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ABSTRACT: A novel one-dimensional (1D) model to account for the diffusion-reaction problem in catalytic pellets with arbitrary
shape is proposed. Themodel includes three geometrical parameters, which are fitted bymatching the behavior of the actual pellet at
high and low Thiele moduli simultaneously. The formulation presented here for the diffusion-reaction problem with arbitrary pellet
shapes and for the geometric 1D approximation is intended for covering a wide range of cases, concerning kinetics (including
thermal effects), transport models, and variable catalytic activity. In this contribution, the effect of critical geometrical ratios that is
observed in some pellet shapes is focused on testing the performance of the 1D model, assuming isothermal first-order kinetics.
Remarkable precision (errors of <2%) was reached in all of the tested cases.

1. INTRODUCTION

Several aspects should be considered for the analysis and simu-
lation of catalytic reactor units. Accounting for the intraparticle
diffusion and reaction inside the catalytic pellet is usually a critical
issue when dealing with real pellet shapes, because the fluxes of
reactants and products occur along two spatial coordinates (two-
dimensional, 2D) or three spatial coordinates (three-dimensional,
3D). The computational task is readily affordable when a single
set of conditions is undertaken. However, for simulation of
a catalytic reactor with a single reaction, such evaluations have
to be performed thousands of times. In addition, for applica-
tions such as reactor optimization, the number of evaluations will
increase by orders of magnitude. When dealing with practical
cases in which a set of reactions occurs, the amount of numerical
calculations is further increased. Thus, it is of paramount impor-
tance to avoid the use of 2D or 3D time-consuming computations.

Many years ago, Aris,1 simultaneously with other researchers,
presented a very simple approach to reduce 2D or 3D problems
to a one-dimensional (1D) problem, showing that, at large values
of the Thiele modulus, the effectiveness factor for a single
reaction is not dependent on the pellet shape, but just on the
ratio of pellet volume to external surface area: l = Vp/Sp, which is
defined as the characteristic length or characteristic diffusion length.
To perform approximate evaluations at low and intermediate
values of the Thiele modulus, any pellet geometry satisfying the
actual value of l could be adopted, as a simple slab of half-
thickness l . The expected precision with this approximation
is ∼20% for relatively simple kinetics.

A more-convenient 1D model was proposed by Datta and
Leung.2 For this model, identified here as the Generalized Cylin-
der (1D-GC) model, diffusion is supposed to occur along the
length of a hypothetical body of variable cross section according
to (1 - x)σ, with x being the dimensionless spatial coordinate.
Values of the model parameter σ (which is the shape factor) can
be obtained by matching a shape property of the actual pellet.

Mariani et al.3,4 proposed two different criteria to estimate the
shape factor σ by forcing the 1D-GCmodel to match the second-
order term of a series expansion of the effectiveness factor of the
actual pellet either at high Thiele moduli or at low Thiele moduli.
For the purpose of identifying whether the high or low Thiele
moduli criteria are used, the 1D-GC model will be denoted as
1D-GCΓ or 1D-GCγ, respectively. (The parameters Γ and γ
characterize such second-order terms of the series at high and low
Thiele moduli, respectively. Γ is strongly dependent on the pellet
shape and, without any significant loss of accuracy, can be
regarded as being independent of the kinetic expression.4 On
the other hand, γ is strictly a geometrical parameter.3)

The 1D-GCγ model was evaluated for isothermal linear
kinetics by Mariani et al.,3 and the 1D-GCΓmodel was evaluated
by Mariani et al. for isothermal linear kinetics5 and for normal
nonlinear kinetics, like LHHW rate expressions6 (“normal”
refers to reaction rates that decrease as the limiting reactant is
consumed). Overall, the deviations of the results of the 1D-GC
model from the actual pellet effectiveness factor was less than
∼3%. Many different pellet geometries were tried. In particular, a
large set of commercially available pellet shapes were tested.5

Generally, the 1D-GCγ model showed, on average, somewhat
higher precision than the 1D-GCΓ model. However, the evalua-
tion of parameter γ is more involved than that of parameter Γ. In
summary, under the conditions tested in the above quoted works,
the level of precision provided by the 1D-GC can be regarded as
being quite satisfactory, even for the most stringent practical
application.
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Nonetheless, further conditions explored to assess the accu-
racy of the 1D-GC model have revealed that errors in the
estimations of the effectiveness factor can rise well above the
level found in the above-summarized studies. In this regard, new
geometric and kinetics features were investigated. The type of
geometrical aspects can be best described by an example. Among
the shapes analyzed in the work of Mariani et al.,5 a four-hole
cylinder was considered, with relative geometric dimensions
provided by amanufacturer. If the diameter of the holes is increased,
leaving the remaining dimensions fixed, the ratio between the
thickness of the walls separating the holes and the characteristic
length l becomes critically small. As a result, the pellet shows
significantly different diffusion lengths and the only available
geometrical parameter of the 1D-GC model becomes unable to
capture the behavior of the actual pellet with precision. Of course,
some others geometries also show similar effects, when the
aspect ratios between their dimensions are changed. One com-
mon and practically relevant effect is simply introduced by
modifying the length of any cylindrical pellet characterized by a
given cross-sectional shape.

On the other hand, abnormal kinetics leading to effectiveness
factors greater than unity were tried and the performance of the
1D-GC model deteriorates as the diffusion-reaction system
shows high parametric sensitivity, in particular, with respect to
geometrical details of the pellet.

In this context, the type of diffusion-reaction problem in a 3D
catalytic pellet, for which series solutions for the effectiveness
factor at low and high Thiele moduli are available, is first pre-
sented in Section 2 of this contribution. Section 3 presents the
new 1D model approximation, which is called the variable-
diffusivity model (1D-VD) and introduces three parameters for
matching the leading terms of the series solutions of the actual
pellet simultaneously. Section 4 covers the specific objective of
this contribution, which is analyzing the performance of the 1D-
VD model when applied to approximate the behavior of a
significant number of pellet shapes, in general, and some pellet
shapes that show critical aspect ratios, in particular.

We anticipate that the 1D-VD model guarantees remarkable
precision, with errors of <2% in all the cases when isothermal
linear kinetics are considered. The results from the use of the 1D-
VD model, along with abnormal reaction kinetics, are also quite
satisfactory and will be presented in a forthcoming communica-
tion; they are presently systematized in relation to the appear-
ance of solutions involving multiple steady states. In addition, a
criterion for the safe use of the simpler 1D-GCmodel is discussed
in terms of the shape parameters γ and Γ of the actual 3D pellet.

2. PROBLEM STATEMENT AND BEHAVIOR AT LOW
AND HIGH THIELE MODULI

The diffusion-reaction problem in a catalytic pellet of arbitrary
geometry can be written in the following way for the key species
A diffusing according to Fick's law with constant effective diffu-
sivity (DA) and isothermally undergoing a single irreversible cata-
lytic reaction, depending on its molar concentration (CA):

DAr2ðCAÞ ¼ aðx0Þ
Y

A
ðCAÞ x0 ∈ VP ð1aÞ

CA ¼ Cs
A ðconstantÞ x0 ∈ SP ð1bÞ

where ΠA is the consumption rate of A, and Vp and Sp are the
volume and external surface of the pellet, respectively.r2 stands

for the Laplacian operator. [Remark: In this paper, the symbol Vp
will stand for both the spatial domain corresponding to the
catalyst and its volume; similarly, Sp stands for the domain of the
permeable external surface and its area.]

The catalytic activity a may be dependent on the position
vector (x0) inside the pellet and is normalized according to

1
Vp

Z
Vp

aðx0Þ dV ¼ 1 ð2Þ

It is assumed that the activity a at any point on Sp is nonzero but
not necessarily uniform.

Equations 1a and 1b can be rendered dimensionless, using the
characteristic length l (which is defined as l = Vp/Sp (for the
spatial coordinates), and the values of CA

s and
Q

A
s at the external

surface, (i.e., Y = CA/CA
s and r(Y) =

Q
A/
Q

A
s ):

r�2ðYÞ ¼ Φ2aðxÞrðYÞ x ∈ V
�
p ð3aÞ

Y ¼ 1 x ∈ S
�
p ð3bÞ

where Vp*, Sp*, r* 2, and x are the dimensionless pellet volume,
external pellet surface, Laplacian operator, and position vector,
respectively.

As usual, the Thiele modulus is defined as

Φ ¼ l
Qs

A

Cs
ADA

 !1=2

ð4Þ

The effectiveness factor is defined as

η ¼ 1
V �
p

Z
V
�
p

aðxÞrðYÞ dV� ð5Þ

Although the formulation in eqs 3a and 3b is based on the
relatively simple problem expressed by eqs 1a, 1b, and 2, it is im-
portant to stress that a more general problem for a single reaction
with a generic kinetic expression, depending on the concentra-
tion of any species in the mixture and on temperature, more-
complex mass-transport models (e.g., the Dusty Gas Model for
mass transport) can be cast in the same formal way as the
formulation in eqs 3a and 3b, provided that the composition,
temperature, and pressure are uniform over Sp. In addition, the
pellet body shows isotropy and uniformity, with regard to the
mass- and heat-transport intrinsic properties, and the heat of
reaction can be assumed to be constant. These restrictions allow
the expression of any of the molar fluxes of the species in the
mixture and the heat flux in terms of one of them (e.g., the key
reactant species A), and final relationships between molar
concentrations and temperature with CA can be established.7

In this general case, the meaning of variables Y and r(Y) in eqs 3a
and 3b, and the definition of the Thiele modulus (eq 4), change,
as a consequence of the reduction procedure, according to the
details provided in refs 8 and 9.

Accordingly, the series expansions for the effectiveness factor
described in the remainder of this section and the 1Dmodels discus-
sed in Section 3 also encompass the general problem just discussed.

The solution of eqs 3a and 3b at low Thiele modulus has been
addressed in the literature (e.g., Aris10). A regular perturbation
analysis can be carried out to expand η (eq 5) in powers of Φ2:

η ¼ 1- r0ð1ÞγΦ2 þ r0ð1Þ2 þ 1
2
r00ð1Þ

� �
βΦ4 ð6Þ
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where r0(1) = (dr/dY)Y=1, r00(1) = (d2r/dY2)Y=1, and the param-
eters γ and β are expressed as

γ ¼
R
V
�
p
aG dV�
V �
p

ð7aÞ

β ¼
R
V
�
p
aG2 dV�
V �
p

ð7bÞ

and G is the solution of

r�2G ¼ - aðxÞ in V �
p ð8aÞ

G ¼ 0 on S
�
p ð8bÞ

The expression shown in eq 6 is a three-term truncated series
withO Φ6

� �
. Note that the auxiliary fieldG is not dependent on

kinetics; hence, the parameters γ and β are dependent only on
the geometry (and the catalytic activity profile) of the pellet. The
solution of the problemdefined by eqs 8a and 8b (forG) should be
determined only once for a given pellet shape. We have found the
COMSOL Multiphysics simulation environment (numerical
solution of differential equations by the finite-element method)
to be very appropriate to this end. Instead, if only the evaluation
of γ is required, the use of the boundary element method is espec-
ially suitable, as described by Mariani et al.,3 where some approx-
imations and analytical results for simple geometries are also given.

Assuming that the external surface Sp is composed of smooth re-
gions (i.e., pieceswith continuous curvature radii, separated by edges),
Keegan et al.8,9 developed a formulation for the problem described by
eqs 3a and 3b that allows η (eq 5) for high Thiele modulus to be
expressed as a two-term truncated series to the power of 1/Φ:

η ¼ I1
Φ

� �
as1=2 -

I2
Φ2

� �
Γ ð9Þ

where

IðYÞ ¼ 2
Z Y

0
rðY0Þ dY0 ð10aÞ

I1 ¼ ½Ið1Þ�1=2 ð10bÞ

I2 ¼ 1
I1

Z 1

0
½IðYÞ�1=2 dY ð10cÞ

as1=2 ¼ Sp
- 1
Z
Sp

a1=2s dS ð10dÞ

where as is the local activity on the external pellet surface Sp.
The parameter Γ, which results from the formulation pre-

sented in Keegan et al.,8,9 can be expressed as

Γ ¼ l
Sp

Z
Sp

ðY s þAsÞ dSþ
Z
W
ωðθÞ dW

" #
ð11Þ

where

As ¼ -
as0

2as

Y s ¼ 1
Ra

þ 1
Rb

and
as
0 ¼ ra 3 n

Here, n is the inside normal unit vector on Sp.

Ra and Rb are the local principal radii of curvature on Sp, with
the following sign convention: positive if the center of curvature
is oriented toward the inside of the pellet and negative in the
opposite sense. The variableW in eq 11 accounts for the total length
of the edges. Note that the definition of Γ in eq 11 differs from the
original given by Keegan et al.9 by a factor as

1/2.
The coefficient ω is very weakly dependent on the type of

reaction rate expression, but is strongly dependent on the
intersecting angle θ that a pair of smooth regions defines when
they meet at the edge. The angle θ can be visualized in Figure 1,
where the pair of smooth regions is denoted as region S1 and
region S2. For curved regions, θ will generally vary with the posi-
tion on the edge; in Figure 1, the angle θ corresponds to point O
of the edge and Z is the plane normal to the edge at O.

The coefficient ω can be precisely evaluated from the follow-
ing approximation:9

ωðθÞ ¼
b0
θ

1-
θ

π

� �π2=b0
" #

if 0e θe π
� �

π2A
ðπ-AÞθþπð2A-πÞ 1-

θ

π

� �
if π < θe 2π
� �

8>>>><
>>>>:

ð12Þ
where

b0 ¼ 5:2
I10:3

I20:1

 !

A ¼ -ωð2πÞ ¼ 1:9

ðI1I2Þ0:07
Expression 11 for parameter Γ looks complicated, because it

has been written in a most general way. However, most commer-
cially available pellet shapes show smooth regions with constant
curvatures; hence, the integral on Sp is very easily evaluated by
adding the contribution of each region. Moreover, the edges nor-
mally present constant intersecting angles θ and the second
integral also can be evaluated in a straightforward manner. The
effect of kinetics on Γ is introduced in eq 12 through parameters
I1 and I2. However, this effect can be usually neglected by taking
directly the values for isothermal linear kinetics, r(Y)d Y, I1 = 1,
and I2 =

1/2.

Figure 1. Sketch showing the intersecting angle θ.
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In summary, the catalytic behavior of the actual pellet can be
adequately characterized, at low and high Thiele modulus, by the
shape parameters γ (and β) and Γ, respectively.

3. ONE-DIMENSIONAL (1D) MODEL FORMULATION

For the purpose of approximating the diffusion-reaction pro-
cess inside the actual pellet, a general 1D model is proposed,
based on a hypothetical pellet allowingmass transport along only
one spatial coordinate, 0 < x0 < L, where the origin is fixed at the
external surface and L is the diffusion length (this parameter will
be specified later in this work). The dimensionless coordinate is
defined as x = x0/L. For the 1D model to approximate the beha-
vior of the actual pellet, it is necessary to introduce some fitting
parameters. In a general way, these parameters can be associated
with (fictitious) spatial variations of any of the following proper-
ties of the 1D model: cross-sectional area, catalytic activity, and
effective diffusivity:

Cross-sectional area : SpAðxÞ Að0Þ ¼ 1 ð13aÞ

Catalytic activity : ðas1=2Þ2amðxÞ, amð0Þ ¼ 1 ð13bÞ

Diffusivity : DAD�ðxÞ; D�ð0Þ ¼ 1 ð13cÞ
In eqs 13a, 13b, and 13c, the magnitudes Sp, DA, and as

1/2 (see
eq 10d) correspond to the values for the actual pellet.

Therefore, the fictitious spatial-dependent coefficients are
A(x), am(x), and D*(x). Their values at x = 0 have been fixed,
for the sake of convenience; however, apart from this boundary
restriction, they can vary arbitrarily with x, with the further
condition of being positive, to keep their physical meaning. Trial
functions for them should introduce the necessary fitting param-
eters. In practice, only one of them can be chosen as being
effectively variable, relative to x, and the remaining two must be
taken as constants (i.e., unitary). For example, the 1D-GCmodel
becomes defined by using the expressionsD*(x) = am(x) = 1 and
A(x) = (1 - x)σ.

We stress that the coefficient am(x) is not intended to appro-
ximate the activity distribution a(x) in the actual pellet (which, in
fact, can be uniform). Seemingly, D*(x) will not reflect a true
feature of the actual pellet (on the contrary, it has been stated in
Section 2 that transport properties are restricted, to be intrinsi-
cally independent of position).

The dimensionless mass conservation balance for the key
species A in the hypothetical pellet with the same dimensionless
reaction rate r(Y) and Thiele modulus Φ as in the actual pellet
becomes

1
AðxÞ

d
dx

AðxÞD�ðxÞdY
dx

� 	
¼ ðas1=2Þ2amðxÞ L

l

� �2

Φ2rðYÞ

ð14aÞ

Y ¼ 1 at x ¼ 0 ð14bÞ
dY
dx

¼ 0 at x ¼ 1 ð14cÞ

The effectiveness factor for the hypothetical pellet is

η ¼
R 1
0 amðxÞAðxÞrðYÞ dxR 1

0 amðxÞAðxÞ dx
ð15Þ

The first matching condition for the problem stated in eqs 14a,
14b, and 14c, and, to approximate that of the actual pellet (eqs 3a
and 3b), is that both show the same global consumption rate at
very low reaction rates (Φf 0) (i.e., when the composition and
temperature), and, hence, the reaction rates are uniform within
the entire catalyst pellet. This condition allows L to be defined
and is expressed as

L ¼ l

ðas1=2Þ2
R 1
0 amðxÞAðxÞ dx

ð16Þ

The same global consumption rate in both pellets (hypothetical
and actual) at very highΦ values (i.e., whenonly thefirst term is signi-
ficant in eq 9) is automatically warranted by eqs 14a, 14b, and 14c and
the conditionsA(0) =D*(0)=am(0) = 1 (see eqs 13a, 13b, and 13c).

The functions for A(x), D*(x), and am(x) can now be chosen
to match further terms in the series shown in eqs 6 and 9 for both
pellets. Clearly, as stated previously, we have identified only three
shape parameters for the actual pellet (γ, β, Γ) and we have
plenty of alternatives to introduce parameters in the three func-
tions. To simplify matters, it was decided that only one coeffi-
cient would be used for this purpose and the remaining two
would be assumed to be equal to unity. As a test for choosing the
suitable function, it was assigned alternatively to each of them the
form f(x) = exp(C1x þ C2x

2), where C1 and C2 are parameters
used to match the values γ and Γ of any actual pellet. The ability
of each function to match simultaneously values of γ and Γ,
chosen independently, then was analyzed. The results were
conclusive: the coefficient for diffusivity D*(x) is capable to
adjust any combination of values with physical meaning (i.e., γ >
0 and Γ >-1), while A(x) and am(x) showed significant restric-
tions, because the range of values for γ or Γ was generally limited
by the value taken for the other. Details of this test are given in
Mocciaro's thesis.11

Therefore, we have chosen D*(x) and assumed a value of
A(x) = am(x) = 1 in eq 14a. The specific model thus generated
has been termed the variable diffusion model (denoted as 1D-
VD). Equations 14-16 become

d
dx

D�ðxÞdY
dx

� 	
¼ Φ2

ðas1=2Þ2
rðYÞ ð17aÞ

Y ¼ 1 at x ¼ 0 ð17bÞ
dY
dx

¼ 0 at x ¼ 1 ð17cÞ

η ¼
Z 1

0
rðYÞ dx ð18Þ

L ¼ l

ðas1=2Þ2
ð19Þ

The model represented by eqs 17a-c corresponds to a slab with
uniform catalytic activity and an effective diffusivity that is depen-
dent on position.

The following expression for D*(x), including three param-
eters, has been employed for the results discussed in the next
section:

D�ðxÞ ¼ exp C1xþC2x
nð Þ ð20Þ
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whereC1, C2, and n are the constants to be fitted by matching the
actual pellet shape parameters γ, β, and Γ. By expanding the
effectiveness factor of the 1D-VD model (eq 18) in a series ofΦ
and 1/Φ for low and high reaction rates, respectively, equations
of the form shown in eqs 6 and 9 arise. From them, the following
expressions can be obtained:

Γ ¼ -
1
2
ðas1=2Þ2 dD�ðxÞ

dx

� �
x¼ 0

ð21aÞ

γ ¼ 1

ðas1=2Þ2
Z 1

0

ð1- xÞ2
D�ðxÞ dx ð21bÞ

β ¼ 1

ðas1=2Þ4
Z 1

0
G 2ðxÞ dx ð21cÞ

where the function G xð Þ is defined as follows:

G ðxÞ ¼
Z x

0

1- x
D�ðxÞ dx ð21dÞ

Note that C1 is immediately obtained from eqs 20 and 21a: C1 =
-2Γ/(as

1/2)2. C2 and n can be obtained by solving numerically
the pair of nonlinear simultaneous equations (eqs 21b and 21c),
once the values of γ and β of the actual pellet are given. The
constant C2 may be positive or negative, whereas n should be
positive.

4. RESULTS

Since the specific purpose of this contribution is the analysis of
the effect of the pellet shape on the estimation of the effectiveness
factor using 1Dmodels (1D-VD and the simpler 1D-GC), an iso-
thermal first-order reaction and uniform catalytic activity for the
actual pellet (i.e., r(Y) = Y and a= 1 (and, hence, as = 1)) has been
undertaken to this end.

A representative set of shapes, corresponding mostly to
those of commercially available catalysts, has been considered.
The shapes analyzed here, along with their standard relative
dimensions, are defined in Tables 1 and 2, which include the
relative error ɛmax (defined in eq 22, given below) resulting
from the effectiveness factor estimation when using the 1D-VD
and 1D-GCΓ models. All the pellets in Tables 1 and 2 are

cylinders of different cross-sectional shape, intended for a
variety of chemical processes (oxidations, hydrogenations,
isomerizations, hydrotreatments, steam reforming, etc.). The
standard dimensions of the pellets reported in Tables 1 and 2
have been taken from manufacturers' catalogues (e.g., Haldor
Topsoe, Criterion, BASF).

The relative errors in estimating the effectiveness factor (η)
from 1D-VD and 1D-GC models are calculated from the
following expression:

E ¼ 100� ηm - η

η

where η represents the effectiveness factor of an actual 3D pellet
and ηm represents the value obtained from the 1D-VD or 1D-GC.

According to the criteria employed to fit the parameters of
both models, 1D-VD and 1D-GC, maximum errors (denoted by
ɛmax) will take place for intermediate values of the Thiele
modulus Φ (for the shapes described in Tables 1 and 2, the
range of intermediate values was 0.5 <Φ < 2). Therefore, these
maxima have been used to assess the behavior of both models:

Emax ¼ max
Φ

fEg ð22Þ

For a given 3D pellet, parameter Γ was evaluated from eq 11,
while parameters γ and β were obtained from eqs 7a and 7b after
solving eqs 8a and 8b with the COMSOL Multiphysics environ-
ment. In addition, the effectiveness factor was obtained after
solving the mass balance for the actual 3D pellet (eqs 3a and 3b)
with the same software. Instead, a routine that was developed by
the authors, which uses a shooting procedure to solve an integral
formulation of the 1D conservation equations (see eqs 14a-c
with A(x) = (1 - x)σ, D*(x) = am(x) = 1 for the 1D-GC model
and eqs 17a-c for the 1D-VD model), was employed to obtain
ηm. In either case, for the evaluation of η or ηm, the size of the
mesh for numerical evaluation was adjusted to guarantee an
accuracy of ∼0.1%.

With regard to the 1D-GC model, its parameter σ was
calculated either by matching the value γ (for the 1D-GCγ
model) or Γ (for the 1D-GCΓ model) of the actual pellet,
according to

σ ¼ 3 γ- 1
1- γ

ð23aÞ

and

σ ¼ Γ

1-Γ
ð23bÞ

As can be appreciated from Tables 1 and 2, the 1D-VD model
allows a considerable reduction in the maximum error levels, up
to a value of ∼1% whereas, in the case of 1D-GCΓ model, the
maximum error is∼3% for the finite length cases. For the entire
set of analyzed shapes, parameters of the 1D-VD model lay in
the following ranges: 3 < n < 9 and 0.35 < |C2| < 9, while we recall
that C1=-2Γ (for uniform catalytic activity in the actual pellet).

Results using the 1D-GCγ model are not shown in Tables 1
and 2, because they are, on average, similar to those obtained
using the 1D-GCΓ model.

Recall that the geometrical ratios of the pellets in Tables 1 and
2 were taken from manufacturers' catalogs. However, some
dimensions can show a distribution, as in the case of the pellet
length, resulting from extrusion procedures. In addition, the
same pellet shape frequently can be offered in more than a set of
geometrical ratios, to seek specific advantages, either in catalyst

Table 1. Cross Section of Multilobe Pelletsa

a h = H/(H þ b).
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or reactor performance (e.g., increasing the diameter of the holes
for a multihole pellet will lead to a decrease in reactor pressure
drop and simultaneously may also lead to a higher effective
reaction rate for strongly diffusion-limited conditions). Gener-
ally, such variations will be ultimately restrained by mechanical
reasons,12,13 because the structure of the pellet will be weakened
by very thin internal walls or very sharp edges or points.

Therefore, addressing the performance of the 1D-VD and 1D-
GC models when the geometrical ratios of the pellets are
modified has been regarded to be a significant issue.

In this context, if we take into account the fact that the 1D-GC
model is a simpler alternative, it would be interesting to know in
advance when predictions of the 1D-GC start to deteriorate.

If the values of σ calculated from both eqs 23a and 23b are
similar, we can expect that the results of the 1D-GCmodel will be
suitably precise. In the best case, both values of σ from eqs 23a
and 23b will be the same. Imposing this condition, the values of
γ and Γ for the actual pellet would have to fulfill the following
relation from eqs 23a and 23b:

1 ¼ γð3- 2ΓÞ
In practice, however, for any actual pellet, we define the correla-
tion parameter C as

C ¼ γð3- 2ΓÞ ð24Þ

Now, if the value of C is close to 1, the 1D-GC model will be
expected to be precise. Therefore, a convenient criterion for the
safe use of the 1D-GC model can be formulated in terms of C.
Figure 2 presents the values of C for several shapes characterized
by their values of Γ and grouped by similarity, as multihole,
multilobe, and miscellaneous shapes (this last set includes some
shapes considered in Mariani et al.,5 such as a hollow sphere, a
torus, and other few cylindrical pellets with specific cross
sections). Comparing the results of the actual effectiveness
factors and those of the 1D-GC model for the set of pellets
included in Figure 2, it has been concluded that C should not
deviate from unity by more than 15%, (i.e., 0.85 < C < 1.15, the
region between the dashed lines in Figure 2) to keep the error of
the 1D-GC model below 3% for an isothermal first-order
reaction.

In the following sections, the effects of pellet length and cross-
section relative dimensions will be analyzed for selected pellets of
Tables 1 and 2.
4.1. Effect of Pellet Length. Note that when the length H

approaches zero (H f 0), all pellets should behave as a slab,
irrespective of the cross-sectional shape; in these cases, values of
η estimated by any of the 1D models considered here will be
exact (i.e., with σ = 0 for the 1D-GCmodel andD*(x)� 1 for the
1D-VD model). The full effect of the cross section will manifest
when H f ¥. Therefore, the analysis that follows will be made
for 0 <H <¥, or in terms of the dimensionless variable h, which is

Table 2. Cross Section of Multihole Pelletsa

a h = H/(H þ b).
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defined as h = H/(H þ b), 0 < h < 1, where b is a characteristic
dimension of the cross section (see Tables 1 and 2).
Tables 1 and 2 also show the results of employing 1D-VD and

1D-GCΓ models for infinitely long pellets (hf 1), which is the
most challenging case for all geometries in those tables. Inter-
estingly, note that this condition is the one reached by a catalytic
wall reactor in which a central channel is surrounded by a
catalytic deposit of a given cross-sectional shape.
Figures 3a and 3b show the effect of pellet length on ɛmax for

two selected shapes from Tables 1 and 2 (8L (eight-lobe pellet)
and 7H (seven-hole pellet), respectively). The ɛmax value from the
1D-VDmodel clearly does not present anydefinite trendwith h and is
boundedby1%,whereas, for the 1D-GCmodel,ɛmax increasesmono-
tonically and reaches themaximumvalue at an infinite length (h= 1):
ɛmax = 4.8% and 4%, for the 8L pellet and 7H pellet, respectively.
The values of the correlation parameter in eq 24 at h = 1 are

C = 1.29 for the 8L pellet and C = 1.19 for the 7H pellet. Both
values ofC differ from the unity bymore than 15% and, hence, do
not fulfill the criterion for the safe use of the 1D-GC model. As
could be expected, both values of ɛmax are larger than 3%.
Note that the behavior shown in Figures 3a and 3b is typical for

the entire set of shapes in Tables 1 and 2.
4.2. Effect of the Pellet Cross-Sectional Parameters. Three

pellets from Tables 1 and 2 were selected to examine the effect of
changing some geometrical ratios between their cross-sectional
dimensions: star ring, 3L-3H (trilobe, 3-hole ring), and 4H
(4-hole ring).
4.2.1. Star Ring: Sharpness of the Star Points. Figure 4

shows a sketch of the four star rings that will be analyzed. The
difference is given by the a/b ratio, which accounts for the
curvature radius of the round point. The pellet identified as “star
ring 1” is the one found in the manufacturer's catalog.
Table 3 shows the results for h = 1. It is evident that, as the star

point becomes sharper (lower a/b ratios), the errors using the
1D-GC model increase. In contrast, the 1D-VD model retains a
very low error, without any appreciable trend.

All values of C in Table 3, except that for star ring 4, are well
above 1.15 and, consequently, the values of ɛmax for the 1D-GCmodel
are >3%. The reason for this behavior is the small curvature
radius of the round points, which define a region (tips of the
points) with a diffusion length very different from that of
the average in the entire pellet; then, the sharper the points,
the greater the error. The particular behavior of star ring 4, with
respect to the other three cases, is because the curved region at

Figure 2. Values obtained for the correlation parameter C for a collec-
tion of pellets characterized by Γ.

Figure 3. (a) Error in the 1D-GC-Γ and 1D-VDmodels versus h for (a)
the 8L pellet and (b) the 7H pellet (h = H/(H þ b)).

Figure 4. Sketch for the cross section of the star ring pellets.
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the tip of the point becomes a perfectly defined edge, without the
curvature effect of the others.
In practice, note that very sharp points would not be advisable

because they most probably get broken when the catalyst is
loaded into the reactor.
4.2.2. Trilobe Pellet with Three Holes: Hole Diameter.

The geometrical parameter to be modified in the case of the
trilobe pellet with three holes (3L-3H) is the diameter of the
holes; simultaneously, the thickness of the separating wall
between the internal and external surfaces changes, as shown
in the three cases shown in Figure 5. In Table 4, the values of ɛmax

for the 1D-GC and 1D-VD models are reported at two different
pellet lengths: h = 0.684 and h = 1. The 3L-3H pellet with ratios
c/a = 0.5 and h = 0.684 corresponds to the commercial version.
Some points are worth remarking from the results in Table 4.

On one hand, the 1D-VD model leads to errors considerably
lower (less than ∼1%) than the 1D-GC model for almost all
cases. Moreover, although the 1D-VD model does not present
any trend with the c/a ratio, for the 1D-GCmodel ɛmax increases
as the c/a ratio decreases. Again, this fact clearly reflects the
limitation of the 1D-GC model, because of the different effective
diffusion length across the separating wall and the value for the

entire pellet. The values of C are also reported in Table 4. It can
be observed that the criterion based on this correlation parameter
is fulfilled.
As expected, the influence of the the c/a ratio is more signi-

ficant for an infinitely long pellet (h = 1).
4.2.3. Four-Hole Ring: Hole Diameter. In this case (4H

pellet), the diameter of the holes is changed while keeping the
external pellet diameter constant. Figure 6 shows the three cross
sections resulting from decreasing the hole diameter by 50% and
increasing the hole diameter by 35%, with respect to the standard
case in Table 2 (4H pellet: a/b = 0.273 and h = 0.645).
Table 5 shows ɛmax from employing the 1D-GC and 1D-VD

models to estimate the effectiveness factor for the cases in
Figure 6 and two different pellet lengths: h = 0.645 and h = 1.
ɛmax grows well above 10% for a/b = 0.367 (the largest hole

diameter, leading to the thinnest separating wall between holes)
for both values of h. The corresponding values of the correlation
parameter C largely exceed the range previously suggested for
confident use of the 1D-GC model.
It should be stressed that, for all pellets in Table 5, the 1D-VD

model shows remarkable performance, with errors of ∼1%.

5. CONCLUSIONS

A novel one-dimensional (1D) model, called the variable
diffusion model (denoted as 1D-VD), has been proposed to
approximate the diffusion-reaction problem in actual three-
dimensional (3D) catalytic pellets. The model can be described
as a slab with uniform catalytic activity and a diffusion coefficient
variable along the diffusion length, which introduces three
constants that have been fitted by matching the behavior of the
actual 3D pellet at high and low effective reaction rates simulta-
neously, as quantified by three shape parameters that are termed
γ, β, and Γ.

Table 3. Geometrical Parameters of the Four Star Rings and
Maximum Errors, Using the 1D-GCΓ, 1D-GCγ, and 1D-VD
Modelsa

ɛmax (%)

pellet a/b Γ γ β C 1D-GCΓ 1D-GCγ 1D-VD

star ring 1 0.292 0.306 0.561 0.474 1.34 5.3 -3.5 -0.3

star ring 2 0.236 0.270 0.580 0.521 1.43 6.4 -4.1 -0.2

star ring 3 0.102 0.201 0.675 0.747 1.75 11.1 -4.6 -0.3

star ring 4 0 0.774 0.818 1.116 1.19 2.8 -1.0 0.5
a h = H/(H þ b) = 1.

Figure 5. Sketch of the cross section of the trilobe pellets with three
holes (3L-3H).

Table 4. Geometrical Parameters and Maximum Errors,
Using the 1D-GCΓ, 1D-GCγ, and 1D-VD Models for 3L-3H
Pelletsa

ɛmax (%)

h c/a Γ γ β C 1D-GCΓ 1D-GCγ 1D-VD

0.684 0.75 0.200 0.551 0.747 1.43 2.8 -8.0 -0.8

0.684 0.50 0.318 0.492 0.421 1.16 1.3 -3.8 0.3

0.684 0.25 0.383 0.485 0.349 1.08 0.8 -1.8 0.7

1 0.75 -0.044 0.504 0.627 1.56 4.1 -9.8 -1.1

1 0.50 -0.105 0.399 0.270 1.28 3.0 -5.7 -0.4

1 0.25 -0.197 0.351 0.170 1.19 2.4 -3.3 0.3
a h = H/(H þ b).

Figure 6. Sketch for the cross section of the four-hole ring pellets (4H).

Table 5. Geometrical Parameters and Maximum Errors,
Using the 1D-GCΓ, 1D-GCγ, and 1D-VD Models for the
Analyzed 4H Pelletsa

ɛmax (%)

h a/b c/a e/a l/a Γ γ C
1D-
GCΓ

1D-
GCγ

1D-
VD

0.645 0.367 0.186 0.186 0.233 0.122 0.658 1.81 11.2 -6.4 -1.4
0.645 0.273 0.833 0.593 0.520 0.164 0.448 1.20 2.9 -3.3 -0.9
0.645 0.136 2.667 3.185 1.652 0.146 0.422 1.14 2.5 -2.0 0.7
1 0.367 0.186 0.186 0.257 -0.12 0.600 1.94 14.0 -7.3 -1.6
1 0.273 0.833 0.593 0.616 -0.24 0.366 1.28 4.9 -4.4 -0.1
1 0.136 2.667 3.185 2.196 -0.58 0.299 1.24 6.1 -3.1 0.6

a h = H/(H þ b).
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For the objective of assessing the predictions of the 1D-VD
model, values of the effectiveness factor were compared with
those of the actual pellets and estimations from a previous one-
parameter model, which is called the generalized cylinder model
(denoted as 1D-GC), for a representative set of commercial
pellets (standard case). A remarkable precision of ∼1% was
obtained by the 1D-VD model in the case of isothermal linear
kinetics that has been studied in this contribution. These are
encouraging results, especially bearing in mind that errors are
expected to grow when dealing with abnormal nonlinear kinetics.

In addition, an analysis of the performance of the 1D-VD and
1D-GC models was undertaken when geometrical ratios of the
pellets are modified from the standard case. The effect of pellet
length was first addressed, while the influence of cross-sectional
geometrical ratios was studied for some selected geometries (star
ring, trilobe with three holes, and four-hole ring). In all cases,
whereas large errors from the 1D-GC model are detected, the
1D-VD model allows for errors of ∼1% to be retained.

In addition, a criterion based on the correlation parameter C
(readily calculated from the shape parameters γ and Γ of the
actual 3D pellet) for safe use of the simpler 1D-GC model was
analyzed.
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’NOMENCLATURE
a(x) = local catalytic activity [-]
As = -as0/(2as) [-]
as = local catalytic activity on Sp [-]
A(x) = cross-section coefficient in the 1D-VD model [-]
am(x) = coefficient for catalytic activity in the 1D-VD model [-]
CA = molar concentration of species A [mol m-3]
CA
s = molar concentration of species A at the pellet surface

[mol m-3]
DA = effective diffusivity of species A [m2 s-1]
D*(x) = coefficient for the effective diffusivity in the 1D-VD

model [-]
G = auxiliary field defined in eqs 8a and 8b [-]
G = auxiliary field defined in eq 21d for the 1D-VD model [-]
H = length of a cylindrical pellet [m]
I1 = coefficient defined in eq 10b [-]
I2 = coefficient defined in eq 10c [-]
l = characteristic length; l = Vp/Sp [m]
L = diffusion length in the general 1D model [m]
R = radial coordinate [m]
r(Y) = dimensionless reaction rate; r(Y) =

Q
A(Y)/

Q
A
s [-]

Ra, Rb = principal radii of curvature [m]
Sp* = dimensionless pellet external surface accessible to

reactants [-]
Vp* = dimensionless pellet volume [-]

Sp = external surface area of the pellet accessible to reactants
[m2]

Vp = pellet volume [m3]
W = total length of the edges [m]
Y = dimensionless concentration [-]
x = dimensionless coordinate in the 1D-VD model [-]
x = dimensionless position vector inside the actual pellet [-]

Greek Letters
θ = intersecting angle at the edge (see Figure 1) [rad]
ω(θ) = parameter related to the edges (see eqs 11 and 12) [-]
ΠA = consumption rate of A [mol m-3 s-1]
ΠA

s = consumption rate of A at the pellet surface [mol m-3 s-1]
β = coefficient defined in eq 7b [-]
Φ = Thiele modulus [-]
Γ = coefficient defined in eq 11 [-]
γ = coefficient defined in eq 7a
η = effectiveness factor [-]
σ = shape factor, 1D-GC model parameter [-]
Y s = sumof local principal curvatures onSp; Y s = (1/Ra)þ (1/Rb)

[m-1]

Superscripts and Subscripts
s = value at Sp
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