9] proposes to resolve conflicts at a global level
to minimize information loss but using incision functions instead. Another work in incon-
sistency management is that of [45] proposes measures of inconsistency for probabilistic
logics. Apart from [20], this is perhaps the closest work in spirit to the one presented here,
though the underlying language used (probabilistic conditional logic) is quite different and
that work does not address the problem of belief revision – their measures, however, could
be applied to efforts in line with our own. The adaptation of measures of probabilistic incon-
sistency such as the ones proposed in [45] to DeLP3E and their use in quantitative belief
revision operators is the topic of ongoing and future work.

7 Conclusions and future work

In this work, we tackled the problem of incorporating a new piece of information to an
existing knowledge base; specifically, we adopted the DeLP3E model, which is an exten-
sion of the structured argumentation language DeLP with presumptions (PreDeLP) via the
incorporation of annotations that refer to events for which we have underlying probabilistic
information.

The main focus of this paper was to further explore a class of belief revision operators
called AFO (for annotation function-based revision) that we proposed recently in [38, 40]
by considering operators in this class that have the further requirement of “quantitative opti-
mality” – this gave rise to the QAFO class of operators. Though this optimality criterion

Quantitative belief revision in structured probabilistic argumentation 407

was kept as general as possible so that knowledge engineers can specify their preferences,
we explored the computational complexity of the approach in general, arriving at a host of
results that range from intractability for the general case to polynomial-time special cases.
finally, we presented an algorithm designed to compute the probability with which a lit-
eral is warranted via so-called warranting formulas, and provide some initial discussion
regarding how this approach could be applied in the implementation of QAFO operators or
approximations of them that trade theoretical guarantees for tractability in practice.

Future work along this line of research involves continuing with efforts to bridge the gap
between the theoretical developments that have been steadily coming from the belief revi-
sion community and practical implementations that can be applied in real-world domains
such as medical diagnosis (the topic of our running example) and the related problem of
solving the attribution problem in cyber security and cyber warfare, as proposed in [39].
We are also investigating the use of different kinds of belief revision operators, for instance
ones that are based on argumentation [14]. Finally, we are currently in the final stages of
developing a fully-functional implementation of DeLP3E; incorporating the belief revision
operators developed in [38, 40] and in this paper is the next step in the implementation
effort.

Acknowledgments This work was supported by UK EPSRC grant EP/J008346/1—“PrOQAW”, ERC
grant 246858—“DIADEM”, by NSF grant #1117761, by the Army Research Office under the Science
of Security Lablet grant (SoSL) and project 2GDATXR042, DARPA project R.0004972.001, and funds
provided by CONICET and Universidad Nacional del Sur, Argentina.

The opinions in this paper are those of the authors and do not necessarily reflect the opinions of the
funders, the U.S. Military Academy, or the U.S. Army.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction
and revision functions. J. Sym. Log. 50(2), 510–530 (1985)

2. Alchourrón, C.E., Makinson, D.: On the logic of theory change: Contraction functions and their
associated revision functions. Theoria 48(1), 14–37 (1982)

3. Capobianco, M., Chesñevar, C.I., Simari, G.R.: Argumentation and the dynamics of warranted beliefs
in changing environments. Intl. Journal on Autonomous Agents and Multiagent Systems (JAAMAS) 11,
127–151 (2005)

4. Cecchi, L.A., Simari, G.R.: El marcado de un árbol dialéctico en DeLP es PSPACE-completo. In:
Proceeding of Congreso Argentino de Ciencias de la Computación (CACIC) (2011)

5. Chesñevar, C.I., Simari, G.R., Alsinet, T., Godo, L.: A logic programming framework for possibilistic
argumentation with vague knowledge. In: Proceeding of UAI 2004, pp. 76–84 (2004)

6. Chvátal, V.: Linear programming. W.H.Freeman, New York (1983)
7. Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary report. In: Proceeding of

AAAI, pp. 475–479 (1988)
8. Deagustini, C.A.D., Martinez, M.V., Falappa, M.A., Simari, G.R.: Improving inconsistency resolution

by considering global conflicts. In: Proceedings of SUM, pp. 120–133 (2014)
9. Deagustini, C.A.D., Martinez, M.V., Falappa, M.A., Simari, G.R.: Inconsistency resolution and global

conflicts. In: Proceedings of ECAI, pp. 991–992 (2014)
10. Doyle, J.: A truth maintenance system. Artif. Intell. 12(3), 231–272 (1979)
11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)
12. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1/2),

78–128 (1990)
13. Falappa, M.A., Garcia, A.J., Kern-Isberner, G., Simari, G.R.: On the evolving relation between belief

revision and argumentation. Knowl. Eng. Rev. 26(01), 35–43 (2011)

408 G. I. Simari et al.

14. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and defeasible reasoning.
Artif. Intell. 141(1/2), 1–28 (2002)

15. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Belief revision and argumentation theory. In: Argumen-
tation in artificial intelligence, pp. 341–360. Springer (2009)

16. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract argumentation. In:
Proceeding of IJCAI 2013 (2013)

17. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. TPLP 4(1-2), 95–
138 (2004)

18. Gardenfors, P.: Knowledge in flux: modeling the dynamics of epistemic states. MIT Press, Cambridge
(1988)

19. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of NP-completeness.
Freeman, New York (1979)

20. Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under probabilistic
uncertainty in Datalog +/− ontologies. AMAI (2013)

21. Haenni, R., Kohlas, J., Lehmann, N.: Probabilistic argumentation systems. Springer (1999)
22. Hansson, S.: Semi-revision. J. App. Non-Classical Logics 7(1-2), 151–175 (1997)
23. Hansson, S.O.: Kernel contraction. J. Symb. Log. 59(3), 845–859 (1994)
24. Hunter, A.: Some foundations for probabilistic abstract argumentation. In: Proceeding of COMMA 2012,

pp. 117–128 (2012)
25. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Approx. Reasoning

54(1), 47–81 (2013)
26. Khuller, S., Martinez, M.V., Nau, D.S., Sliva, A., Simari, G.I., Subrahmanian, V.S.: Computing most

probable worlds of action probabilistic logic programs: scalable estimation for 1030,000 worlds. AMAI
51(2-4), 295–331 (2007)

27. Krause, P., Ambler, S., Elvang-Gørannson, M., Fox, J.: A logic of argumentation for reasoning under
uncertainty. Comput. Intell. 11(1), 113–131 (1995)

28. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Proceeding of TAFA, pp. 1–
16 (2011)

29. Lloyd, J.W. Foundations of logic programming, 2nd edn. Springer (1987)
30. Makinson, D.: On the status of the postulate of recovery in the logic of theory change. J. Philos. Log.

16(4), 383–394 (1987)
31. Martinez, M.V., Garcı́a, A.J., Simari, G.R.: On the use of presumptions in structured defeasible

reasoning. In: Proceeding of COMMA, pp. 185–196 (2012)
32. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
33. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference (1988)
34. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell.

94(1-2), 7–56 (1997)
35. Rahwan, I., Simari, G.R.: Argumentation in artificial intelligence. Springer (2009)
36. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)
37. Shakarian, P., Shakarian, J., Ruef, A.: Introduction to cyber-warfare: a multidisciplinary approach.

Syngress (2013)
38. Shakarian, P., Simari, G.I., Falappa, M.A.: Belief revision in structured probabilistic argumentation. In:

Proceeding of FoIKS 2014, pp. 324–343
39. Shakarian, P., Simari, G.I., Moores, G., Parsons, S., Falappa, M.A.: An argumentation-based framework

to address the attribution problem in cyber-warfare. In: Proceeding of Cyber Security 2014 (2014)
40. Shakarian, P., Simari, G.I., Moores, G., Paulo, D., Parsons, S., Falappa, M.A., Aleali, A.: Belief revision

in structured probabilistic argumentation: Model and application to cyber security. Under review (2014)
41. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artif.

Intell. 53(2-3), 125–157 (1992)
42. Spohn, W.: The laws of belief: ranking theory and its philosophical applications. Oxford University Press

(2012)
43. Stolzenburg, F., Garcı́a, A., Chesñevar, C.I., Simari, G.R.: Computing generalized specificity. J. Non-

Classical Logics 13(1), 87–113 (2003)
44. Thimm, M.: A probabilistic semantics for abstract argumentation. In: Proceeding of ECAI 2012,

pp. 750–755 (2012)
45. Thimm, M.: Inconsistency measures for probabilistic logics. Artif. Intell. 197, 1–24 (2013)
46. Toda, S.: On the computational power of PP and ⊕P. In: Proceeding of FOCS, pp. 514–519 (1989)
47. Wirth, C., Stolzenburg, F.: David Poole’s specificity revised. In: Proceeding of KR (2014)

	Quantitative belief revision in structured probabilistic argumentation
	Abstract
	Introduction and motivation
	Preliminaries on the DeLP3E framework
	Basic Language
	Environmental model
	Analytical model
	Defeasible logic programming with presumptions (PreDeLP)
	Note

	The DeLP3E framework
	Consistency of DeLP3E programs

	Revision of DeLP3E programs based on quantitative aspects
	A recap of annotation function-based belief revision
	Rationality postulates
	Operator construction

	Towards a quantitative approach
	Two building blocks
	Warrant Probability Functions
	Revision Objective Functions

	The class QAFO

	Computational complexity
	Assumption

	Warranting formulas
	Outlook: towards tractable computations
	Related work
	Conclusions and future work
	Acknowledgments
	References

