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Abstract — The solution of mass and heat transfer equations based on the Maxwell Stefan ap-
proach through vapor-liquid interfaces is analysed. The performance of the Newton method and
two equation-tearing algorithms are compared. One of the equation-tearing algorithms is the
method emploved by Mor et al. (1996). The second one (META ) is a modification presented
in this contribution.

The behaviour of mass transfer and equilibrium relationships is undertaken as a first step in
this study as this subset of equations defines the internal loop of both equation-tearing algo-
rithms. From the analysis carried out a set of examples are selected (based on distillation and
condensation problems) to evaluate the numerical procedures.

Mori et al. (1996) algorithm either fails to converge or it does making many iterations
when mass transfer coefficients in both phases are of the same order. Instead, the MNewton
method and META do not show instances of divergence. The results found in this contribution
show a significant saving in CPU time when using the META instead of the Newton method.
Recalling the fact that the evaluation of interfacial fluxes will be one of the erucial building blocks
in simulating liquid-vapor contacting devices with fully rated models, the META offers an ap-
propriate alternative.
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INTRODUCTION

There has been in the last decade an increasing
interest in the use of rate based models for simulating
processes involving multicomponent mass transfer.
Rate based models avoid the use of efficiencies for cor-
recting the results from equilibrium models, as has
been done traditicnally for separation processes. Also,
more precise simulations can be obtained provided
that transport properties, such as heat and mass
transfer coefficients, are precisely evaluated (Taylor
and Krishna, 1993).

An additional incentive for employing rate based
models is the appearance of commercial processes em-
ploying reactive distillation for synthesis of fuel ethers
such as MTBE or TAME (e. g. Paludetto et al.,
1992), in particular, and the general trend to find
more efficient reaction systems involving simultaneous
separation and reaction functions (Ondry et al.,
1996). Chemical reactions can keep liquid and vapor
phases apart from phase equilibrium, particularly
when the reactions take place at a rate at least compa-
rable to that of mass transfer. It is thus likely that the
significance of rate based models will be incremented
in reactive distillation.

In most recent works mass transfer through the
vapor-liquid interface is modelled by means of expres-
sions based on Maxwell-Stefan constitutive equations
coupled with a consistent energy balance (Taylor and
Krishna, 1993: Sivasuvramanian, et al. , 1987).
These expressions should be solved along with the
overall material and energy balances at each stage or
position in the system.

Assuming that the state variables in the bulk of
the phases are defined (in a given stage or section of a
column), the non-linear heat and mass transfer equa-
tions should be solved iteratively to obtain the fluxes.
The equations can be solved simultaneously by em-
ploying a Newrton related method or some type of e-
quation-tearing technique can be used by grouping e-
quations and variables which are solved alternatively.
A method of the latter type was recently suggested for
packed column distillation by Mon et al. (1996),
which in turn resembles the procedure described by
Henley and Seader (1981). On the other hand, Tay-
lor and Krishna (1993) in their monograph and more
recently Taylor and Lucia (1995) suggested the use of
Newton method.

The main objective of this contribution is to car-
ry out a comparative analysis between Newton and e-
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quation-tearing approaches, with regards to computa-
tional implementation and computing times, when
they are applied to solve the Maxwell-Stefan equa-
tions coupled to interfacial equilibrium relations and
employing the interfacial energy balance as the boot-
strap condition (Taylor and Krishna, 1993). The ba-
sic motivation behinds this purpose was to select a
procedure with safe convergence towards the solution
for a wide kind of problems (separation processes,
multicomponent condensation and two-fluid phase re-
actors) and from wide ranges of initialization vari-
ables.

For the case of the so-called equation-tearing
technique, two related algorithms will be tried here:
the algorithm proposed by Mori et al (1996) and a
modification presented in this contribution.

Mori et al. (1996) procedure employs 3 loops.
No solution of linear systems nor derivative evaluation
is needed for this algorithm.

The modification of Mori et al.’s algorithm pre-
sented here iterates on two variables in a nested fash-
ion (two loops). Derivatives are not needed either,
but linear systems of dimension (» — 1) should be
solved (p is the number of components in the mix-
ture).

Newton method, as presented in Taylor and
Krishna (1993), iterates simultancously on 3p + 1
variables (molar fractions at both sides of the inter-
face, interfacial temperature and molar fluxes).
Derivatives are needed and solution of linear systems
of dimension 3p +1 is involved.

This brief description of the numerical methods
intends to show that they arrange the equations and
variables in a very different way. With the aim of
comparing their main features, mainly computational
efficiency, different cases have been analysed. These
cases are distinguished according to the type of solu-
tions admitted by the Maxwell-Stefan equations cou-
pled to the equilibrium conditions at the interface, re-
gardless of the bootstrap condition (the interfacial en-
ergy balance). Although the different cases are de-
rived from examples originally given for distillation
and multicomponent condensation, they are expected
to represent other processes involving multicomponent
mass transfer. The paper will be organised as follows.
First, a brief description of the equation modelling
multicomponent mass transfer is given. The different
cases, on the basis of the mass transfer equations
alone, are presented next, followed by a discussion of
the main features of the solutions reached when the
heat transfer equation is employed to close the prob-
lem. The algorithms for solving the equations are pre-
sented and, finally, the performance of the algo-
rithms when applied to the different cases is analysed.

MULTICOMPONENT MASS AND
HEAT TRANSFER EXPRESSIONS

The Maxwell-Stefan approach is employed to e-
valuate multicomponent molar fluxes on each side of
the vapor-liquid interface at steady state conditions.
As it is well justified by Taylor and Krishna (1993),
the integration of the Maxwell-Stefan original equa-
tions can be carried out in a rather simple way, on the
basis of the following assumptions:

*» Film theory is employed at both sides.

* No chemical reaction takes place inside the films.

* Average values between interfacial and bulk molar
fractions are employed to evaluate the composition
dependence of the matrix of inverse binary diffusion
coefficients (linearized theory, as described in sec-
tion 8.4 of Taylor and Krishna, 1993). It is im-
portant to point out that Taylor and Krishna
(1993) have extensively checked the results from
this approximation on a large amount of problems.

* The ratio between binary diffusion coefficients and
the film depth are replaced by low-flux mass trans-
fer coefficients for the binary i —j pair, Kij -

* The matrix of thermodynamic factors I is evalu-
ated at average values between interfacial and bulk
temperature and molar fractions.

With these assumptions, the vectors of (» —1)
molar fluxes N; (positive for vaporization) can be ex-
pressed for each phase as:

N = Nrz? + Np(exp{ W] - [ID)"M2f - 2) (D)

N = Npy' + Ne(expl Wy ] - [ID 'y =) (2)
where:

(W] = Ne[TL IR L[ Wy] = Ne[ Iy 17 [Ry]
For each phase,

_EL b map L LT,
Rii_lcip-’—k:%éilqk’Ri]i zl[,cij Kip:l (i %3), for
i,y =1,,p—1

_ olny;
Fij—&»j+zi aZj

i =1,,p-1

30 = 1585 = 0(i % 1), for
T,P,S

where 2; stands for the molar {raction either in the
liquid or vapor phase.

Low flux binary mass transfer coefficients «;
employed here are defined on the basis of molar frac-
tions as driving forces (instead of molar concentra-
tions) .

The p —th molar flux is evaluated as N, = Np —

The set of expressions is completed with the
thermodynamic equilibrium conditions at the inter-
face,

v =Klalii=1,p (3
and

_fo =1 (4a)
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=1 (4b)
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where Kf is the equilibrium constant evaluated at in-

terfacial conditions.

Energy balances on both sides of the interface are
written under similar assumptions as for mass bal-
ances and considering that molar heat capacities re-
main constant along each film. The following expres-
sion arises for heat transfer through the interface

I
Ty(hj +hy) + ZNAHP(T)) = Tihy + Ty,

(5)
where
h* — hV@V P By = i Nicvg,i
Vv oexp®y -1 TV S hy
L
. _ hi DL . _ o Nieg
hL T l-exp(— @)’ P —_igl hy

In most practical applications, the liquid side heat
transfer coefficient is high enough to reduce h" =h;..

In condensation processes, it is usually valid to
ignore subcooling of the condensate. Under this as-
sumption, Eq. (5) can be used if 4/ is replaced by a
global heat transfer coefficient 4 accounting for heat
transfer resistances across the condensate, the wall
and the coolant side, and T} is replaced by the local
coolant temperature Tc.

Once the composition and temperature in the
bulk of both phases are specified, along with the flu-
id-dynamics conditions defining the transport coeffi-
clents, Egs. (1) to (5) allow the evaluation of the in-
terfacial condition (xf, yl.[, T;) and the fluxes N;.

THE BEHAVIOUR OF MASS TRANSFER EQUATIONS

A given physical system is considered here to be
defined once the identity of components, composition
and temperatures in the bulk of the phases and binary
mass transfer coefficients are specified. Once the
physical system is defined, the set of mass transfer e-
quations and equilibrium relations (1) to (4) needs
only one additional constraint to be solved. This con-
straint is called bootstrap and, as stated before, we
deal in this paper with the heat transfer equation tak-
en as such constraint.

The distinguishing features of a given physical
system are mainly cast in the system of Egs. (1) to
(4) rather than in the heat transfer equation. Hence,
the type of solution arisen from Egs. (1) to (4) will
be analysed in this section regardless of the bootstrap
condition.

The relationship between interfacial temperature

(1) A copy of Keegan et al. (2000) can be requested to the corresponding author.

T and the total molar flux Ny (curve T}, Ny) will
be used to characterise the type of solutions admitted
by a given physical system.

Let rewrite the first (p — 1) equilibrium condi-
tions (3) in the way

zh = [K'] Y (6)

where [ K] is the diagonal matrix of (p —1) equilib-
rium constants KlI ,

By replacing z! from Eq. (6) into Eq. (1), and
equating the flux vector N from Egs. (1) and (2),
the following expression is obtained after collecting

the terms in y! and dividing by (I — exp[¥v]):

(TA]+ KDY = expl¥p]z? + [Alexpl -
Tyl @)

where:
[A] = (explwL] - [ID([I] —exp[- & 1)L (8)

Assuming that the value of Nt is given, the numeri-
cal solution of Egs. (3), (4) and (7) allows the eval-
uation of z!, !, and T, providing in this way the
relation between T7 and Np. After the solution is
found, the individual fluxes N; can be calculated di-
rectly from either Egs. (1) or (2) (see the end part of
Appendix B in Keegan et al.1, 2000) for a discussion
about which expression is better from a numerical
point of view).

Extreme values of the global molar flux,
Np—>o0 or Ny—>( — o), may occur only when all
components are soluble in both phases, which means
that all individual K;, i =1, -- ,p, are finite non-zero
values. Assuming this condition, convective transport
dominates in both films as Np—>o or Ny—> — oo,
For the specific case Ny—>0 exp[ W ]—>c° and exp
[— Py ] — 0 from the definitions of [ ¥y ] and
[ L ]. Replacing these limiting values in Egs. (7)

“and (8)

Nr—>co (¥ =2) (9a)
Besides, from Eq.(1):

N; = 2 Ny (9)

Following a similar reasoning for No—> — 00, we ob-
tain

NT»—OOI(J:I = 3/7)
Ni = _nyT

(10a)
(105)

The interfacial temperature T satisfying Egs. (3) and
(9a) is the dew point temperature of a vapor mixture
having the bulk liquid composition, TI[). Similarly,
the value of T satisfying Egs. (3) and (9b) is the
bubble point temperature for a liquid mixture having
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the bulk vapor composition, Tg.

We can expect that feasible values of T corre-
sponding to — o < Np< 90 span monotonously from
Tg to TIIB' This is not always true, as can be checked

by considering the solution for very small global flux-
es, Nt—0. From Egs. (7) and (8) with exp ["Fv]
> (1+Wy) and exp[¥ > I+ V),

(Nr =0 ([A]+ [K'] Dy = 2+ [A]Y (11)
(Nr—=O[A] = [ TR IRy Y] (12)

If we assume that the mass transfer resistance in the
vapor film is much larger than in the liquid film, a
nearly uniform composition profile will hold on the
liquid side. This can be established by requiring that
the diagonal terms of matrix [ A ] defined in Eq.
(12), verfy,

A; <<1 (13)
and

Ai << V/K! (14)

From Eq. (11), 22~ z?. Therefore, the equilibrium
at the interface will correspond, approximately, to
the bubble point temperature of the liquid phase at
the operating pressure, T; = Tg. It should be
stressed that for this conclusion to be valid is neces-
sary that Eq. (14) holds for all the p components
when they are alternatively included in the group of
(®» — 1) mass transfer equations. In the presence of a
“permanent” gas in the vapor phase (K; extremely
large), Eq. (14) will not hold for this component.
Recalling that always TBSTIb, we can distin-

guish two cases when Egs. (13) and (14) hold:
A)If Tg> T]‘B/ , Tg falls within the range (T, Tg),

a monotonous trend can be expected for T7.

B) If Tx< Tg, Tp falls outside the range ( TV,
TILJ) , a minimum value of T==Ty should be expect-

ed.

Examples of cases A and B are given in Figs. 1
and 2 for a four-component mixture of acetone (1),
methanol (2), 2-propanol (3) and water (4) at 101
kPa. Binary mass transfer coefficients were taken
from Example 12.3.3 of Taylor and Krishna (1993),
corresponding to a distillation column with structured
packing (Table 1). The vapor was considered to be-
have as an ideal gas ( [I'v]1=[I] ) and the thermo-
dynamic factors for the liquid phase were evaluated
according to the NRTL model. (/ci‘].’)av employed as a
reference value in Figs. 1 and 2 is the average value in
the vapor phase, which from Table 1 (K;-/)av =5.624
1074 kmol/ (m?%).

The difference between the systems correspond-

ing to Figs. 1 and 2 is provided by the composition of
the bulk phases.

Table 1. Binary mass transfer coefficients of compo-
nents in mixtures of Figs. 1,2 and 4.

Binary mass transfer Vapor Liquid
Coefficients «;; for pairs: (Kmol/m?s) (Kmol/m? s)
(1,2) 0.4752 103 0.01143
(1,3) 0.3520 1073 0.01056
(1,4) 0.6336 1073 0.01195
(2,3) 0.4642 1073 0.01178
(2.4) 0.8272 1073 0.01385
(3,4) 0.6204 1073 0.01290
356
Tkl Tp' = 355.007 K
3| 0 T2
354
353 Tp=352.55K
352
Te = 350.987K

N :7
350 —

T = 350.028 K

349 T .
-100.0 -50.0 0.0 50.0 100.0
NT, ( kij c)“\llp

Fig.1. Values of T vs. Ny for mixtures of ace-
tone, methanol, 2-propanol and water
with binary mass transfer coefficients given
in Table 1.
2P = (0.003159, 0.164701, 0.394518,
0.437623 ); »f = (0.00411, 0.20935,
0.42352, 0.36302)

Tp= 350.987 K, Tp= 352.55 K, TE

= 350.028 K, T1132355.097 K.

Conditions (14) are well satisfied for these ex-
amples, as the resistance coefficients in the vapor
phase are about 20 times those in the liquid phase and
K; values are of the order of unity. Case A) is illus-
trated in Fig. 1, where the interfacial temperature T;
is observed to increase monotonously with Nt. The
liquid phase composition represents a less volatile mix-
ture than the vapor phase mixture. Therefore, this
case will be typical of most applications {vaporisation,
condensation, distillation).

Two examples of Case B) are given in Fig. 2.
They differ in the relative position of Tg and TIIS , but
the existence of minimum values of T} around N =

0 is observed in both examples. The liquid phase
composition corresponds in this case to a more volatile
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Ty=334.93 K

To'=331.97 K

T =331.079 K

Tp=329.088 K

-100.0 -50.0 0.0 50.0 ) 100.0

NTI (kijic)nv"p

Fig.2a. Values of T; vs. Nt for mixtures of ace-
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tone, methanol, 2Z-propanol and water
with binary mass transfer coefficients giv-

en in Table 1.

22= (0.6, 1077, 0.3,0.09999); 1/ =
(0.3, 1075, 0.6, 0.09999); T =
334.113 K, Tp = 348.19 K, Tg =

340.643 K, TIL) =339.765 K.

Tp=334.93 K

Tp'=331.97 K

Tg'=331.079

Te=329.088 K

-100.0 -50.0 0.0 50.0 100.0

Nol (Kylay

Fig.2b. Values of T} vs. Np for mixtures of ace-

tone, methanol, 2-propancl and water.
Values of binary mass transfer coefficients
are:

(Table 1);---- (Table 2)
— (e =x))

2= (0.75, 0.16, 0.06, 0.03); A =
(0.7, 0.1, 0.1, 0.1);

Tg= 329.09 K, Tp= 334.93 K, Tg:

331.079 K, TIL) =331.97 K.

Table 2. Modified binary mass transfer coefficients
used in Fig. 2b. The /c:]./ values are about

40% smaller than icf;

Binary mass transfer Vapor Liquid
Coefficients #;; for pairs: (Kmol/m? s) (Kmol/m?s)
(1,2) 0.6817 1072 0.01143
(1,3) 0.6279 1072 0.01056
(1,4) 0.7176 1072 0.01195
(2,3) 0.7086 1072 0.01178
(2,4) 0.8252 1072 0.01385
(3.4) 0.7714 1072 0.01290

mixture than the vapor phase mixture. Although
Case B) is not common in practice, it is physically
feasible and will be employed here to test the numeri-
cal procedures.

The presence of a maximum in the (T}, Nt) is
also possible if mass transfer is controlled by the liquid
phase. In general, it can be concluded that a
monotonous increasing curve {as that in Fig. 1) will
hold if the range (Tg — Tp) is included in the range
(Tg - TIIS)' Otherwise, an extreme can be present,

depending on the ratio of binary mass transfer coeffi-
cients in both phases.

To evaluate the effect of the ratic of binary mass
transfer coefficienits in both phases, a new set of con-
ditions can be obtained from the systems in Figs. 1
and 2 by increasing the values of /c;( up to approach
those of the liquid phase. The values defined in Table
2 correspond to /c;]./ only 40% smaller than Klf]’ . Pracui-

cal cases showing this feature are likely, for example,
in the rectifying section of distillation columns. On
one hand, the effect produced by the coefficients de-
fined in Table 2 on the (T}, N1) curves is to shift the
values of Ty at Nt =0 to an intermediate value be-
tween Tg and Tp. As a consequence, the minimum
tends to disappear, as it is shown in Fig. 2b. The re-
sults achieved when ic;./ = /cf; are also plotted in Fig.

2b.

The final case considered here corresponds to a
condensing mixture with the presence of a non-con-
densable component. The specific case was taken
from the work of Mazzarotta and Sebastiani (1995),
who analysed condensation of a water-ethanol mixture
containing CO, in a vertical condenser. As CO, is con-
sidered a non-condensable component, the following
equation can be applied for it:

K COZ — 00 (1561 )
The so-called unmixed hypothesis which states
Ni = Nz (155)

is employed for all condensable components in the lig-
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Table 3. Condensation of a water-ethanol mixture in
the presence of CO, in a vertical shell-and-
tube condenser (1: COy; 2: ethanol; 3:

H0).
Operating conditions
Top Bottom
Toootane = 313 K Teoctant = 303 K
Tv= 353 K Ty= 333K

Vapor mole fraction: Vapor mole fraction:

yi= 0.56 yi= 0.782
¥=0.12 B=0.110
B=0.32 y3= 0.108

Heat transfer coefficients [W/m? K|
hV:14633 hV:13382

hy=1397.79 ho=413.22

Binary Mass Transfer Coefficients in the vapor
phase /c;.’ for pairs [Kmol/m? s]

(1,2) = 2.6607 1073 (1,2) = 3.1404 1073
(1,3) = 1.6263 1073

(2,3) = 1.9370 1073

(1,3) = 1.9195 1073
(2,3) = 2.2864 1073

uid film. Equation (155) replaces the assignment of
bulk liquid composition. This hypothesis is physically
sound for horizontal condenser or at the top of a verti-
cal condenser, but it also produces good results for the
full surface of vertical condensers, particularly when
non-condensable components are present (Taylor and
Krishna, 1993).

Equation (15a) leads to Nc02 =(. This condi-

tion prevents the system from the possibility of reach-
ing large values of ( — Nt). Instead, Nt will ap-
proach a limiting value Nt s as T! decreases arbi-
trarily (corresponding to a vapor side interface built
up entirely of the noncondensable component).

Recalling that Nt will be negative, it can be
demonstrated that (154 ) corresponds to the particular
case of the general formulation (1) to (4) arisen
when (kf/Np)—> 0,i.e. arbitrarily small liquid phase
mass transfer coefficients (Eq. B-6 in Appendix B of
Keegan et al., 2000).

Details about implementation of conditions
(15a) and (1556 ) within the frame of the general for-
mulation given by Egs. (1) to (4) are provided in
Appendix A of Keegan et al. (2000) along with an
approximate expression to predict NT., jipmis -

The relevant quantities employed at the top and
bottom of the condenser are collected in Table 3.
Heat transfer coefficients were calculated from rela-
tionships recommended by Mazzarota and Sebastiani
(1995) in their work, and values of /cz.‘j’ were obtained

from &, by using the Chilton-Colburn’s analogy (Bird

Vol. 32, No.1, 2001

345 [T
- Tl ‘f~r0m equation (5)
305 |}
L ——
-5.00E-01 ~ -2.50E-01 0.00E+00
NT,Ixmlt v
NTI(k ij )av

Fig.3. Values of Ty vs. Nrand values of T from
equation 5 for mixtures of water-ethanol in
the presence of CO; at top conditions in the
vertical shell-and-tube condenser given in
Table 3.

(1: CO,; 2: ethandl; 3: HO).

et al., (1960). NRTL activity model was also em-
ployed in this example.

The (T; — Nt) curve for operating conditions at
the top of the condenser is shown in Fig. 3. The
dashed curve in Fig. 3 is explained in the next sec-
tion.

SOLUTIONS EMPLOYING THE
ENERGY BALANCE

The solution of the set of Egs. (1) to (5) can be
interpreted as the point of the curve (T}, Nt ) which
simultaneously satisfies the heat transfer Eq. (5).
From the known values N; at each point of the mass
transfer curve (T;, N7), a value of T can be calcu-
lated from Eq. (5). If this value coincides with the
value of the curve (T}, Nt), the solution is reached.

This procedure is depicted in Figs. 4a and 4b
with a bulk liquid temperature two degrees below the
bubble point, Ty = (I's— 2K), for the systems de-
fined in Fig.1 and Fig.2b. Values of h; were evalu-
ated by assuming analogy between heat and mass
transfer processes at low mass transfer rates. Two
cases were considered: [ Sh/Nu] = [ S¢/Pr V3
(Chilton-Colburn’s analogy), and [Sh/Nu] = [Sc¢/
Pr]? (Penetration model). The values so obtained
are hy = 1.3 10° W/(m? K) and hy =7.6 10° W/
(m? K), respectively. The Chilton-Colburn analogy
was employed for the vapor heat transfer coefficient,
resulting hy = 42W/(m?* K) .

The similar results for the top of the condenser
considered in the previous section are shown in Fig. 3.
It is recalled that in this case ¢ replaces hy and T¢
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355 |
T[K] |

354.5

To- = 355.097 K

354 | 213000 WimK

3535
h,=7600 W/m’K
2 T, =352.55K

352.5
352

3515

] J O
Ta = 350.987K
350.5
350 e e
-150 -10.0 50 00 50 100 15.0
el (K

Fig.4a. Values of T; vs. Nt and values of T;
from Eq. (5) for mixtures and conditions
corresponding to Fig. 1, with binary
mass transfer coefficients given in Table-

1. T.=348.9 K.
5515 | T Tp=334.93 K
Ti[K]
3335 |h=13000 W/m’K
h,=7600 W /m?K i
3325 | :
| i |
f L=
3315 | Tp'=331.97 K

V_
3305 Te =331.079K

329.5

Tg=329.088 K

{

3285 | gocs .
200  -100 0.0 10.0 20.0

Nl (K Jav

Fig.4b. Values of T} vs. Nt and values of T}
from equation (5) for mixtures and con-
ditions corresponding to Fig.2b, with bi-
nary mass transfer coefficients given in
Table 1. T} =328.0 K.

replaces Tp in Eq. (5).

The solutions obtained in Figs. 4 correspond to
points of the (T}, Nt) curve close to Nt =0. It can
be easily shown that for systems showing values of

Table 4. Results for mixtures in Fig. 1 with
Tg—T.=1Cand Tg— T, =0.1T

Condition added to mass transfer equation to solve the system

Heat balance (eq. 5)  Heat balance (eq. 5)
Qagene= 0 hL= 13000 Wm~2K-1 hy = 13000 Wm 2K~

Ta—TiL=1C Tp-TL=0.1T

Ti[K] 351.0671 351.0004 351.060
Nt [kmol/m?s] 2.203 106 ~3.146 1074 —-3.980 103
Ni[kmol/m?s]  2.856 106 7.973 1077 2.57710°¢
N2 3.331 1073 ~3.941 103 2.366 1073
N3 6.162 1076 -1.281 1074 -1.154 10-5
Ny -4.012 10-3 ~1.478 104 -5.434 1075

Table 5. Comparison of the behaviour of numeri-
cal procedures for four components
mixtures in Fig. 1. In all cases, Ty =

360 K.
Computing time after 10000
executions of the program (in
seconds)
kb5 kY
hy [W/m?K] T [K] from Newton Mori et al. META
Table
348.987 1 23.5 53 18
7600 348.987 2 23 No convergence 24
340.987 1 24.3 50.5 19
348.987 1 24 53 22.5
13000 348.987 2 23 No convergence 14
340.987 1 31 58 23

:‘; smaller than those in Table 1, e.g. for pro-
cesses with small ratios of vapor/liquid mass in-
puts, the solutions shift towards larger values of
1= NT/(KX)aU]'

In the examples given in Figs. 4 the vapor
side heat transfer coefficient Ay is about two or-
ders of magnitude less than that in the liquid film.
In the condenser, the ratio hp/hv is not so large,
but Ay is still significantly smaller than hp (see
Table 3). Therefore, in Eq. (5) the term corre-
sponding to the vapor phase is of secondary im-
portance. This is a rather general conclusion for
vapor-liquid contacting devices.

The driving force (T;— TL) or (T; — T¢)
then becomes paramount to determine the rate of
latent heat exchange

K

i
Ylatent = §1&H§-nﬁN:' (lﬁJ

In condensers, the value of T¢ can be set accord-
ing to the purpose of the process, by choosing the
operating conditions of the coolant stream. In
separation or mass transfer processes, there is not
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an external sink (or source) such as the coolant
stream, being the liquid stream the only mean to
absorb quen:- As a consequence, the difference
(T; — Ty ) becomes small for most part of the
contacting device.

Based on this observation, Taylor and Krish-
na (1993) used the bootstrap condition quen = 0
instead of the heat transfer Eq. (5). Considering
both alternatives, the results in Table IV summa-
rized the values of N7 and individual fluxes N; ob-
tained from Qe = 0 and those obtained with
Eq.(5) for two values of (T — Tr) , 1 K and
0.1 K. Conditions defined in Fig. 1 were under-
taken. Calculated values of the driving force (T,
= Tp) from Eq. (5) are close to (Tg — TL),
since, T;== Ty at the relatively small values re-
sulting for Np.

The value Nt for quen: = 0 is almost nil, as
the individual latent heats of vaporisation do not
differ much among themselves. Very large differ-
ences between the absolute and relative values of
the individual fluxes N; calculated from (Tp -
Tr) = 1 K and from quens = 0 can be appreciat-
ed in Table 4. Even for (Tg — Tr) = 0.1 K
(condition where Tp= T ) the differences per-
sist, in particular for 2-propanol (component 3).

As commented on before, for a system show-
ing similar values of «; in both phases (as can be
expected in the rectifying section of a distillation
column) the values of T} for small Ny will fall
somewhere between Ty and Tp. Hence, as the
bulk liquid temperature T, can not rise above
Ty, the driving force (T} — T ) will become fair-
ly large.

The significance of the previous discussion
for simulating distillation columns is beyond the
scope of this paper, but we believe worth noticing
here that the results from employing the heat
transfer Eq. (5) may depart significantly from
those employing the condition gy = 0.

NUMERICAL PROCEDURES FOR THE SOLUTION

OF MASS AND ENERGY TRANSFER EQUATIONS

The Newton related method employed by Krish-
namurthy and Taylor (1985a, 1985b) and Taylor
and Krishna (1993) and two equation-tearing pro-
cedures, that proposed by Mori et al. (1996) and
a modification introduced in this paper, will be
considered in this section.

The discussion will be based on the general
expression (1) and (2) for the mass transfer equa-
tions. Limiting expression, however, should be
employed for large values of | Ny/k; | in any
phase. These are presented in Appendix B of
Keegan et al. (2000), along with a suggested
procedure to evaluate the exponentials of [ ¥y ],

[P ].
Newton method

The use of a Newton method is well de-
scribed by Taylor and Krishna (1993). The (3p
+ 1) equations arranged in the set I (z) = 0 are
the (2p — 1) mass transfer equation (1) and (2),
the p equilibrium relations (3), the summation
Eq.(4) and the heat transfer Eq. (5). The vector
of unknown variables z results:

2l = (Nltl\rzy"'9Npile’I£!v'"!-r,{)vy;l,y!h'"v.}"is

Th)

The following assumptions were made {or the
evaluations of Jacobian matrix:

* The terms Ny(exp[¥.] — [I]) 'and Nt (exp
[v] = [1]) Vin the Egs. (1) and (2) were
considered to be independent of the variables in
A

* Dependency of activity coefficients on tempera-
ture was ignored. AH?, h| and hy assumed
to be constant.

The set of computer routines given by Press
et al. (1994), including an step-size control mod-
ulus to induce convergence far from the solution
was used to implement the Newton method.

Equation-tearing algorithm proposed by Mori
et al. (1996)

The algorithm employed by Mori et al.
(1996) presents two main loops. An external loop
is based on the energy conservation balance, Eq.
(5). Given a value of Nr, the mass transfer and
equilibrium equations are solved to obtain T and
the individual fluxes N;. With these values and
from Eq. (5) the function

Fi(N1) = Ty(hi +hi)+ S NAHE(Ty) = Tih
- Tvhy (17)

can be calculated. If F{=0, the solution has been
reached. Otherwise, a new value of Nt is tried.
Any root finder algorithm can be used to solve
Eq.(17) on Np. If a superlinearly convergent al-
gorithm is used, the solution of the problem is
guaranteed near the root.

The internal loop consists in solving the mass
transfer and equilibrium equations, i.e. locating
the point on the (T;, Nt ) curve described in pre-
vious sections, for the given value of Np. The
calculations are carried out as follows.

By equalising Egs. (1) and (2), it is obtained

& =2+ {(axpl Py] ~[IDlaF ~of «(epl-2v]

=1 My o} (18)

Some estimates of yf,.rf, T should be defined be-
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fore starting the internal loop. With these values

the matrices [ Wy ] and [ ¥ ] are calculated and

they are left fixed while proceeding with the re-
maining calculations. The following sequence de-
fines all the stages of the internal calculations:

Step 1- Provide estimates of yf,‘rf, T to evaluate
[Wy] and [¥.].

Step 2- Calculate r:(r =1, - ,p-1) from Eq. (18)
with trial values of yf (the values of y:
given in step 1 can be used as trial values
when step 2 is performed for the first
time) .

Then, evaluate I:; from Eq. (4a)
Step 3- Evaluate y'and T' from a bubble point

calculation with -Tf values obtained in step
2
Step 4- If the values yf obtained in step 3 are ap-

proximately equal to the trial values used
in step 2, step S is accomplished. Other-
wise, another iteration starts by coming
back to step 2 employing y! calculated in
step 3 as the new trial values.

Step 5- The individual fluxes N; are evaluated
from Eq. (2). The internal loop is fin-
ished.

The bubble point evaluation in step 3 in-
volves an additional iterative process.
It should be note that once the internal
loop has been completed, the solution
does not corresponds exactly to one point
on the (T;, Nt ) curve, as matrices
[¥y] and [ ¥ ] are not updated.
The loop delined by steps 2-4 can be viewed
as a repeated substitution procedure with regards
to variables y!, i.e.

(¥ = G[(¥)*]

where k£ is the iteration number.
It is well known (see e. g. Burden and Douglas
Faires, 1985) that such procedure is convergent
only if the absolute values of the eigenvalues of
the Jacobian matrix of G are smaller than the uni-
tv. By inspecting Eq. (18) it becomes clear that
this condition can be fulfilled if the liquid-phase
resistances to mass transfer are smaller enough
than those in the vapor phase (z/~z"). Equation
(18) can be rearranged to evaluate I{ if the oppo-

site happens, but it can be foreseen that the pro-
cedure will fail or become unacceptably slow when
mass transfer resistances in both phases are simi-
lar.

An alternative Equation-tearing procedure

To avoid the convergence weakness of Mori

et al.’s algorithm, the calculations to solve the
mass transfer and equilibrium equations (i.e. the
internal loop) can be modified as explained below.
Instead of employing Eq. (18), the modifica-
tion is based on the use of Eq. (7). Again, some
estimates of yf, xﬁ, T should be defined to evalu-
ate matrices [ ¥y ] and [ ¥ ]. Also, the activity
coefficients necessary to evaluate K; are calculated
at the onset with those estimates and not changed
in the course of the internal iterations. The fol-
lowing sequence defines all the stages to solve the
internal calculations
Step 1- Provide estimates of yf, I{, T, to evaluate

[Py] and [ ¥ ] and activity coefficients.
Calculate matrix [A] from Eq. (8).

Step 2- Evaluate K; with a trial value of T7.

Step 3- Calculate yf.(i =1,..,p-1) from Eq. (7).
Then, evaluate y) from Eq. (4b).

Step 4- Evaluate xf (i=1,..,p) from the equi-

librium relationships (3), employing yf
(i=1,..,p) from step 3 and K; from step
2.

Step 5- With values :rf. from step 4 evaluate
Fz(T;) = irf -1 (19)

Step 6- If F2=0, step 7 is accomplished. Other-
wise, another value of T is tried and the
loop is restarted from step 2.

Step 7- The individual fluxes N; are evaluated
from Eq. (2).

The assumptions made regarding [ ¥y ] and
[W¥, ] and activity coefficients allow function F,
to be strictly a function of T;. A root finder algo-
rithm can then be used to try values of T re-
quired in step 6 until F, (T;) =0.

Actually, the solution T thus found will not
exactly fall on the curve (T; Nr) because
[¥v], [¥L] and activity coefficients are evaluat-
ed from estimated values (step 1). As a conse-
quence, Eq. (17) to be solved externally will not
strictly depend on Np, but also on the estimates
used in the step 1 above. Although this fact
makes the number of external iterations increase,
there is in practice a considerable net saving in
computations due to the simplifications made in
solving the internal loop.

In short, the algorithm proposed consists of
solving a nested univariate search with F»(T;) =
0 (for a given Nt) in the internal loop and F,
(Nt) = 0 in the external loop. Here, the same
root finder algorithm is employed in both loops: a
modification of the secant method based on a hy-
perbolic approximation to the root (Barreto and
Farina, 1979), needing a couple of trial values for
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initialization and showing and order of conver-
gence 1.818.

The algorithm just described will be referred
for shortness as META (modified equation-tear-
ing algorithm). Some details concerning imple-
mentation of the META will be described below.

Solving equation (7)

The evaluation of F for each internal itera-
tion involves as major computational effort the so-
lution of the (p — 1)-dimensional linear system
(7). This is usually performed by LU-decomposi-
tion of the matrix A followed by back-substitu-
tion. However, if for a given iteration the matrix
K does not differ much from that of a previous it-
eration, it may be numerically convenient to solve
the current system recursively, by using the avail-
able LU-decomposition of the previous matrix A.
This alternative procedure is given in Appendix C
of Keegan et al. (2000). It may significantly re-
duce computations for large numbers of compo-
nents (say, p>10).

Estimates for step 1.

For the first entry into the internal loop, the
estimates used in step 1 are those employed as the
initialization values of the global algorithm, which
will be discussed in the next section. At the sec-
ond entry, the final values obtained as the results
of the first entry are adopted. For the third entry,
there are already evaluated two sets of values (yf.

.rf, T}) corresponding to the first two tried values

of Nt. Linear approximations are then used to e-
valuate the third set of estimates. This procedure
is extended to the next entries, updating the lin-
ear approximations with the last two sets of val-
ues.

As quoted above, the employed root finder
should be initialised with two trial values. One is
taken as the estimate of T} used in step 1. For the
first two entries, the second value is obtained by
adding one or two degrees to the estimate of Tj.
Finally, for the third entry on, the value of T}
obtained in the previous entry is used as the sec-
ond trial value.

Criterions to end the calculations.

The test of convergence in the internal loop is
set by requiring that the difference between two
successive approximations AT verifies

| AT} 1< Ther (20)

where T} is the last approximation to the root and
er is the internal tolerance.

Table 6. Comparison of the behaviour of numeri-
cal procedures for four components
mixtures in Fig. 2a. In all cases, Ty =

335 K.
Computing time after 10000
executions of the program (in
seconds )
kb kY
hy [W/m*K]TiL[K]  from Newton Mori et al. META
Table
o 332,113 1 36 37.5  18.5
7600 332.113 2 29 250 24.5
324.113 1 37 42 27.5
332.113 1 43 40.6 22.0
13000 332.113 2 30 250 48.0
324.113 1 37.5 53 23.5

As Nt =0 is a possible solution, the criterion
of convergence for the external loop is established
on the basis of (x,-‘f),“,

| ﬂNT | < (KE’;)“U&'N (21)

where AN is the difference between two succes-
sive approximations and ey is the external toler-
ance.

When the internal loop is initialised with in-
formation from previous entries, as explained
above, the overall precision will be established to
a large extent by the external tolerance ey. For a
given value of ey, a very small value of er will
lead to unnecessary iterations in the internal loop.
On the contrary, a very coarse value of the latter
will affect the accuracy with which the external
function is evaluated, increasing the number of
external iterations. In general, it is expected that
appropriate values of the internal tolerance should
be similar to the external one.

COMPARISON OF NUMERICAL PROCEDURES

Comparison of the numerical procedures de-
scribed in the last section will be made on the ba-
sis of time demanding in reaching the solution
with the same degree of precision.

Tables 5-7 summarise results for the exam-
ples depicted in Figs. 1, 2a and 2b, respectively,
along with the corresponding cases arisen for mass
transfer coefficients defined in Table 2. Several
combinations obtained with the two values of A
discussed before and with two values of bulk lig-
uid temperature (T, = Tg—2K) and (T, = Ty
—10K) are considered.

Values for initializing the equation-tearing al-
gorithms were Nt = — (k;j)u and N7 =0, 2! =
z¥, y¥y=y"and T;= (TF";+T{3)/2
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Table 7. Comparison of the behaviour of numeri-
cal procedures for four components
mixtures in Fig. 2b. In all cases, Ty =

335K

Computing time after 10000
executions of the program

Table 8. Comparison of the behaviour of numeri-
cal procedures for a water-ethanol mix-
ture in the presence of CO;in a vertical
shell-and-tube condenser. Operating
conditions are given in Table 3.

Computing time after 10000

(seconds) executions of the program
— (seconds).
hy [W/m*K]T, [K] il Newton Moriet al. META
from Table Tiginisialy [K] Newton META
327087 : 3 = i Top conditions 333.8 14.5 8.45
7600 327.087 2 23 130 17
319.087 1 31 40.6 15 Bottom conditions 315 12 12
327.087 1 30 38 14.5
13000  327.087 2 23 160 21
319.087 1 31 44 17 The number of components in the mixture

Tolerances were chosen as er = 1072 and ey
=103 for the META, while the calculations
were stop when the same precision was reached
for the other two algorithms.

For initializing the Newton method, individ-
ual molar fluxes were set as N; = = (k;j )./ The
rest of the variables were chosen as for the equa-
tion-tearing algorithms.

For binary mass transfer coefficients given in
Table 1, Mori et al.’s procedure demands system-
atically more time than the other two procedures.
When the coefficients in Table 2 are employed,
Mori et al.’s algorithm did not reach convergence
or it did employing a very long computation time,
reflecting the large number of iterations carried
out. This behaviour is due to the fact that liquid
and vapor phase coefficients in Table 2 are of the
same order of magnitude, a condition for which
the internal loop of Mori et al.’s algorithm is not
suitable, as explained above. On the other hand,
the modification proposed here for the internal
loop never failed to reach convergence. Actually,
the function F» (T;) defined in Eq. (19) shows a
monotonous behaviour for large ranges of T,
making possible a safe convergence for each entry
at the internal loop.

In general, the performances of Newton
method and the META are quite similar. No
trend is evident as regards possible effects intro-
duce by the three different cases (Tables 5-7) or
by the variables changed in each case (binary
mass transfer coefficients, Ty, hr): in all exam-
ples tested convergence was reached by both
methods, provided that reasonable values are cho-
sen for initializating the variables. The results in
Tables 5-7 show that the META saves on average
about 47% of the computing time demanded by
the Newton method. This results provides evi-
dence that substantial CPU time saving can be
achieved by using the META.

can be thought as being a factor to affect the rela-
tive performance of the methods. Nonetheless, it
is difficult to predict the final effect of p as the
number of elementary operations demanded by
the algorithms depends on p in different ways.
Solving the linear systems [sets of (3p +1) equa-
tions in Newton methods and (p — 1) in the
META] and multiplication of (p — 1)? matrices
(matrix exponentiation, in particular, demands
several multiplications, see Appendix B of Keegan
et al. (2000) ) involve sets of elementary opera-
tions increasing as p>, but another sets of opera-
tions increase as p? and p, in different propor-
tions for both methods and for each problem.

To get an insight into the effect of p, all ex-
amples considered in Tables 5-7 were run again
for an eight component mixture obtained by split-
ting each species into two fictitious isomers show-
ing the same properties. Computing times rises by
a factor of nearly four, but the ratio of times de-
manded by both, Newton and META, remains
nearly the same (time saving becomes 43% in
favour of META). These results indicate for the
examples tested that the number of elementary
operations required by both methods increases at
nearly a second order rate with respect to p.

The performances of Newton method and
META for the condensation case previously de-
scribed (with conditions summarized in Table 3)
have been also compared. Values for initializing
the META were:

N7= 0.5 N7 jimi and (as the second value)
NT: 0[1{ Fl (05 NT,Iimir) = U] or NT: 0.9
NT,.’.imit[if Fl (05 NT.h'rm'.r) > 0]‘

b

Yi 5
¥, =k x| =—— =, (for COs, zbg, =0) and
b
Je—l,;ﬁ-ﬁonzyJt

T values are given in Table 8.
For the Newton method:
N;= (0.5 N1,4imie )/(p — 1) (for CO,, Nco,

=0), and the remaining values as for META.
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The results are summarized in Table 8. Com-
puting times of the same order are demanded by
both methods, although at the top of the con-
denser the META performs again better.

Numerical results presented in Tables 5-8
were obtained in a PC Pentium II Processor - 350

MHz.
CONCLUSIONS AND FUTURE DIRECTIONS

Two types of numerical procedures to evalu-
ate mass and energy transfer rates through vapor-
liquid interfaces have been analysed here. Mass
transfer expressions are based on Maxwell-Stefan
constitutive relationships used along with the film
model for both sides of the interface. The Newton
method applied for the whole set of equations is
compared with two equation-tearing algorithms.
One of the equation-tearing algorithms is the
method presented by Mori et al. (1996). The
second one (META) is a modification introduced
in this contribution.

Both equation-tearing algorithms involve two
main loops. The internal loop consists in solving
the set of mass transfer and equilibrium expres-
sions for a trial value of the total molar flux Ny.
The results are then used to check if the energy
conservation equation is satisfied (external loop).

The analysis of the behaviour of mass trans-
fer and equilibrium relationships (the equations of
the internal loop referred to above) was undertak-
en as a first step in this study. It is found that
this subset of equations can be conveniently repre-
sented by the relation between Nt and the inter-
facial temperature T; (N, T;curve). This rela-
tionship shows asymptotic values of T'; which can
be predicted from phase equilibrium calculations
and the shape of the curve depends additionally on
the ratio of binary mass transfer coefficients in
both phases. Maximum or minimum values of T}
may occur. A different picture arises when a non-
condensable component is present in the vapor
phase. In this case, a limiting total molar flux
arises as T decreases arbitrarily. This characteri-
sation in terms of mass and equilibrium relation-
ships was employed to select a set of examples
used afterwards to evaluate the numerical proce-
dures. Convenient initialisation for the algorithms
can also be inferred from the (known) asymp-
totes. -

The intersection of the (N, T}) curve with
the energy conservation equation fixes the solu-
tion of the problem and it is what both equation-
tearing algorithms actually pursue. It is shown
that the problem thus formulated is well posed for
reaching a numerical solution when considering

real values of the mass and heat transfer coeffi-
cients and of the thermo physical properties.

The algorithm Mori et al. (1996) solves the
internal loop by a repeated substitution approach.
A qualitative analysis ol this procedure reveals
that it can not work properly when mass transfer
coefficients in both phases are of the same order.
It was checked numerically that the algorithm ei-
ther fail to converge or it does making many itera-
tions for cases showing such condition. The algo-
rithm performs reasonably well, although less ef-
fectively, than the other two algorithms for the
remaining cases. Since this algorithm does not in-
volve solving linear sets of equations, it may be
still a suitable alternative for some systems involv-
ing a large number of components and one of the
phases being effectively mass transfer controlling.

The original purpose for introducing the
META is eliminating the convergence weakness
of Mori et al’s algorithm. This can be readily
done at the cost of adding a step requiring the so-
lution of a set of linear equations. The algorithm
showed no instance of divergence and it per-
formed similarly for practically all examples test-
ed. Essentially the same comments apply for
Newton algorithm. A comparison of CPU time
demanded by both algorithms showed better aver-
age performance by the META, saving about
50% .

On the basis of the results obtained in this
contribution, the use of the META can be recom-
mended to evaluate mass and heat transfer rates at
vapor-liquid interfaces.

Future work can be concentrated in extend-
ing the analysis to a higher number of examples
derived from other vapor-liquid mass exchange
processes. Also, the case of multicomponent sys-
tems involving stronger liquid non-ideal behaviour
than those dealt with here (e.g. close to the con-
dition of liquid phase splitting) is of practical in-
terest.
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NOMENCLATURE
Cp molar heat capacity of mixture, ]/
kmol K
er internal loop (on temperature values)
tolerance in META algorithm
en external loop (on molar global flux val-

ues) tolerance in META algorithm
AH;*?  heat of vaporization of component 7, ]/

kmol

K; phase equilibrium constant for compo-
nent

META modified Equation-Tearing Algorithm

Nr total molar flux , kmol/m?s

N7, timie limiting value of N¢, kmol/m? s

Nu Nusselt number

N; molar flux of component i, kmol/m? s

p number of components in the mixture

T temperature, K

Ty bubble point temperature, K

Tp dew point temperature, K

x mole fraction in liquid phase

y mole fraction in vapor phase

h heat transfer coefficient, W/m? K

ho global heat transfer coefficient in con-
densers
(excludes vapor phase), W /m? K

[] identity matrix

P pressure, P,

Pr Prandtl number

Quaens  latent heat flux Eq. (16), W/m?

Sc Schmidt number

Sh Sherwood number

Greek letters

rj matrix of thermodynamic factors

Vi activity coefficient

i binary mass transfer coefficient, kmol/
m? s

[¥] matrix of mass transfer rate factors in

linearized film model

Subscripts

NC non-condensable components
G coolant (in condensers)

iy J i-th, j-th components

I the interface

L liquid phase

\"4 vapor phase

Superscripts

I the interface

b bulk of the phase

L liquid phase
1% vapor phase
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