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where:

p-1
2: Ni.

i=l

The set of expressions is completed with the
thermodynamic equilibrium conditions at the inter­
face,

For each phase,

Z¡ P Zk. [ 1 1]Rii = - + ,¿ -, Rij = - Zi ~ - ---:- Ci # j ) ,for
"ip k = 1Ft Kik feZ} ICtp

i,j = 1,"',p-1

Ti' = (]¡; + Zi aalnYi I ; (]ii = 1;(]ij = OCi # j) ,forj " Zj T,P,¿

i,j = 1,"',p-1

(3)1, = K;x;; i = l,"',p

The Maxwell-Stefan approach is employed to e­
valuate multicomponent molar fluxes on each side of
the vapor-liquid interface at steady state conditions.
As it is well justified by Taylor and Krishna (1993),
the integration of the Maxwell-Stefan original equa­
tions can be carried out in a rather simple way, on the
basis of the following assumptions:

o Film theory is employed at both sides.
o No chemical reaction takes place inside the films.
o Average values between interfacial and bulk molar

fractions are employed to evaluate the composition
dependence of the matrix of inverse binary diffusion
coefficients (linearized theory, as described in sec­
tion 8.4 of Taylor and Krishna, 1993). It is im­
portant to point out that Taylor and Krishna
(1993) have extensively checked the results from
this approximation on a large amount of problems.

o The ratio between binary diffusion coefficients and
the film depth are replaced by low-flux mass trans­
fer coefficients for the binary i - j pair, lCij.

o The matrix of thermodynamic factors rij is evalu­
ated at average values between interfacial and bulk
temperature and molar fractions.

With these assumptions, the vectors of (p - 1)
molar fluxes Ni (pasitive for vaporization) can be ex­
pressed for each phase as:

l'l = Np;b + NT(exp['P'd - [I])-l(~b - ~I) (1)

l'l = NT} + NT(exp['P'v] - [I])-1(} -:1) (2)

where Zi stands for the molar fraction either in the
liquid or vapor phase.

Low flux binary mass transfer coefficients lCij

employed here are defined on the basis of molar frac­
tions as driving forces (instead of molar concentra­
tions) .

The p - th molar flux is evaluated as Np = NT -

quation-tearing approaches, with regards to computa­
tional implementation and computing times, when
they are applied to solve the Maxwell-Stefan equa­
tions coupled to interfacial equilibrium relations and
employing the interfacial energy balance as the boat­
strap condition (Taylor and Krishna, 1993). The ba­
sic motivation behinds this purpose was to select a
procedure with safe convergence towards the solution
for a wide kind of problems (separation processes,
multicomponent condensation and two-fluid phase re­
actors) and from wide ranges of initialization vari­
ables.

For the case of the so-called equation-tearing
technique, two related algorithms will be tried here:
the algorithm proposed by Mori et al (1996) and a
modification presented in this contribution.

Mori et al. ( 1996) procedure employs 3 loops.
No solution of linear systems nor derivative evaluation
is needed for this algorithm.

The modification of Mori et al. 's algorithm pre­
sented here iterates on two variables in a nested fash­
ion (two loops). Derivatives are not needed either,
but linear systems of dimension (p - 1) should be
solved (p is thenumber of components in the mix­
ture).

Newton method, as presented in Taylor and
Krishna (1993), iterates simultaneously on 3p + 1
variables (molar fractions at both sides of the inter­
face, interfacial temperature and molar fluxes).
Derivatives are needed and solution of linear systems
of dimension 3p + 1 is involved.

This brief description of the numerical methods
intends to show that they arrange the equations and
variables in a very different way. With the aim of
comparing their main features, mainly computational
efficiency, different cases have been analysed. These
cases are distinguished according to the type of solu­
tions admitted by the Maxwell-Stefan equations cou­
pled to the equilibrium conditions at the interface, re­
gardless of the boatstrap condition (the interfacial en­
ergy balance). Although the different cases are de­
rived from examples originally given for distillation
and multicomponent condensation, they are expected
to represent other processes involving multicomponent
mass transfer. The paper will be organised as follows.
First, a brief description of the equation modelling
multicomponent mass transfer is given. The different
cases, on the basis of the mass transfer equations
alone, are presented next, followed by a discussion of
the main features of the solutions reached when the
heat transfer equation is employed to clase the prob­
lem. The algorithms for solving the equations are pre­
sented and, finally, the performance of the algo­
rithms when applied to the different cases is analysed.

MUL TICOMPONENT MASS AND

HEAT TRANSFER EXPRESSIONS

and

(4a)
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where

THE BEHAVIOUR OF MASS TRANSFER EQUATIONS

p

T1(h¡ + h~) + i~lNiM\P(TI) = hh¡ + Tvh~

(5)

(9b)

(9a)!VT _+ ea (i = ~b)

Besides, fram Eq. (1) :

[A] = (exp['1i'd - [I])([I] - exp[ - '1i'yJ)-l (8)

Following a similar reasoning for N T- - =, we ob­
tain

TI and the total molar flux NT (curve TI, NT) will
be used to characterise the type of solutions admitted
by a given physical system.

Let rewrite the first (p -1) equilibrium condi­
tions (3) in the way

i = [K1]-li (6)

where [KI] is the diagonal matrix of (p - 1) equilib­
rium constants KI,¡

By replacing ~I fram Eq. (6) into Eq. (1), and
equating the flux vector N from Eqs. (1) and (2),
the following expression is obtained after collecting
the terms in i and dividing by (I - exp['P'v]):

([A]+[K1]-1)i = exp[1P'd:fb + [A]exp[­
'1i'y] i' (7)

!VT-+- ea:(xI = :J) (lOa)

!Vi = :J; NT (10b)

The interfacial temperature TI satisfying Eqs. (3) and
(9a) is the dew point temperature of a vapor mixture

having the bulk liquid composition, T~. Similarly,
the value of TI satisfying Eqs. (3) and (9b) is the
bubble point temperature for a liquid mixture having

where:

Assuming that the value of NT is given, the numeri­
cal solution of Eqs. (3), (4) and (7) allows the eval­
uation of ~I, i, and TI, providing in this way the
relation between TI and NT. After the solution is
found, the individual fluxes Ni can be calculated di­
rectly fram either Eqs. (1) or (2) (see the end part of
Appendix B in Keegan et al. 1, 2000) for a discussion
about which expression is better fram a numerical
point of view) .

Extreme values of the global molar flux,
NT-= or NT- ( - =), may occur only when all
components are soluble in 10th phases, which means
that all individual Ki, i = 1, oo' ,p, are finite non-zera
values. Assuming this condition, convective transport
dominates in both films as NT-= or NT- - =.
For the specific case NT-=,exp[ 'P'L1-= and exp
[- 'P'v] - O fram the definitions of ['P'v] and
['P'L]. Replacing these limiting values in Eqs. (7)

. and (8)

(4b)
p

2:1 = l
i=l 1

where KI is the equilibrium constant evaluated at in-1

terfacial conditions.
Energy balances on 10th sides of the interface are

written under similar assumptions as for mass bal­
ances and considering that molar heat capacities re­
main constant along each film. The following expres­
sion arises for heat transfer thraugh the interface

A given physical system is considered here to be
defined once the identity of components, composition
and temperatures in the bulk of the phases and binary
mass transfer coefficients are specified. Once the
physical system is defined, the set of mass transfer e­
quations and equilibrium relations (1) to (4) needs
only one additional constraint to be solved. This con­
straint is called bootstrap and, as stated before, we
deal in this paper with the heat transfer equation tak­
en as such constraint.

The distinguishing features of a given physical
system are mainly cast in the system of Eqs. (1) to
(4) rather than in the heat transfer equation. Hence,
the type of solution arisen fram Eqs. (l) to (4) will
be analysed in this section regardless of the bootstrap
condition.

The relationship between interfacial temperature

hvPy P !VicY.
h * - o éPy = 2: ~

y - expéPy - l' i~l hy

h*- hLéPL. P!ViC~,i
L - l - exp( - éPd' éPL = i~l hL

In most practical applications, the liquid side heat

transfer.coefficient is high enough to reduce h~ = hL.
In condensation processes, it is usually valid to

ignore subcooling of the condensate. Under this as­

sumption, Eq. (5) can be used if h2 is replaced by a
global heat transfer coefficient ha accounting for heat
transfer resistances across the condensate, the wall
and the coolant side, and TL is replaced by the local
coolant temperature Te.

Once the composition and temperature in the
bulk of 10th phases are specified, along with the flu­
id-dynamics conditions defining the transport coeffi­
cients, Eqs. (1) to (5) allow the evaluation of the in­
terfacial condition (xl, 1,TI) and the fluxes Ni'1 1

(1) A copy oí Keegan el al. (2000) can be requesled lo lhe corresponding aulhor.
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Table 1. Binary mass transfer coefficients of compo­
nents in mixtures of Figs. 1,2 and 4.

Binary mass transfer VaporLiquid
Coefficients I<:ij far pairs:

(Kmallm2 s)(Kmallm2 s)

(1,2)

0.4752 10-30.01143

(1,3)

0.3520 10-30.01056

(1,4 )

0.633610-30.01195

(2,3)

0.464210-30.01178

(2,4)

0.8272 10-30.01385

(3,4)

0.620410-30.01290

Conditions (14) are well satisfied for these ex­
amples, as the resistance coefficients in the vapor
phase are about 20 times those in the liquid phase and
K¡ values are of the order of unity. Case A) is illus­
trated in Fig. 1, where the interfacial temperature TI
is observed to increase monotonously with NT. The
liquid phase composition represents a less volatile mix­
ture than the vapor phase mixture. Therefore, this
case will be typical of most applications (vaporisation,
condensation, distillation).

Two examples of Case B) are given in Fig. 2.

They differ in the relative position of TX and Tt, but
the existence of minimum values of TI araund NT =
O is observed in both examples. The liquid phase
composition corresponds in this case to a more volatile

50.0 100.0

Nr I ( k¡J CI.:·P

I

TD = 352.55 K j---------------

TB = 350.987K I---------------1

I
0.0

---- __ -i

-50.0

TBV = 350.028 K

Values of TI vs. NT for mixtures of ace­
tone, methanol, 2-prapanol and water
with binary mass transfer coefficients given
in Table 1.

:seb = (0.003159, 0.164701, 0.394518,
0.437623); :1 = (0.00411, 0.20935,
0.42352, 0.36302)

TB= 350.987 K, TD = 352.55 K, TX

= 350.028 K, Tt =355.097 K.

352

351

350

354

349

-100.0

353

355

Fig.1.

356 I
T,[I<}

and

Aii < < l/K; (14)

Fram Eq ..(11), :seI~:seb. Therefore, the equilibrium
at the interface will correspond, approximately, to
the bubble point temperature of the liquid phase at
the operating pressure, TI ~ TB• It should be
stressed that for this conclusion to be valid is neces­
sary that Eq. (14) holds for all the p components
when they are altematively included in the graup of
(p -1) mass transfer equations. In the presence of a
"permanent" gas in the vapor phase (K¡ extremely
large), Eq. (14) will not hold for this component.

Recalling that always TB<Tt, we can distin­
guish two cases when Eqs. (13) and (14) hold:

A) If TE> TX, TB falls within the range (TX, Tt),
a monotonous trend can be expected for TI'
B) If TB < TX, TB falls outside the range (Ti{,

Tt), a minimum value of TI~TB should be expect­
ed.

Examples of cases A and B are given in Figs. 1
and 2 for a four-component mixture of acetone (1),
methanol (2), 2-prapanol (3) and water (4) at 101
kPa. Binary mass transfer coefficients were taken
fram Example 12.3.3 of Taylor and Krishna (1993),
corresponding to a distillation column with structured
packing (Table 1). The vapor was considered to be­
have as an ideal gas ( [T'y] = [I] ) and the thermo­
dynamic factors for the liquid phase were evaluated
according to the NRTL model. (ICIf)av employed as a

lJ

reference value in Figs. 1 and 2 is the average value in
the vapor phase, which fram Table 1 (ICIf)av = 5.624

lJ

10-4 kmoll(m2s).
The difference between the systems correspond­

ing to Figs. 1 and 2 is pravided by the composition of
the bulk phases.

If we assume that the mass transfer resistance in the
vapor film is much larger than in the liquid film, a
nearly uniform composition prafile will hold on the
liquid side. This can be established by requiring that
the diagonal terms of matrix [A] defined in Eq.
(12), verify,

Ai« 1 (13)

the bulk vapor composition, TX.

We can expect that ff'.-asiblevalues of TI corre­
sponding to - 00 <NT< 00 span monotonously fram

TX to Tt. This is not always true, as can be ehecked
by considering the solution for very small global flux­
es, NT-O. Fram Eqs. (7) and (8) with exp[';YyJ

- (1 + 'Py) and exp['PU-- (I + 'PL),

(Ny- .•..O)([A] + [K1]-1)! = xb + [AJ! (11)

(Ny-~O)[A] = [rd-1[Rd[Rv]-1[rv] (12)
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335 ._.~._._. . . .e_ ....._~,=,=._._._.
T,[K] TD=334.93 K

334

Table 2. Modified binary mass transfer coefficients
used in Fig. 2b. The KV. values are about

lJ

40 % smaller than ;eL.
lJ

333

Fig.2a. Values of TI vs. NT for mixtures of ace­
tone, methanol, 2-prapanol and water
with binary mass transfer coefficients giv­
en in Table 1.

;fb= (0.6, 10-5,0.3,0.09999);:1=
(0.3, 10-5,0.6,0.09999); TB =
334.113 K, TD = 348.19 K, TX =

340.645 K, Tt=339.765 K.

Binary mass transfer VaporLiquid

Coefficients Kij for pairs:
(Kmollm2 s)(Kmollm2s)

(1,2)

0.681710-20.01143

(1,3)

0.627910-20.01056

(1,4)

0.717610-20.01195

(2,3)

0.708610-20.01178

(2,4)

0.8252 10-20.01385

(3,4)

0.7714 10-20.01290
_. ~-~T_=~",""="""'-'='''''

mixture than the vapor phase mixture. Although
Case B) is not cormnon in practice, it is physically
feasible and will be employed here to test the numen­
cal procedures.

The presence of a maximum in the (TI, Ny) is
also possible if mass transfer is contralled by the liquid
phase. In general, it can be concluded that a
monotonous increasing curve (as that in Fig. 1) will
hold if the range (T B - TD) is included in the range

(TX - Tt)· Otherwise, an extreme can be present,
depending on the ratio of binary mass transfer coeffi­
cients in both phases.

To evaluate the effect of the ratio of binary mass
transfer coefficients in both phases, a new set of con­
ditions can be obtained fram the systems in Figs. 1
and 2 by increasing the values of K V. up to appraach

lJ

those of the liquid phase. The values defined in Table
2 correspond to KV. only 40% smaller than;eL.. Practi-v v

cal cases showing this feature are likely, for example,
in the rectifying section of distillation columns. On
one hand, the effect produced by the coefficients de­
fined in Table 2 on the (TI, NT) curves is to shift the
values of TI at Ny = O to an intermediate value be­
tween TB and TD. As a consequence, the minimum
tends to disappear, as it is shown in Fig. 2b. The re­
sults achieved when KV. = ;eL.are also plotted in Fig.l} l}

2b.100.0

100.050.0

50.0

T8=329.088 K

T B=329.088 K

TD=334.93 K

0.0

0.0

-50.0

-50.0

330

328

-100.0

329

332

331

333

328

-100.0

329

332

330

331

335 .. _._ ... _.-'-'-'-'-

T,[KJ

334

The final case considered here corresponds to a
condensing mixture with the presence of a non-con­
densable component. The specific case was taken
fram the work of Mazzarotta and Sebastiani (1995),
who analysed condensation of a water-ethanol mixture
containing m in a vertical condenser. As mis con­
sidered a non-condensable component, the following
equation can be applied for it:

Fig.2b. Values of TI vs. NT for mixtures of ace­
tone, methanol, 2-prapanol and water.
Values of binary mass transfer coefficients
are:

-- (Table 1); (Table 2)

-- (~=K~)

xb= (0.75,0.16,0.06,0.03); :1 =
(0.7,0.1,0.1,0.1);

TB= 329.09 K, TD= 334.93K,TX=

331. 079 K, Tt = 331. 97 K.

The so-called unmixed hypothesis which states

Ni = NTx~

(lSa)

(lSb)

is employed for all condensable components in the liq-
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Operating conclitions

Heat transfer coefficients [W/m2 K]

I~----------~-
I··········,.}~.~r.~~ equation (5): .
: .

11 .

285

-5.00E-01 N -2.50E-01T,limil

305

325

O.OOE+OO

NTI ( kV¡j )av

Fig.3. Values of TI vS. NT and values of TI fram
equation 5 for mixtures of water-ethanol in
the presence of CChat top conditions in the
vertical shell-and-tube condenser given in
Table 3.
(1: CCh; 2: ethanol; 3: H20).

345

1¡[1<]

y~= 0.782

y~= 0.110

0J= 0.108

hv=133.82

ho=413.22

Tv= 333 K

Bottom

Tcoolant = 303 K

Vapor mole fraction:

(1,2) = 3.140410-3

(1,3) = 1.919510-3

(2,3) = 2.2864 10-3

y~= 0.56

y~= 0.12

y~= 0.32

Tv= 353 K

hv= 146.33

ho= 1397.79

Vapor mole fraction:

(1,2) = 2.660710-3

(1,3) = 1.626310-3

(2,3) = 1.937010-3

Binary Mass Transfer Coefficients in the vapor

phase K ~ for pairs [Kmol! m2 s]

Table 3. O:mdensation of a water-ethanol mixture in
the presence of CCh in a vertical shell-and­
tube condenser (1: CÜ2; 2: ethanol; 3:
H20).

uid film. Equation (15b) replaces the assignment of
bulk liquid composition. Tms hypothesis is physically
sound for horizontal condenser or at the top of a verti­
cal condenser, but it also produces good results for the
full surface of vertical condensers, particularly when
non-condensable components are present (Taylor and
Krishna, 1993).

Equation (l5a) leads to Neo = O. This condi-
2

tion prevents the system from the possibility of reach­
ing large values of ( - NT ). Instead, NT will ap­
proach a limiting value NT,limit as TI decreases arbi­
trarily (corresponding to a vapor side interface built
up entirely of the noncondensable component) .

Recalling that NT will be negative, it can be
demonstrated that (15b) corresponds to the particular
case of the general formulation (1) to (4) arisen
when (d;y/NT)-- O, i. e. arbitrarily smallliquid phase
mass transfer coefficients (Eq. B-6 in Appendix B of
Keegan et al. , 2000).

Details about implementation of conditions
(15a) and (15b ) within the frame of the general for­
mulation given by Eqs. (1) to (4) are provided in
AppendixA of Keegan et al. (2000) along with an
appraximate expression to predict NT l' ,, zmzt"

The relevant quantities employed at the top and
bottom of the condenser are collected in Table 3.
Heat transfer coefficients were calculated fram rela­
tionsmps recornmended by Mazzarota and Sebastiani
(1995) in their work, and values of KV. were obtained

lJ

fram hv by using the Chilton-Colbum's analogy (Bird

et al., (1960). NRTL activity model was also em­
ployed in tms example.

The (TI - NT) curve for operating conditions at
the top of the condenser is shown in Fig. 3. The
dashed curve in Fig. 3 is explained in the next sec­
tion.

SOLUTIONS EMPLOYING THE
ENERGY BALANCE

The solution of the set of Eqs. (1) to (5) can be
interpreted as the point of the curve (TI, NT) wmch
simultaneously satisfies the heat transfer Eq. (5).
Fram the known values Ni at each point of the mass
transfer curve (TI, NT), a value of TI can be calcu­
lated fram Eq. (5). If this value coincides with the
value of the curve (TI, NT), the solution is reached.

This procedure is depicted in Figs. 4a and 4b
with a bulk liquid temperature two degrees below the
bubble point, TL = (TB - 2K), for the systems de­
fined in Fig.1 and Fig. 2b. Values of hL were evalu­
ated by assuming analogy between heat and mass
transfer processes at low mass transfer rates. Two
cases were considered: [Sh/Nu] = [Sc/Pr] 1/3

(Cmlton-Colbum' s analogy), and [Sh/Nu] = [Sc/
Pr jl/2 (Penetration model). The values so obtained
are hL = 1.3 104 W/( m2 K) and hL = 7.6 103 W/
(m2 K), respectively, The Chilton-Colbum analogy
was employed for the vapor heat transfer coefficient,
resulting hv= 42W/(m2 K).

The similar results for the top of the condenser
considered in the previous section are shown in Fig. 3.
It is recalled that in this case ha replaces hL and Te


















