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Stably stratified turbulence in the presence of large-scale forcing
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We perform two high-resolution direct numerical simulations of stratified turbulence for Reynolds number
equal to Re ≈ 25 000 and Froude number, respectively, of Fr ≈ 0.1 and Fr ≈ 0.03. The flows are forced at large
scale and discretized on an isotropic grid of 20483 points. Stratification makes the flow anisotropic and introduces
two extra characteristic scales with respect to homogeneous isotropic turbulence: the buoyancy scale, LB , and the
Ozmidov scale, �oz. The former is related to the number of layers that the flow develops in the direction of gravity,
and the latter is regarded as the scale at which isotropy is recovered. The values of LB and �oz depend on the
Froude number, and their absolute and relative amplitudes affect the repartition of energy among Fourier modes
in ways that are not easy to predict. By contrasting the behavior of the two simulated flows we identify some
surprising similarities: After an initial transient the two flows evolve towards comparable values of the kinetic
and potential enstrophy and energy dissipation rate. This is the result of the Reynolds number being large enough
in both flows for the Ozmidov scale to be resolved. When properly dimensionalized, the energy dissipation rate
is compatible with atmospheric observations. Further similarities emerge at large scales: The same ratio between
potential and total energy (≈0.1) is spontaneously selected by the flows, and slow modes grow monotonically
in both regimes, causing a slow increase of the total energy in time. The axisymmetric total energy spectrum
shows a wide variety of spectral slopes as a function of the angle between the imposed stratification and the wave
vector. One-dimensional energy spectra computed in the direction parallel to gravity are flat from the forcing up
to buoyancy scale. At intermediate scales a ∼k−3 parallel spectrum develops for the Fr ≈ 0.03 run, whereas for
weaker stratification, the saturation spectrum does not have enough scales to develop and instead one observes a
power law compatible with Kolmogorov scaling. Finally, the spectrum of helicity is flat until LB , as observed in
the nocturnal planetary boundary layer.
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I. INTRODUCTION

Geophysical fluid dynamics, as encountered in the atmo-
sphere and the oceans, is at the center of our understanding
and predicting capabilities in weather and climate. The modes
that prevail in such systems are a mixture of nonlinear
eddies and waves; specifically, inertial waves when a solid-
body rotation is considered and internal gravity waves when
stratification is present. The nonlinear coupling between these
modes leads to extreme events which are both sporadic
and spatially localized, with steep gradients in the velocity
and temperature or density fields, a phenomenon observed
both in the stable planetary boundary layer [1], as well as
in high-resolution direct numerical simulations (DNS) of
the Bousinesq equations [2]. Nonlinear interactions are also
associated with other phenomena, such as wave steepening
and breaking, instabilities (as the Kelvin-Helmoltz instability),
and turbulent cascades. As these interactions take place in a
wide range of scales, and as time scales in geophysical flows
are not homogeneous in scale, universality (as is the case in
homogeneous isotropic turbulence) is not necessarily obtained
in such complex flows. It is then of interest to identify features
of such flows that are robust to changes in the parameters and
characteristic time scales.

A. The case of stratified turbulence

In this study we focus our attention on stably stratified flows,
for which two relevant time scales can be identified: the gravity

wave period, τω ≈ 1/N , and the eddy turnover time, τNL ≈
LF /urms; here N , urms, and LF are, respectively, the Brunt-
Väisälä frequency, the rms velocity, and the characteristic
length scale of the flow. Whether the flow is dominated by
gravity waves or by eddies depends on the relative values of
τω and τNL. In practice, the fastest time scale is expected to
dominate the dynamics. However, as already mentioned, these
time scales are not homogeneous across length scales, and even
if the waves dominate over the eddies at large scales, then the
two time scales may become comparable at a smaller scale.
For stratification, the scale at which these two characteristic
times are equal is called the Ozmidov scale �oz = 2π/koz, with
koz = (N3/ε)1/2 and with ε the energy dissipation rate. Beyond
�oz, isotropy and a classical Kolmogorov range is expected.

Another characteristic scale for stably stratified flows is the
buoyancy scale, defined by LB = 2π/kB with kB = N/urms,
and associated with the number of layers that the flow forms
in the direction of gravity. The scale η, at which dissipation
sets in (of the order of the centimeters or the millimeters in the
atmosphere and the oceans), marks the end of the turbulence
regime. The presence of two additional characteristic scales
(�oz and LB) with respect to the case of homogeneous and
isotropic turbulence suggests a much richer and complex
picture, consisting of different and multiple dynamical regimes
across scales. Are these regimes clearly identifiable and
distinguishable? What are their characteristics in terms of
energy spectra? Is the transition between them effectively
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marked by the scales defined above? These are the general
questions that we aim to address, with a special focus on those
quantities that remain unchanged in two configurations with
different parameters.

In approaching this problem numerically we face numerous
challenges. We chose to study the direct cascade inertial range,
that is, the behavior of scales smaller than the forcing scale (a
previous work focused on the inverse cascade in rotating and/or
stratified flows [3]). Hence, we inject energy at large scale. To
be able to distinguish the possible different regimes we need a
large separation among the forcing, buoyancy, Ozmidov, and
dissipation scales, which calls for computationally intensive,
high-Reynolds-number calculations (with Re = urmsLF /ν).
The Froude number Fr = urms/(LF N ) needs to be selected
carefully; it has to be sufficiently small to guarantee enough
scale separation between kB and koz (in fact, koz/kB ∝ 1/

√
Fr),

but at the same time it has to be large enough to allow for the
observation of the recovery of isotropy before dissipation sets
in at scale kη, considering that kη/koz ∝ Fr3/2Re3/4. We thus
propose to study forced stratified turbulence using DNS at a
resolution of 20483 points and to contrast the evolution for two
different stratification strengths, Fr ≈ 0.03 and 0.1, by varying
only the ratio of the wave period to the eddy turnover time,
namely τω/τNL, by a factor 3.

B. Recent numerical studies

One can find many reviews concerning stratified turbulence
(see, e.g., Refs. [4–8]). Some important concepts emerged
from detailed numerical studies with different settings (e.g.,
comparing two-dimensional versus three-dimensional forcing,
with the forcing acting at large scale or at small scale, balanced
or not, etc.); see Refs. [9–15]. Also, several large DNS
considered the stratified case in the presence of shear [16,17]
or of rotation [18–20].

It is now known that in stratified turbulence in boxes with
unit aspect ratio, the kinetic energy undergoes a direct cascade
to small scales, and its spectrum follows at sufficiently small
scales a Kolmogorov-like law in terms of k⊥ (i.e., of wave
vectors perpendicular to gravity) [21]. At small scales, the
buoyancy field is believed to follow an equivalent law, similar
to that of a passive scalar. The spectra in terms of k‖ seem to
follow a steeper ∼k−3

‖ law, often called the saturation spectrum.
Flat spectra at large scale, presumably larger than the buoyancy
scale LB , are also reported. However, different simulations
with varying configurations and parameters present different
behavior.

In Ref. [10] a large-scale two-dimensional forcing is
used, with grids up to 10242 × 320 points. Computations are
performed at high Reynolds number and small Froude number,
varying the buoyancy Reynolds number RB = ReFr2. Two
regimes are identified, for low or high RB , with steep spectra
and laminar layers in the former case and the k

−5/3
⊥ spectra for

kinetic and potential energy and turbulent layers in the latter
case. These findings confirm previous works (see Ref. [10]
for a detailed review) and are often put in the context of
atmospheric observations. Similarly, oceanic measurements
of eddy diffusivity have identified two regimes of mixing,
in terms of the same parameter [22,23]. Using larger grid
resolution and hyperviscosity but similar forcing, it is shown

in Ref. [11] that resolving or not the buoyancy scale may affect
the outcome as far as energy distribution among Fourier modes
is concerned, with steeper spectra when LB is well resolved,
and that there is a sharp spectral break at the buoyancy scale as
already predicted by Ref. [24]. Note that steep spectra mean
that nonlocal interactions between widely separated modes
are dominant. Moreover, when energy spectra are steeper than
k−2, dissipation takes place predominantly at large scale, and
one cannot properly talk of an energy cascade phenomenon in
the sense that dissipation acts over the entire spectrum.

In Ref. [12] the choice is made of a cubic grid of 10243

points, and the spectral data are also analyzed in terms of
the wave-vortical decomposition introduced in Refs. [25,26].
The spectra are found to be flat at large scale, a feature
explained through the accumulation of sharp layers in the
vertical direction. In Ref. [13] large DNS on grids of up to
40962 × 2048 points are performed, and in these runs the
Ozmidov scale is resolved. The horizontal spectra appear to
follow again a k

−5/3
⊥ law, and it is noted that the direct cascade

in the vertical direction provides a pathway to dissipation
and to the generation of layers in the flow. The results also
indicate the layers are such that the Froude number based
on the vertical scale is of order unity [27], a feature already
observed empirically in Ref. [28]. These results are confirmed
by yet higher resolution runs [14,15] at unit Prandtl number
and with buoyancy Reynolds numbers of up to 220. Such
a high resolution allows also for a detailed investigation of
intermittency. Finally, in Ref. [9], it is confirmed that the
critical parameter to determine what scaling exponents prevail
in the spectra is the buoyancy Reynolds number: At large
Reynolds number, the spectra are found to be independent of
stratification.

What can be concluded from these past studies is that
a consensus has not yet been reached as to whether there
will be a universal description of such flows. In the present
paper, we show that, as suggested already in Ref. [29], some
of the ambiguities found in preceding studies are linked to
a competition between several phenomena, namely, on one
hand, the growth of slow modes with k⊥ ≈ 0 and, on the other
hand, the dynamics of fast modes with k⊥ �= 0.

II. METHODS

A. The Boussinesq equations

The dynamics of a turbulent flow in a stably stratified
environment can be described by the incompressible Navier-
Stokes equations under the Boussinesq approximation. Ac-
cording to this model the three-dimensional velocity field
u(x,t) of Cartesian components (u,v,w) and the temperature
fluctuations (or buoyancy field) θ (x,t) obey the set of equations

∂tu + u · ∇u = −∇P − Nθ ez + ν�u + fV , (1)

∂tθ + u · ∇θ = Nw + κ�θ, (2)

∇ · u = 0, (3)

where P is the pressure, N the Brunt-Väisälä frequency, ν

the viscosity, fV a velocity forcing term, and κ the thermal
diffusivity. As customary, the Brunt-Väisälä frequency is
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defined by N =
√

−(g/θ0)(dθ̄/dz), where g is the gravita-
tional acceleration, θ0 is the mean temperature, and θ̄ is a
linear temperature profile.

Note that the temperature fluctuations are written in units of
velocity through the change of variable θ = θ ′g/(Nθ0), where
θ ′ are the temperature fluctuations in units of temperature. We
make the equations dimensionless by dividing velocity, space,
and time by a characteristic velocity U , a characteristic length
L, and the characteristic turnover time τ = L/U . We solve
the equations in a cubic domain of length L0/L = 2π . For the
choice L = 1, the wave number in Fourier space associated
with L0 is unitary, and all the larger wave numbers are integers.
The Brunt-Väisälä frequency is N = N τ . The viscosity,
ν = ν/(L U ), should also be regarded as dimensionless and
similarly for the thermal diffusivity; note that with our choice
of U and L, the former can be interpreted as the inverse of a
Reynolds number.

The Boussinesq approximation is often used to study
stably stratified atmospheric and oceanic flows. For a detailed
discussion on the validity and limitations of this approximation
for the ocean see, e.g., Ref. [30] and references therein.

B. Global quantities

The system can be characterized in terms of its energy,
helicity, enstrophy, and dissipation rate, expressed either as a
function of time or of Fourier space wave numbers. The mean
total energy ET is defined as the sum of the kinetic EV and
potential EP energy,

1
2 〈|u|2 + θ2〉 = EV + EP = ET ,

and is a conserved quantity in the ideal limit. The brackets
indicate the spatial mean. We also define helicity, the velocity-
vorticity correlation, as

HV = 〈u · ω〉.
Helicity is an invariant of the inviscid nonstratified equations
and has been observed to considerably slow down the decay
of turbulent energy in the presence of stratification [31], as
well as with rotation [32,33]; it can also be created under the
combined effects of rotation and stratification [34,35].

The kinetic enstrophy, proportional to the kinetic energy
dissipation, is given by ZV = 〈ω2〉. Similarly, the potential
enstrophy is ZP = 〈|∇θ |2〉 and is associated with the dissipa-
tion of potential energy. As only the velocity field is forced,
the total injection rate is simply given by

εV = 〈u · fV 〉. (4)

In the turbulent steady state, this quantity is expected to be
equal (on the time average) to the total dissipation rate ν〈ω2〉 +
κ〈|∇θ |2〉.

C. Spectral quantities

We now define the reduced energy and helicity spectra. In
Fourier space the velocity autocorrelation function is noted
Uij (kx,ky,kz) and its trace is U (k). Hence the axisymmetric
kinetic energy spectrum is

eV (|k|,) =
∫

U (k)|k| sin dφ, (5)

where φ is the longitude with respect to the kx axis and 

is the colatitude. By defining parallel k‖ = kz, perpendicular
k⊥ = |k⊥| = |k| sin , and isotropic k = |k| wave numbers,
we can calculate parallel, perpendicular, and isotropic reduced
kinetic energy spectra, respectively, as follows [36]:

EV (k‖) =
∫

eV (|k⊥|,k‖)dk⊥, (6)

EV (k⊥) =
∫

eV (|k⊥|,k‖)dk‖, (7)

EV (k) =
∫

eV (|k|,)|k|d. (8)

Similar definitions hold for the potential and total energy and
for the helicity spectrum h(|k|,), which is related to the
antisymmetric part of the velocity correlation tensor [36].

We can also distinguish between slow and fast mode
spectra, namely:

EV,slow = eV (|k⊥| = 0,k‖), (9)

EV,fast =
∫ k‖max

k‖=0

∫ |k⊥|max

|k⊥|=1
eV (|k⊥|,k‖)dk⊥dk‖. (10)

Equivalent definitions hold for EP,slow, EP,fast, ET,slow, and
ET,fast. The slow modes satisfy the condition ω = 0, where
ω is the frequency of gravity waves given by the dispersion
relation ω = √

N2k2
⊥/k. These modes correspond to “pure”

eddies (vortical motions), and their characteristic time scale is
the eddy turnover time. When Fr < 1, the waves at large scales
are faster than the eddies or, in other words, the wave period is
faster than the turnover time. This is why the remaining modes,
which correspond to a combination of eddies and waves, are
often called “fast” modes.

Finally, the fluxes of kinetic and potential energy are
respectively given by:

�V (k) =
∫ k

0
�(k′)dk′, (11)

�P (k) =
∫ k

0
P(k′)dk′, (12)

with �(k) = u�(k) · F(u · ∇u)k and P (k) = u�(k) · F(θ∇θ )k ,
where F denotes the Fourier transform. As explained in
more detail below, the total flux � = �V + �P measures the
amount of energy that goes through a given wave number per
unit of time.

D. Initial conditions and forcing

Equations (1) to (3) are solved numerically in a cubic
domain with an isotropic grid of 20483 points using the
pseudospectral geophysical high-order suite for turbulence
(GHOST) code, which is parallelized with hybrid MPI/OpenMP
programming [37] and has now been tested on over 100 000
compute cores. The code is based on a second-order explicit
Runge-Kutta temporal scheme and uses a standard 2/3
dealiasing rule in Fourier space.

The initial condition and the velocity forcing, fV , consist
of randomly generated isotropic three-dimensional flows [38]
with injection wave number kF between 2 and 3. The forcing
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has amplitude frms = 0.22, chosen to yield an approximately
unitary rms velocity (urms = 1) in the turbulent steady state. We
impose ν = 10−4, which guarantees that the Kolmogorov scale
for a homogeneous isotropic flow with the same parameters
and discretization is well resolved [39]. Note this is a
conservative choice, since in wave turbulence the energy
spectrum is expected to be steeper, and therefore the small
scales are expected to be less energetic. As a result of these
choices, the ratio between the smallest and largest scales
resolved in our calculations is about ≈700, and the Reynolds
number is Re ≈ 25 000.

As mentioned in the Introduction, we perform two runs
with different values of the Brunt-Väisälä frequency, resulting
in Fr ≈ 0.1 (for N = 4) and Fr ≈ 0.03 (for N = 12). The
buoyancy Reynolds number RB = ReFr2 is correspondingly
RB = 250 and RB = 27. The calculations are carried out for
respectively 30 and 20 time units. Finally, in both runs we
consider a unitary Prandtl number Pr = ν/κ = 1.

E. Characteristic scales

For our simulations of stratified flows, the relevant length
scales are as follows:

(i) The overall size of the periodic domain, equal to L0 =
2π in dimensionless units, and with associated wave number
k0 = 2π/L0.

(ii) The scale at which energy is injected into the system,
LF = 2π/kF .

(iii) The buoyancy scale, LB = 2π/kB , with kB =
N/urms, characteristic of the vertical shear.

(iv) The scale at which isotropy (and presumably a Kol-
mogorov energy spectrum) is recovered, namely the Ozmidov
scale �oz = 2π/koz, with koz = (N3/ε)1/2.

(v) The dissipation scale, η = 2π/kη, with kη = (ε/ν3)1/4.
(vi) The smallest scale resolved in the DNS, namely �min =

2π/kmax, because of the Fourier transform the pseudospectral
code is based on, and the 2/3 rule for removing aliasing
kmax = n/3 ≈ 700, where n is the number of grid points per
dimension.

In Table I we report the values of the wave numbers
associated with these characteristic scales.

TABLE I. Wave numbers corresponding to the box size (k0),
injection scale (kF ), grid resolution (kmax), buoyancy scale (kB and k∗

B ,
where wave numbers without a star are computed using ε ≈ u3

rms/LF ,
and wave numbers with stars are computed using the measured
injection rate εV ), Ozmidov scale (koz and k∗

oz), and dissipation scale
(kη and k∗

η).

Runs N = 4 N = 12

k0 1 1
kF 2–3 2–3
kmax 683 683
kB 4 12
k∗

B 7 8
koz 13 66
k∗

oz 36 186
kη 795 795
k∗

η 472 472

The Ozmidov and the dissipation scales are usually evalu-
ated by estimating ε ≈ u3

rms/LF . However, this estimation is
valid for isotropic and homogeneous turbulence, while in a
stratified flow the energy injection rate, flux, and dissipation
rate can be strongly affected by the waves. We estimate then
ε ≈ εV , following the definition in Eq. (4) which corresponds
to the effective rate of transfer in the flow. Using εV yields
a value one order of magnitude smaller for the injection and
dissipation rates (see Sec. III A). The estimates obtained in this
way are marked by a star in Table I: k∗

oz and k∗
η . As will be shown

later, these quantities give a better estimation of the scales at
which transitions occur in the flow. In practice, a well-resolved
run requires k∗

η < kmax as dissipation starts to dominate the
dynamics at this wave number; observe that this is satisfied by
our simulations. Also, it can be easily shown that the Ozmidov
scale is resolved (e.g., k∗

oz < k∗
η) when RB = ReFr2 � 1.

A second effective estimate of the vertical characteristic
scale, which can be associated with the buoyancy scale, is
given by the integral scale based on the parallel potential
energy spectrum, as layers tend to develop more clearly in
the temperature:

L∗
B = 2π

∫
EP (k‖)/k‖dk||∫

EP (k‖)dk||
. (13)

The corresponding wave number k∗
B = 2π/L∗

B = 2 is also
reported in Table I.

Finally, we attempt to assign physical values, characteristic
of the atmosphere and the oceans, to the run at the smallest
Froude number, with Fr = 0.03 and Re ≈ 2.5 × 104. For the
atmosphere we assume urms = 1 m s−1 and L0 = 1000 m
(roughly the size of a small convective cell). Hence it is
readily found that N ≈ 3.3 × 10−2 s−1, ν = 0.04 m2 s−1, and
from the simulation presented below, εV ≈ 4 × 10−5 m2 s−3

(per unit mass). Clearly ν is too large for the atmosphere,
as expected given the limited grid resolution. However, the
energy injection rate is close to atmospheric values, which
yield εV ≈ 10−6–10−5 m2 s−3 from data analysis of aircraft
measurements [40] and of satellite images [41]. From these
values and from the simulation it also follows that LB ≈ 190 m
and �oz ≈ 33 m, to be compared to the Kolmogorov dissipation
scale of ≈3 m and to the grid resolution of �min ≈ 1.4 m.

If we consider the ocean instead, the typical velocity
is 10 times smaller. Hence, given the same Reynolds and
Froude numbers, LB and �oz remain the same, while the
Brunt-Väisälä frequency and the viscosity are reduced by an
order of magnitude. Yet, ν = 0.004 m2 s−1 is three orders of
magnitude larger than realistic values.

III. RESULTS

We first present, in Sec. III A, the temporal behavior of
small- and large-scale quantities integrated over the entire
domain. Quantities associated with the dynamics of small
scales (ZV , ZP , and εV ) reach a steady turbulent regime
at an early stage. In contrast, quantities associated with the
energetics of the large scales (ET , ET,fast, and ET,slow) slowly
evolve during the entire calculation. In this case, stationarity is
primarily prevented by the monotonic growth of slow modes,
as also found, for example, in Ref. [18]. In Sec. III B we
present the energy and helicity distribution among Fourier
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0.4
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EP/ET

FIG. 1. (Color online) Temporal evolution of the ratio between
potential and total energy for the runs with Fr ≈ 0.1 (N = 4, dashed
blue line) and Fr ≈ 0.03 (N = 12, solid red line). The oscillatory
phase lasts longer for the more strongly stratified flow, but both ratios
take comparable values after a transient.

modes, including a study of spectral anisotropy. Energy and
helicity spectra are averaged in time to obtain a representative
statistical behavior. Early times are excluded from the average
as the turbulent regime is established only after an initial
transient in which the flow adapts to the forcing and develops
small-scale structures. Finally, in Sec. III C we comment on
the energy fluxes.

A. Temporal evolution of global quantities

Figure 1 shows the ratio between the potential and the total
energy as a function of time. The eddy turnover time is τNL ≈
2.5. After an initial transient, both curves, independently of the
stratification strength, reach a value of EP /ET ≈ 0.1 around
t ≈ 14, followed by a slow monotonic decrease. This ratio is
comparable with that found in Refs. [10,12] for similar values
of RB .

In Fig. 2(a) the temporal evolution of the kinetic and poten-
tial enstrophy is shown. The initial transient is characterized
by the development of small scales through nonlinear mode
coupling. This mechanism is less efficient for the more strongly
stratified flow as testified by the smaller values of the two
enstrophies at early times. This also implies a smaller value of
the total energy dissipation 〈ν|ω|2 + κ|∇θ |2〉 for the N = 12

run. The enstrophy maxima occur earlier in terms of the eddy
turnover time (but not in terms of the buoyancy period) for
the less stratified flow. Turbulence can be said fully developed
beyond the peak of enstrophy where dissipation reaches the
smallest scales. Interestingly, at later times, the curves of the
two runs merge and undergo a slow decay. This behavior can
be identified with the achievement of a turbulent steady state, at
least at small scales. Note that as in the case of the ratio EP /ET ,
the enstrophies (and, as a result, the energy dissipation rates)
also tend to converge to similar values independently of the
Froude number.

As a comparison, in Fig. 2(b) we show the temporal
behavior of the energy injection rate computed using Eq. (4).
The similarity of the two runs is remarkable. A dimensional
Kolmogorov-like evaluation of the energy injection rate for
fully developed turbulence ε ≈ u3

rms/LF , yields, for our rms
velocity and forcing scale, ε ≈ 0.4, an estimate one order of
magnitude larger than the numerical value εV ≈ 0.04. This
latter measurement is also compatible with the dissipation
rate at late times obtained from 〈ν|ω|2 + κ|∇θ |2〉. The
order-of-magnitude difference between the Kolmogorov-like
estimation and the actual values of injection and dissipation
can be understood as in wave turbulence where the energy
transfer rate is expected to be smaller than ≈u3

rms/LF by a
factor Fr, as indicated by numerous studies [42,43]. However, it
should be noted that this argument fails to explain why εV in the
two simulations has similar values independently of the value
of Fr. One possibility is that much of the dissipation occurs in
the strong gradients that develop in the vertical to ensure that
the Froude number based on a characteristic vertical scale is of
order unity. If that is the case, the weak turbulence argument
can at best apply only to the horizontal dynamics. In other
words, a lesser dissipation in the horizontal for smaller Froude
number would be compensated almost exactly by an increased
dissipation in the vertical. This phenomenon has a counterpart
in the anisotropic distribution of energy in spectral space as
discussed in the next subsection.

From Fig. 2 we conclude that small scales have saturated,
and we remark that the two runs have a tendency towards
identical dissipation, a surprising result since the buoyancy
Reynolds numbers differ by almost an order of magnitude (but
are in both cases above a critical RB ≈ 10). This result is
consistent with the recent finding in Ref. [9] that the energy

0 10 20 300

200

400

600

t

ZV
N=12ZV

N=4
(a)

ZP
N=4 ZP

N=12

0 10 20 300

0.04

0.08

t

εV

(b)

FIG. 2. (Color online) Temporal evolution of (a) the kinetic enstrophy ZV = 〈|ω|2〉 and the potential enstrophy ZP = 〈|∇θ2|〉, and (b) the
energy injection rate εV = 〈u · fV 〉 for the runs with Fr ≈ 0.1 (N = 4, dashed lines) and Fr ≈ 0.03 (N = 12, solid lines). More small scales
are produced in the less stratified case at earlier times, but both flows evolve towards similar values by the end of the computations.
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(b)

ET, FAST
N=4

ET,SLOW
N=4

ET, FAST
N=12

ET, SLOW
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FIG. 3. (Color online) (a) Temporal evolution of the total energy for the runs with Fr ≈ 0.1 (N = 4, dashed blue line) and with Fr ≈ 0.03
(N = 12, solid red line). (b) Temporal evolution of the energy in the fast and slow modes for the same two runs (see label on the curves). Note
the dominance of slow modes as time evolves.

spectra are independent of stratification at sufficiently high
Reynolds number. However, note that while this is indeed the
case for the spectrum of small-scale fluctuations, it is not the
case at large scales.

As a first indication of differences at large scales, the
time evolution of the total energy is shown in Fig. 3(a). As
turbulence develops, the total energy grows until it reaches
a peak. At a later stage a fluctuating behavior, characteristic
of the turbulent steady state, is expected. However, after the
peak, we observe a new monotonic increase with a time scale
which is larger than characteristic times such as 1/N or τNL.
It is evident from Fig. 3(b) that the energy increase is due to
the growth of the slow modes, while the energy in fast modes
gradually decreases. We verified on a lower-resolution run and
with forcing at substantially smaller scale that the growth of
the fast modes saturates after 30 turnover times and a steady
state of the large scales can also be reached [3].

Several remarks follow from considering the dispersion
relation of internal gravity waves

ω = ±k−1
√

N2k2
⊥.

A review of various theoretical approaches to stratified
turbulence viewed as a superposition of internal gravity waves
can be found, for example, in Refs. [5,7,44,45]. Here it is
of interest to recall that three-wave interactions at resonance
play a central role in closing the cumulant expansion; in the
present case, for a usual triad of modes k, p, and q satisfying
k = p + q, they read

sk

k⊥
k

= sp

p⊥
p

+ sq

q⊥
q

,

where sk , sq , and sq = ±1 depending on the branch of the
dispersion relation used. As noted in Refs. [46,47], this
resonance condition is readily satisfied for k⊥ ≈ p⊥ ≈ q⊥ ≈
0. Hence, it can be inferred that wave-wave interactions lead
to a buildup of energy near k⊥ ≈ 0, i.e., a preferential transfer
of energy towards the so-called slow modes. The distinction
between energy in fast modes and in slow modes in Fig. 2 is
compatible with this buildup of energy in modes with k⊥ ≈ 0.

The accumulation of energy for k⊥ = 0 was already noticed
in Ref. [29] using a two-point closure of turbulence, the

so-called eddy-damped quasinormal Markovian 2 closure. It
was also found in Refs. [10,18] using DNS and related to the
growth of the so-called vertically sheared horizontal winds. It
is to be noted that such winds, which are off-diagonal elements
of the velocity gradient matrix, constitute the vorticity field for
negligible vertical velocity and as such they make the velocity
field nonpotential. In the presence of rotation, these are the
so-called thermal winds which are geostrophic corrections to
geostrophic balance. It is interesting (and may be viewed as
somewhat paradoxical) that resonant interactions of gravity
waves can lead to the growth of vortical modes which
eventually come to dominate the flow.

We finally comment on the temporal dynamics of helicity
and relative helicity, σV = HV (EV ZV )−1/2. Although we do
not use a helical forcing, we are not imposing the forcing
to be completely nonhelical. As a result, there is a small
amount of helicity in the flow at late times. The time evolution
is as follows: Helicity starts from zero and it undergoes an
oscillatory transient, longer for stronger stratification. In both
runs, σV then grows slowly in time until it reaches a final value
of ≈0.12 for the N = 4 run. Similarly, and as will be shown
later, the relative spectral density HV (k)/[kE(k)] remains low,
of the order of 0.05, except in the vicinity of the forcing scales.
These values are too small to affect the energetics of the flows
for either runs. In Ref. [31] the dynamics of helicity in freely
decaying stratified turbulence was examined in terms of a
possible balance between its production and dissipation. It
was found that only when the initial condition was maximally
helical was the energy spectrum modified by the slowed-down
dynamics inherent to the helical case, a situation also found in
rotating flows [33]. However, and as shown below, even with
a small amount of helicity in the flow, its spectral distribution
shows interesting features.

B. Energy distribution across scales

1. Two-dimensional axisymmetric spectra

We first show, in Fig. 4, the isocontours of the axisymmetric
kinetic energy spectrum, eV (k⊥,k‖), normalized by sin  to
yield circular profiles for isotropic flows. When stratification
strengthens (Fr decreases) anisotropy increases, i.e., the
contours become more visibly stretched along the vertical
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FIG. 4. Contours of the two-dimensional axisymmetric kinetic energy spectrum averaged over time and plotted on a base-10 log scale for
the runs with (a) Fr ≈ 0.1 (N = 4) and (b) Fr ≈ 0.03 (N = 12). Note how energy tends to accumulate in slow modes (modes with k⊥ ≈ 0, also
associated with vertically sheared horizontal winds) with elongated isocontours specially at large scales. Isocountours in (b) are more vertically
elongated, indicating stronger anisotropy.

axis indicating that the energy is mostly concentrated in
the slow modes (k⊥ = 0). The degree of anisotropy varies
across wave numbers: small wave numbers (large scales) are
more anisotropic than large wave numbers (small scales).
This difference is striking for the less stratified flow [see
Fig. 4(a)]. A rough estimate of the recovery of isotropy can
be made by considering the wave number for which the
isocontours approach a circular shape. This occurs at large
wave numbers for N = 4, whereas for N = 12 isotropy is
only barely recovered at the smallest resolved scales.

The axisymmetric total energy spectrum e(k⊥,k‖) =
eV (k⊥,k‖) + eP (k⊥,k‖) for different values of the colatitude
 is plotted in Fig. 5. The dominance of the slow modes
(black solid line) is pronounced for both runs; however, these
two spectra differ at large scales. While in the N = 4 run the
spectrum is steep, in the N = 12 run the spectrum is shallower
and almost flat (see, e.g., Ref. [12] for previous observations
of a flat spectrum). This has interesting implications: If the

energy distribution depends on the stratification strength, the
isotropic spectrum, obtained by summing over  [see Eq. (8)],
will generally vary with Fr. This points to a much richer
behavior than for homogeneous and isotropic turbulence as
already emphasized in Ref. [29].

Moreover, some of the spectra in Fig. 5 are remarkably
steep [note that a spectrum ∼k−4 in e(k⊥,k‖) corresponds, after
integration, to a power law ∼k−3 in the isotropic spectrum].
For flows whose isotropic spectrum has an inertial index
α which falls outside the range −1 < α < −3, arguments
for locality of interactions do not hold, and interactions
between modes can become nonlocal. Both nonlocality, and
the existence of different physical regimes, can give rise to
nonuniversality of the spectrum. This has been discussed
often in the context of numerous and detailed observations of
oceanic and atmospheric flows [45] and also has been noted,
for example, in the framework of internal waves in the ocean
in the hydrostatic (and irrotational) limit [48].

100 101 10210−10

10−5

100

eV+eθ

|k|

(a)

−8/3

−4

100 101 10210−10

10−5

100

eV+eθ

|k|

(b)

−4

−8/3

FIG. 5. (Color online) Two-dimensional axisymmetric total energy spectra plotted on a base-10 log scale for (a) Fr ≈ 0.1 (N = 4) and
(b) Fr ≈ 0.03 (N = 12) for different colatitudes (with respect to the vertical axis k‖ in Fourier space):  = 0 (black solid line),  ≈ 14◦ (blue
dashed line),  ≈ 26◦ (purple dash-dotted line),  = 45◦ (green dash-triple-dotted line),  ≈ 64◦ (yellow dotted line),  ≈ 76◦ (black crossed
line), and, finally,  = 90◦ (red solid line). Observe the dominance of energy in the k⊥ = 0 slow modes ( = 0) all the way to the Ozmidov
scale where isotropy starts to recover. Solid lines indicate power laws as a reference.
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The dominant modes of the weakly stratified run [Fig. 5(a)]
scale consistently with a k−4

‖ power law, the so-called saturated
spectrum, whereas a short range of wave numbers at small
scales is compatible with a k

−8/3
⊥ scaling (corresponding

after integration to a Kolmogorov spectrum). Remember that
k∗

oz ≈ 36, and note that all angular spectra collapse at smaller
wave numbers, indicating that isotropy is recovered. On the
other hand, in the strongly stratified run [Fig. 5(b)], k∗

oz ≈ 186
and the spectra only collapse in the dissipative range. It
is also interesting and significant to note that the Ozmidov
wave numbers computed with the dynamical injection rate, εV

(k∗
oz), mark the transition to isotropy much more reliably than

the estimates obtained from Kolmogorov theory ε ∼ u3
rms/LF

(koz).
Due to the fact that different inertial ranges can be

present in stratified flows, the resolution employed in our

computations (although high) is insufficient to clearly state
whether the regimes that are expected on a phenomenological
basis are actually present. We therefore warn the reader
that scaling laws are only indicated as a reference and to
point out the compatibility of the results with theoretical
or phenomenological arguments, namely the idea that the
perpendicular modes and all the modes larger than koz follow
a Kolmogorov scaling, whereas parallel modes in the range
where waves dominates follow a saturated spectrum.

Finally, in Ref. [17] it is suggested to analyze the data
once the slow modes (k⊥ = 0) are removed. The analysis
of the flow in terms of two-dimensional spectra allows for
such a reduction, since the k⊥ = 0 modes are confined to
the  = 0 angle (black solid line in Fig. 5). The  = 0
spectrum is clearly distinguishable from the other curves when
stratification is large. Remarkably, however, the spectral slopes

100 101 10210−8

10−6

10−4

10−2

100

k

ET

(a)

−3−2

−5/3

100 101 10210−8

10−6

10−4

10−2

100

k||

ET

100 101 102

10−8

10−6

10−4

10−2

100

k⊥

ET
−3

(b) (c)

−5/3

−5/3

100 101 10210−8

10−6

10−4

10−2

100

k||

EP

100 101 10210−8

10−6

10−4

10−2

100

k⊥

EP

(d) (e)

−3
−5/3

−5/3

FIG. 6. (Color online) Total energy spectra plotted on a base-10 log scale as a function of (a) isotropic wave number, (b) parallel wave
number, and (c) perpendicular wave number. The potential energy spectra are shown also as a function of (d) parallel wave numbers, and (e)
perpendicular wave numbers. Solid (red) lines correspond to the run with Fr ≈ 0.03 (N = 12 run), while dashed (blue) lines correspond to the
run with Fr ≈ 0.1 (N = 4). Solid straight lines indicate some power laws as a reference. The buoyancy scale is identifiable as a break in the
potential energy spectrum as a function of k‖.
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of the remaining curves seem to separate into two sets, one that
follows the behavior of the small  spectra and another that
mimics the  = π/2 spectrum.

2. The resulting one-dimensional energy spectra

We now consider the one-dimensional (i) isotropic,
(ii) parallel, and (iii) perpendicular spectra for the total energy
and the potential energy, see Fig. 6. The spectra are averaged
in time from the peak of enstrophy to the final time. It was
remarked in Ref. [29] that two-dimensional spectra (Figs. 4
and 5) may represent a more realistic diagnostics of anisotropic
flows given the wide variety of slopes displayed as a function
of the angle  and the imposed stratification. While this is
clear from the previous analysis, the Ozmidov scale and the
buoyancy scale will show up more clearly in some of the
reduced spectra.

Figure 6(a) shows the isotropic total energy spectrum for
both runs. The spectrum displays a peak associated with the
forcing wave number, followed by a flat range which extends
until about kB (see Table I). The parallel spectrum of the total
energy ET (k‖) [Fig. 6(b)] and, more evidently, the parallel
spectrum of the potential energy EP (k‖) [Fig. 6(d)] are also
flat at large scales. On the other hand, the perpendicular spectra
in Figs. 6(c) and 6(d) are consistent with a ∼k−5/3 power law
at all scales, independently of the stratification as noted in
Ref. [21]. The scale at which the flat spectrum ends seems to
depend linearly on the Froude number.

The flatness of the isotropic spectra at large scales is due
to the combination of two related factors: (i) the dominance
of the k⊥ = 0 modes and (ii) the organization of the flow in
the vertical direction in well-defined strata with strong vertical
gradients both in the velocity and in the buoyancy field. It was
shown, for example, in Ref. [12], that a superposition of such
strata can lead to a flat spectrum since, at large scales, these
layers can be interpreted as quasidiscontinuities.

The buoyancy scale is generally understood in the context
of theoretical studies (see, e.g., Ref. [27]) by advocating that
the development of turbulence in the vertical direction leads
to an effective vertical Froude number Frz = urms/[L∗

BN ] of
order unity. In a different context, the buoyancy wave number
was introduced in Ref. [24] to take into account the fact that, in
the Lagrangian framework, the buoyancy field is advected by
the velocity (although not as a passive scalar) and thus should
depend on the total kinetic energy. This leads to the prediction
of a sharp break in the buoyancy flux spectrum 〈wθ〉 at kB , a
break that should not develop in the kinetic energy spectrum.

As one moves to larger wave numbers, the layers begin to
be resolved and their intrinsic dynamics arises. There the run
with N = 12 shows a steep spectrum compatible with ∼k−3,
the “saturated spectrum” which corresponds to a balance
in the vertical between nonlinear advection and buoyancy.
For weaker stratification (dashed blue curve) the saturated
spectrum does not have enough scales to develop and instead
one observes an overall slope close to k−2 extended on one
decade. The collapse of the anisotropic spectra for different
 explains the shallower and Kolmogorov-like spectrum for
wave numbers larger than k∗

oz. Note that using large-eddy
simulations, the transition from a steep (saturated) large-scale
spectrum to a Kolmogorov isotropic spectrum was observed in
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FIG. 7. (Color online) Spectrum of the absolute value of helicity
plotted on a base-10 log scale. Solid (red) lines correspond to the run
with Fr ≈ 0.03 (N = 12 run), while dashed (blue) lines correspond
to the run with Fr ≈ 0.1 (N = 4). Note the flat spectra at large scale,
up to what can be identified as the buoyancy scale.

Ref. [49] but only sporadically, when breaking events occurred
and the turbulence was thus more vigorous.

Finally, Fig. 7 shows the spectrum of the absolute value of
helicity for both simulations. Although helicity is rather small
and not important for the flow dynamics, the spectra display
a flat region at large scales followed by a decay at smaller
scales with a break near the buoyancy scale, similarly to the
decay runs in Ref. [31]. There are rapid changes of sign in the
small scales, manifesting as large fluctuations. Interestingly,
flat helicity spectra in the planetary boundary layer have been
observed at night when the flow is more stably stratified [50].

C. Energy fluxes

An examination of energy fluxes confirms the analysis
presented in the preceding section. The two simulations, at
buoyancy Reynolds numbers of ≈27 and ≈220, respectively,
behave differently as to how the energy is being transferred
among scales, as can be seen in Fig. 8, which displays the
kinetic, potential, and total energy fluxes for both runs. Note
that the flux constructed from taking only the dot product of
Eq. (1) with the velocity (i.e., the “kinetic energy flux”) is not
a flux, in the sense that its divergence is not zero (i.e., kinetic
energy is not conserved alone). Instead, this “flux” should be
interpreted as energy flux plus power: When it is larger than
zero, kinetic energy is transferred towards smaller scales by
the velocity field or injected per unit of time by work done
by the temperature. The same applies to the “potential energy
flux” constructed from dotting Eq. (3) with the temperature
fluctuations: when it is positive, potential energy is transferred
towards smaller scales or injected by work done by the velocity,
while when it is negative potential energy may be removed by
work done by the velocity. Only the total energy defines a
proper flux, in the sense that its sign is solely associated with
direction of transfer across scales, and in the sense that it goes
to zero for k → ∞ (i.e., the total energy is conserved).

In the less stratified run with N = 4 (high-buoyancy
Reynolds number RB), the total energy flux is approximately
constant in a range of wave numbers that in fact defines the
inertial range, with amplitude ≈2.7 × 10−2. The potential
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FIG. 8. (Color online) Fluxes of kinetic (top), potential (middle),
and total (bottom) energy plotted on a base-10 log scale for the runs
with Fr ≈ 0.1 (N = 4, indicated by the dashed blue line) and with
Fr ≈ 0.03 (N = 12, solid red line).

and kinetic energy flux, in the light of the total flux, then
indicate how energy is exchanged between the velocity field
and the temperature. The potential energy flux is zero at
large scale and rather small (≈5 × 10−4 or roughly 2% of
the kinetic energy flux) in the same inertial range. It becomes
negative and progressively larger (in absolute value) at small
scale (after k ≈ 40), at the end of the inertial range and for
k = kmax, it reaches ≈−7 × 10−3, a value compensating the
kinetic flux at that wave number, a condition necessary for
energy conservation. The negative value of this flux at small
scales indicates that energy is transferred from the small-scale
temperature fluctuations to the velocity-field fluctuations (or,
in other words, that the small-scale temperature gradients exert
work on the velocity field, exciting small-scale motions). This
is in good agreement with the evolution of the enstrophies
observed in Fig. 2: More energy is dissipated by small-scale
velocity fluctuations (i.e., by the kinetic enstrophy) than

by temperature fluctuations (whose dissipation is associated
with the potential enstrophy). Energy at small scales then is
transferred from the temperature to the velocity, where it is
finally dissipated.

The dynamics of energetic exchanges is rather different
at low RB . Although the same trends are observed, there
is barely a range where the total energy flux is constant;
furthermore, all three fluxes are larger in amplitude, but the
ratio of kinetic to potential flux is now only roughly equal to
5 at large scales and the potential flux becomes negative at
a higher wave number (≈100). One is led to the conclusion
that, at that Froude number (and buoyancy Reynolds number),
the flow is not sufficiently turbulent even though it produces
strong gradients in the vertical.

IV. DISCUSSION AND CONCLUSION

We performed high-resolution direct numerical simulations
of stably stratified turbulence for Reynolds number equal
to Re ≈ 25 000 and Froude numbers Fr ≈ 0.1 and Fr ≈
0.03. The stratified flow is modeled using the Boussinesq
equations, integrated numerically in a triply periodic cubical
domain of dimensionless volume V = (2π )3, discretized with
an isotropic grid of 20483 points. The flow is forced at
large scale (kF = 2 and 3) by a three-dimensional randomly
generated velocity field. By contrasting the behavior of the
two simulations we identify some similarities despite the fact
that the buoyancy Reynolds number differs by almost an order
of magnitude: after an initial transient the two runs have com-
parable values of the kinetic and potential enstrophy (ZV , ZP )
and of the energy injection rates (εV ). The same ratio
between potential and total energy (EP /ET ≈ 0.1) is also
spontaneously selected by the flows. For both values of Fr,
slow modes grow monotonically as a consequence of nonlinear
interactions and cause a moderate increase of the total energy
(ET ) in time.

The axisymmetric kinetic energy spectrum eV (k⊥,k‖)
clearly reveals the anisotropy of the flow, which manifests
up to the highest wave numbers for the Fr ≈ 0.03 run. The
axisymmetric total energy spectrum eV + eθ shows a wide
variety of spectral slopes as a function of the angle 

between the imposed stratification and the wave vector. The
slow modes, corresponding to  = 0 (i.e., to k⊥ = 0), are
visibly dominant and their spectrum is flat at large scale for
the strongly stratified run. Moreover, the  = 0 spectrum is
clearly distinguishable from the other curves, especially when
stratification is large. Remarkably, however, the spectral slopes
for the remaining curves with  �= 0 seem to separate into two
sets, one that follows the behavior of the small  spectra and
another that mimics the  = π/2 spectrum. All these spectra
collapse at a scale which is consistent with the Ozmidov length
scale calculated with the dynamical injection rate.

As the isotropic total energy spectrum is the result of
the superposition of these different dynamical regimes, its
interpretation is difficult. It is roughly flat from the forcing
scale kF up to the buoyancy scale kB . At intermediate scales, a
k−3 power law appears for the Fr ≈ 0.03 run, which is the
signature of the saturation spectrum that characterizes the
energetically dominant slow modes. This saturation spectrum
is also consistent with the simple one-dimensional model
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presented in Ref. [2]. When Fr ≈ 0.1 the saturation spectrum
does not have enough scales to develop and one observes a
shallower slope in the isotropic spectrum well approximated
by a k−2 power law and compatible with a Kolmogorov scaling
k−5/3 in the small-scale end of the inertial range.

Finally, the spectrum of helicity (velocity-vorticity cor-
relations) is rather weak in relative terms and behaves as
previously observed in freely decaying simulations [31]: It is
flat from k0 to kB . This was also reported for the nocturnal
planetary boundary layer and is in remarkable agreement
with recent observations that show that, for more stably
stratified flows, the spectrum of helicity evolves toward a flat
distribution [50].

As it appears from our results and as also noted in the
literature, the dynamics of stratified turbulence proves to be
more complex than the homogeneous isotropic case, especially
at intermediate values of the buoyancy Reynolds number,
when waves and eddies strongly interact. Further studies are
needed, in particular because there are several relevant scales
that must be separately resolved and which can be differently
ordered according to the values of the external parameters.
For example, depending on Fr and Re, the Ozmidov scale
could be either smaller or larger than the dissipative scale or
the buoyancy and Ozmidov scales could be well separated or
comparable. Also, the forcing could be at smaller scales than
what was chosen in this paper. Since large resolution is needed

to study problems with multiple length scales, and as computer
resources are insufficient to study realistic scale separations,
we have to study individual cases and rely on comparisons with
previous studies to identify possible regimes and to identify
features that are robust to changes in the parameters. The
parameters chosen here are intended to represent a likely
physical scenario for geophysical flows, even though Reynolds
numbers are clearly much lower than in realistic cases.

To conclude, we briefly mention an open question in the
field. A relevant issue concerns the effect that the forcing has
on the outcome of the simulations, which is far from evident
(see, for example, the discussion in Ref. [49]). In our studies,
isotropic forcing (and initial conditions) were used to prevent
a possible bias in the development of anisotropies (i.e., of
angular variations in spectral space). However, differences
may arise when other forcings, or when correlations between
the temperature and the velocity field, are imposed. We leave
this problem for future studies.
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