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In several experimental systems phase diagrams coverage-temperature show a strong asymmetry. This behavior
can be reproduced by including non-additive lateral interactions. In this work a Monte Carlo study on the
canonical assembly of the criticality of monomer adsorption with non-additive interactions is presented.
Traditional pairwise energies were replaced by other more general ones where the lateral interaction between
two ad-atoms depends on the coverage at first sphere of coordination. This kind of energies includes multibody
interactions like three-body interactions and four-body interactions, etc. These energies induce the formation of
several non-additive ordered structures. Finite size scaling method was used to classify the order of phase tran-
sition of each non-additive phase. On the other hand, the corresponding phase diagrams are formed naturally, in
which case the diagrams show strong asymmetries.
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1. Introduction

In surface science the phase diagram of atoms or molecules is one of
the most important topics for the characterization of an adsorption
system. In the last few years new techniques have improved the percep-
tion of the adsorption phenomenon. Nowadays powerful experimental
techniques such as LEED and STM [1] allow obtainingmuch information
about topography of surface energy and interactions between particles
deposited. Theoretically, a lattice gas model is the simplest tool for
calculating phase diagrams. This method immediately induces the
conservation of the vacancy-particle symmetry, which means that the
diagram coverage-temperature is perfectly symmetric around half cov-
erage when only pairwise interactions are present. However, there are
several experimental systems, such as H/Pd(100) [2], H/Ru(001)[3]
and Co/Cu(100), where phase diagrams are asymmetric [4]. In fact, ad-
sorption isotherms for methane, ethane, and other adsorbates on
AlPO4–5 and SAPO-5 are clearly unsymmetrical around half coverage
[5–9]. The asymmetries have been theoretically studied in general in
twoways: by removing the symmetry of the substrate [10] and by intro-
ducing multibody interactions like triplets (three-body interactions),
and quadruplets (four-body interactions) [11,12]. Within the latter,
the authors consider non-pairwise interactions, from which the idea
to remove the traditional assumption of additivity arises. Non-
additivity means that all lateral energies depend on the quantity of
atoms in a cluster.
There are several experimental studieswhere additivity does not re-
produce themain characteristic of the systems. For example, in Ref. [13]
the line of coexistence between the condensate phase and the gas phase
for Ni, Cu, Pd, and Ag on W(110) shows a strong asymmetry and a
strong tendency to dimer formation. Therefore, such additivity does
not satisfy these behaviors. The importance of non-additive effects has
also been reported in chemisorption and catalysis [14,15]. Other
examples where the additive interactions do not complete the
description is in the growth of monolayer in heteroepitaxial systems
with heterogeneities, such as Ag/Au(100), Ag/Pt(100), Au/Pt(100), Au/
Pd(100), Au/Ag(100), Pt/Ag(100), Pt/Au(100) and Pd/Au(100) [16–
18]. The formation of the electrochemistry phase in Ag on Au(111)
and Au(100) [19–21] needs more complex interactions to be fully
understood. Surface restructuring is another example of a system
where more complex ad–ad interactions take place [22–25].

In order to explain these behaviors severalmodels have been formu-
lated. Some models include, for example, interactions different from
pairwise interactions, or even situations where attractive and repulsive
interactions compete [26]. A more complex model has been defined to
describe O on W(110). This model includes interactions at nearest,
next nearest, nearest-nearest neighbors, and even interactions of three
and five particles to obtain an asymmetric phase diagram [27].

The non additive lateral interactions were present in [28,29] for a
Grand Canonical Monte Carlo study with attractive interactions. Non-
additive interactionswere included in theoretical approaches formono-
mers and dimers [30,31]. In particular, a computational study of adsorp-
tion of repulsive monomers with non-additive interactions on square
lattice were performed [32]. On the whole, the main results are:
i) depending on the values of the non-additivity the c(2 × 2) ordered
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phase (as compared to the additive case) is weakened or strengthened.
It is also possible to notice the presence of different low-temperature
ordered phases depending on the surface coverage. These findings are
corroborated by very wide plateaus in the adsorption isotherms, steps
in the isosteric heat and weak peaks in the thermodynamic factor. ii)
The formation of k-mers is corroborated in a specific range of coverage
and interactions. iii) There is evidence of a continuous phase transition
from the c(2 × 2) structure to disorders around to half coverage for
non-additive schemes. Similar results have been found in studies on
the thermodynamics of adsorption on triangular and hexagonal lattices
[33] and nanotube bundles [34].

For the purpose of clarity, Fig. 1 shows the snapshots of three
structures formed at several surface coverages (θ), specifically at θ =
1/2, the well-known c(2 × 2), at θ = 2/3 and θ = 4/5 the dimeric and
tetrameric phase respectively. The last two are new structures induced
by non-additivity. This paper aims at exploring how non-additivity
affects the phase diagram and the critical exponents. Consequently,
Monte Carlo simulations in the canonical assembly and finite-size
scaling for each phase founded in square lattices are used.

The paper is organized as follows: In Section 2, the non-additive
model is presented. In Section 3, details of Monte Carlo Simulations
and finite size scaling theory are given. Results and discussion of the
criticality and phase diagrams are presented in Section 4. Finally, the
conclusions are drawn in Section 5.

2. The theoretical model

An idealized solid surface with a square geometry of linear dimen-
sion L was considered for the analysis. A lattice-gas model with N =
L × L specific adsorption sites was used. For this geometry each site
has four nearest neighbors separated by a lattice constant. In order to
consider the simplest possible model for non-additive ad–ad particles,
a homogeneous potential surface “as seen” by an adsorbed particle
shall be considered. Two kinds of energies can be taken into account,
the adsorbate–substrate energy ε, and lateral interaction between i
and j particles, aswij. To be more specific, a Hamiltonian can be defined
as:

H ¼ −ε
XN
i¼0

ci þ
XN
i≠ j

wijcic j ð1Þ

where the local occupation variable ci is 0 (1) if the adsorption site is
empty (occupy). ε is independent of the temperature and coverage
and can be considered equal to zero without losing generality. So as to
include the non-additivity, we considered that wij depends on the
Fig. 1. Snapshot of non-additive structures. White circles correspond to empty sites and the blu
interpretation of the references to color in this figure legend, the reader is referred to the web
occupation state of both sites i and j. The real dependence of wij on the
local coverage is difficult to establish by means of an experiment. The
aim of this contribution is to explore a case where the main features
of the presence of non-additive interactions are kept. In order to draw
general conclusions on how such interactions affect the critical behavior
of thermodynamic quantities we assume that each ad-particle has four
different possible configurations depending on the number of the
nearest neighbors. Then, the energies arew1,w2,w3 and,w4. The lateral
energy between two particles is considered to be an average of the en-
ergies of their respective environments. Fig. 2 shows an example for cal-
culating the lateral energy between the particles 1 and 4. Themultibody
interactions such as triplets and quadruplet are included in the model-
ing as shown in Fig. 2. The real function or rule that links each energy
with the number of the nearest neighbors “m” on the vicinity of
adatoms is not clear. But several clues indicate that this relation could
be linear. Among them, Koh and Ehrlich [35] found, by using the
helium-cooled field ion microscopy technique, that the pair free ener-
gies of Pd and Ir clusters on W(110) are linear with the size. Then, it is
physically reasonable to suppose that the lateral interactions depend
linearly on the number of the nearest neighbors “m” on the vicinity of
a given atom. So, in this model, wm varies linearly with m and wz = w,
where z is the coordination number of the lattice. Following Ref. [28]
we introduce the parameter of non-additivity, P = w1/wz as a measure
of the strongest to the weakest possible bonds in the system, then:

wm

w
¼ Pz−1

z−1
−m

P−1
z−1

: ð2Þ

This situation has been tackled by Mean Field Approach (MFA) [25]
and Quasi-Chemical approach (QCA) [28,30,31]. However, the analysis
given in the cited papers has been restricted to some especial cases
mainly including attractive interactions. The discussion presented in
the present paper covers the entire range of repulsive interactions,
temperatures and coverage.

As mentioned at the beginning of this section, the present studywas
restricted to the case of homogeneous surfaces. More complex
adsorbents (including energetic and geometric heterogeneity, surface
reconstruction, anisotropy, etc.) could be treated by using a similar
scheme as discussed here. Under these conditions, it is expected that
the presence of a very small quantity of defects breaks down the order
of the low-temperature phases. However, even though the presence of
defects affects the formation of ordered structures in the adlayer, it is
also expected that the phase transition survives up to a certain critical
degree of disorder [36,37].
e ones to filled sites. A) c(2 × 2) structures, b) dimeric phase, and c) tetrameric phase. (For
version of this article.)

Image of Fig. 1
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3. Monte Carlo simulations and finite-size scaling

Monte Carlo simulation techniques have largely been used in many
areas of surface science [38–41]. One of these techniques, known as par-
allel tempering algorithm [42–44], was used here to study the thermo-
dynamic properties of the Hamiltonian given by Eq. (1), from which
phase diagrams can be calculated. Within the scheme of canonical as-
sembly, the ad-atoms were placed on lattice with periodic boundary
conditions. The Kawasaki dynamics [45] was applied where the Monte
Carlo step was defined by L × L attempts to interchange the states of
full and empty sites. The time needed for equilibration varies with the
system size, temperature and coverage. Typically, the smaller system
at low coverage was equilibrated with runs taking 5 × 106 MCS for
each configurations, while 5 × 108 MCS were used for the larger one,
with θ = 0,5 and low temperatures T b Tc. Large quantities of MCS
were used in order to discard any metastable state. The number of
MCS for averagingwas always taken equal to the need for equilibration.
Averages have been taken over≈3 × 102 different initial configurations
to calculate standard statistical error bars, and in all the plots of data and
analysis shown in following sections -if error bars are not shown they
are always smaller than the symbol size. Lattice sizes from L = 20 to
L = 180 were simulated and the data were interpreted within the
context of finite size scaling [46,47]. Most simulations were carried
out on a BACO3 parallel cluster located at Instituto de Física Aplicada,
Universidad Nacional de San Luís, San Luís, Argentina.

The order parameter φ adequate for describing a given phase
(specific cases will be discussed in the following sections) allows to
define the quantities related with its distribution such as susceptibility,

χ ¼ N2
φ2
� �

T− φj jh i2T
h i

T
ð3Þ

and the reduced fourth-order cumulant introduced by K. Binder [48]

UL Tð Þ ¼ 1−
φ− φh iT
� �4D E

T

h i

3 φ− φh iT
� �2D E

T

� �2 : ð4Þ
Fig. 2. a) A possible local configuration of particles and empty sites. The link energy
between p1 and p4, represented by a red line, can be calculated as follows: the
neighborhood of the p1 is formed by three particles, p2, p3 and p4, so its contribution is
3w3. But p4 has only p1 and p5 as near neighbors, then, the link energy is 2w2. Finally
the interaction energy between p1 and p4 is considered to be an average of the
individual energies. b) and c) A triplet and a quadruplet with their respective energy in
the non additivity scheme. In particular, if we consider additive case(P = 1.0), the
respective energies take the form of, ET = 2w and EQ = 4w. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
The specific heat is sampled from energy fluctuations,

Cv ¼ L2
H2

D E
T
− Hh i2T

h i

T2 ð5Þ

where b… N T, in all the quantities,means the thermal average. The stan-
dard theory of finite size scaling [46,47] implies the following behavior
of the above quantities near the critical temperature TC(t≡1−T/TC).

Cv ¼ L
α
ν ~C L

1
νt

� �
;

φ ¼ L−
β
ν ~φ L

1
νt

� �
;

χ ¼ L
γ
ν ~χ L

1
νt

� �
;

UL ¼ ~UL L
1
νt

� �
;

ð6Þ

for L → ∞, t → 0, such that tL
1
ν ¼ finite. Here α ,β ,γ and v are standard

critical exponents of the specific heat (Cv∝ | t |−α for L → ∞, t → 0 ),
order parameter (φ∝ | t |−β for t N 0+, L → ∞), susceptibility
(χT∝ |t |γfor L → ∞, t → 0) and correlation length ξ (ξ∝ | t |−ν for L → ∞,
t → 0), respectively. ~C; ~φ; ~χ and ~UL are scaling functions for the respec-
tive quantities. As it is well known, Eq. (6) provide various efficient
routes to extract estimates for both Tc and the critical exponents from
Monte Carlo data, and these methods must be discussed in the context
of our model.

One can calculate the critical temperature of the phase transition
from the intersection of cumulants and from the extrapolation of the
positions Tc(L) of the maxima of the slopes of φ, (dφ/dT)max and UL(T),
(dUL/dT)max, as well as of the susceptibility maxima, χT

max, respectively.
For these quantities one expects, from Eq. (6), that

TC Lð Þ ¼ TC ∞ð Þ þ const L−
1
ν; L→∞ ð7Þ

where TC(∞)is the critical temperature of the infinite system and the
constant depends on the considered quantity. From cumulants intersec-
tion, one can also deduce TC(∞)and using υ as an effective exponent
deduced from a fit of [(dUL/dT)max] to a power law,

dUL

.
dK

� �
max

∝L
1=ν : ð8Þ

FromEqs. (6) to (8) it is possible to estimate Tc and 1/v, therefore it is
expected to scale the full data for ~C; ~φ; ~χ and ~UL in “data collapsing”
plots. Note that the analysis given above is valid only for sufficiently
large L and for t in the asymptotic critical regime. However, this analysis
can be applied to the entire range of L and T if the data fall in the
“domain of attraction” of a simple fixed point characterizing only one
universality class of critical phenomena.

4. Phase diagram at finite temperature

In the last section the methodology used to obtain the critical
temperature as a function of the coverage for different cases was
discussed. In the following section, the behavior of the thermodynamic
quantities in different regions of the phase diagram is analyzed. Finally,
the complete phase diagram for finite temperature is presented and
discussed.

4.1. The c(2 × 2) phase

In order to describe the system in the region of low-temperature
ordered phase c(2 × 2), it is convenient to define the following geomet-
rical order parameter:

φc 2x2ð Þ ≡
θ1−θ2j j

2
ð9Þ

Image of Fig. 2
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where θ1 and θ2 are average coverages for the two sub-lattices trivially
defined by the c(2 × 2) phase. So as to illustrate how the Monte Carlo
scheme was used to obtain the phase diagram we present the scaling
analysis for θ = 0,5 and P = 0,7. Fig. 3a, b and c shows the behavior of
the order parameter, the susceptibility and the specific heat as a
function of the temperature at several values of the size system. In the
three variables a typical behavior of the phase transition can be
observed. There are finite size effects as L tends to be infinite. An
order–disorder phase transition occurs in the additive situation, and
the critical exponents correspond to Ising lattice-model in two dimen-
sions (Potts model with q = 2). From the intersections of UL, we can
get the estimation of the critical temperature, kBTC(P = 0.7) =
0.433(2).With these data we can apply the Eq. (6) and get the collapses
of the curves as it is shown in Fig. 3d, e and f, we use ν=1.0, β=1/8,
α=0.0(log) and γ=7/4. Now, the behavior of fourth-order cumulants
is described. Fig. 4a shows the cumulant of the order parameter for
different size L. The intersections at the critical temperature can be
observed, and UL

⁎=0.619(2) in complete accordance with the Ising
Fig. 3. Several thermodynamics parameter versus kT, for c(2 × 2) ordered phase as a function of
The corresponding collapses of the curves are shown in d), e) and f).
model [49] were found. Fig. 4b shows the collapses. Other interesting
quantity is the fourth-order cumulant of energy. Using the same defini-
tion in Eq. (4), where we replace the order parameter and its moments
by the energy per site and its moments, we obtain:

ULE Tð Þ ¼ 1−
E4

D E
T

h i

3 E2
D E

T

� �2 ; ð10Þ

this parameter is useful to define the kind of phase transition. ULE has a
minimum close to the critical point, as the size of systems tends to the
thermodynamics limit(L→ ∞), this minimum tends to 2/3, in complete
concordance with the Ising lattice-model as it is plotted in Fig. 4c. As we
know from [32,33] at this coverage, the non- additivity only reinforces
the c(2 × 2) phase as P changes. We have verified that for all values of
P where the c(2 × 2) phase is formed, the critical behavior is similar to
the additive case.
the size L for P=0.7 and θ=1/2. a)Order parameter, b) susceptibility, and c) specific heat.

Image of Fig. 3


Fig. 4. For c(2 × 2) ordered phase at θ = 1/2. a) Fourth-order cumulant of the order parameter for different size L. b) Curve collapses. c) Fourth-order cumulant of energy.
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4.2. The dimeric phase

The dimeric phase is characterized by domains of parallel “zig-zag”
strips oriented at ±45° from the lattice symmetry axes, separated
from each other by strips of single empty sites (Fig. 1b). This phase is
formed at θ = 2/3 for P b 0.4. There are six different configurations
with the same energy, and each one situated in a sub-lattice. In order
to describe it, we define an order parameter as:

φz ≡ b
X
i; j

δi−δ j
�� �� ð11Þ

here δi and δj are the density of empty sites for the “i” and “j” sub-lattices
respectively. The summation of the differences are taken over the six
sub-lattices, b is normalization constant. For T b Tc one configuration is
formed in all lattice then φz = 1.0 but T N Tc the systems is completely
disordered and φz ≈ 0.0. For the analysis we set the system at P = 0.3
and θ = 2/3. Fig. 5a and b show the cumulant of the order parameter
and the energy for several values of L. In both cases the behavior is sim-
ilar to an order–disorder phase transition. The UL is always positive. The
energy cumulant presents a minimum whose values tend to 2/3, as L
tends to infinite, in a similar form to c(2 × 2) phase. There is strong
Fig. 5. For the dimeric phase at P=0.3 and θ=2/3. a) Fourth-order cumulant of energy. b) Fou
fits. c) F versus lnL.
evidence that the dimeric phase corresponds to an order–disorder
phase transition. On the other hand, the cumulant of order parameter
presents an intersection where the critical temperature can be
established; in this case, we have kBTc(P = 0.3, θ = 2/3) =
0.22(1) and UL = 0.64(2). At this point the critical exponents can be
estimated by the fluctuation methods [49–53]. The ν exponent can be
obtained from different variables, for example, by the maxima of the
derivative of UL or the logarithmic derivatives of bφzN and bφ2

z N in
all cases from inverse of temperature K. More explicitly, ν can be obtain-
ed as:

d log Fh i
dK

����
max

∼L
1
ν ð12Þ

where F can beUL, bφzN or bφ2
zN. On the other hand,α/ν andγ/ν can be

obtained by the maximums of Cvand χ respectively. Following these
ideas, the relation can be obtained at the point of inflection of the
order parameter i.e. where d bφzN/dK is maximal, so:

d log φz

� �
dK

����
max

∼L
1−β
νð Þ: ð13Þ
rth-order cumulant of the order parameter. c) The derivative of F versus lnL, and the linear

Image of &INS id=
Image of Fig. 5
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Fig. 5c shows the derivative of F versus lnL, and bymeans of linear fits
of the three variables the same value of ν=0.666(2) is obtained. The
other relations between exponents are plotted in Fig. 5d; we found
((1−β)/ν)=1.353(3)), α/β=0.788(5) and γ/ν=1.914(5) With these
relations, the Rushbrooke [54] equality can be applied, which relates the
critical exponents as:

α
ν
þ 2β

ν
þ γ

ν
¼ 2

ν
: ð14Þ

The exponents measured satisfy the last relation. With these
exponents the scaling relations for the collapses of the thermodynamics
values can be applied, as shown in Fig. 6(a–d). The values of these
critical exponents within the statistical errors are close to the universal-
ity of Potts model with q = 4 [55,56].

The q-state Potts model [55,56] consists of a lattice of spins, which
can take q different values. For q = 2 [c(2 × 2) phase], the Potts
model is equivalent to the Ising model. In the case of q = 4 (dimeric
phase), the model corresponds to the well-known Ashkin–Teller
model [55,57]. In general, the Potts model is likely to have extensive
applications in lattice statistics and critical phenomena. Interested
readers are referred to Ref. [55] for a more complete description of the
Potts model and its implications and applications.

4.3. The tetrameric phase

For the critical analysis of the tetrameric phase we need to define an
order parameter φt, like the Eq. (11). The only difference is that this
phase has eight different configurations for the same energy. The
quantities φt, Cv, ULE and UL were calculated for P = 0.2 and θ = 4/5 at
different values of L. In Fig. 7a we observe how the φt tends to a step
as L tends to infinite. The Cv and CL have a typical behavior of a phase
transition as it is shown in Fig. 7b and c respectively. In all cases there
are typical effect sizes. CL has a negative minimum that is more intense
as L increases. It is important to observe that φt do not cross each other.
ULE has an intense minimum that does not disappear for large L as it is
Fig. 6. Collapses of the thermodynamics parameters for the dimeric phase at P=0.3 and θ=2
and d) Specific heat.
shown in Fig. 7d. However, we calculate the distribution for φt and
energy per site (not shown here by simplicity) and both have two
well-defined maximums in complete concordance with a first order
phase transition as it is described in [58]. As it is known, quantities at
a first order phase transition scale to the volume of the systems
asTC(∞)+constL−d. The inset in Fig. 7d shows the dependence of TC(L)
versus L−2, and it is possible to obtain Tc(P = 0.3) = 0.1188(6) by
means of a linear fit.

4.4. The phase diagram

Following with the study, nowwe are in condition to plot the phase
diagram T-θ for the non-additive interactions. As we have said before
we have twomethods to obtain the critical temperature, i) the intersec-
tion of cumulants, and ii) any manifestations of the physics quantities
obtained with the Eq. (7). For the order–disorder phase transition
both methods are applicable, but for first order phase transition only
the second is useful. For the c(2 × 2) and dimeric phase the intersection
of UL at different values of (θ, P) was used. The phase diagram is shown
in Fig. 8.The critical temperatures are normalized at the additive case,
TC(P = 1.0, θ = 1/2) = 0.567. P is varied from 0.2 to 1.4. We begin the
description by the c(2 × 2) structure. For T b TC the c(2 × 2) structure
is formed as it is expected. The additive curve P = 1.0 is symmetric
around half coverage (green triangle in Fig. 8) because the vacancy-
particle symmetry is satisfied. As P b 1.0 we can observe a non-
additivity effect, the curves begin to be asymmetric and smaller than
in the additive case. This means than c(2 × 2) structure is weaker, in
complete concordance with the previous thermodynamics analysis
[32].This asymmetry is more evident as P tends to zero -for clarity the
first dash line indicates the half coverage. For P N 1.0 the situation is
the opposite, the curves are bigger and more asymmetric than in the
additive case. The dependence of the temperature on P is in perfect
concordance with the analysis done in [59], where a linear dependence
on P, for c(2 × 2), is established.

The dimeric and tetrameric phase are completely formed at θ=2/3
and 4/5, respectively for P b 0.4. The respective diagrams are shown in
/3. a) Susceptibility, b) Order parameter, c) Fourth-order cumulant of the order parameter

Image of Fig. 6


Fig. 7. For the tetrameric phase at P=0.2 and θ=4/5. a) Order parameter, b) Specific heat, c) Fourth-order cumulant of the order parameter, and d) Fourth-order cumulant of the energy.
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Fig. 8. For these cases the biggest curve corresponds to P=0.2, contrary
to what happens to c(2 × 2) structure. In all cases the diagrams are
asymmetric. As expressed before, the second- and third-dash line
denote, θ = 2/3 and 4/5. To quantify the asymmetric character of the
diagrams, it is convenient to define a symmetry parameter S. This
parameter quantifies the asymmetry. In typical diagrams it is possible
to define a reference coverage θR, and it corresponds to the coverage
where the structure occupies all the substrate without imperfections.
Then S can be defined as:

S Pð Þ ¼

ZθR

0

TC θ; Pð Þdθ

Z1

θR

TC θ; Pð Þdθ
; ð15Þ

where the integral in the numerator[denominator] is the area on the
left[right] of θR in the phase diagram. The reference coverages are: 1/2,
2/3 and 4/5 corresponding to c(2 × 2), dimeric and tetrameric phase
Fig. 8. Phase diagram ,θ-T for the three non-additive phases. Dash lines indicate the
coverages 1/2, 2/3 and 4/5.
respectively. When the diagram is symmetric S is one. We can define
two regimens for the asymmetries: Asymmetry of type I [II] when
S b 1.0[S N 1.0] indicates that the diagram is asymmetric because the
left area N right area [right area N left area]. Fig. 9 presents S versus P
for all the phases studied. The dash lines indicate the intersection of
P = 1.0 and S = 1.0, and correspond to the additive scheme and the
symmetric diagram. For the c(2 × 2) phase diagram at values P b 1.0
the asymmetry is type I and P N 1.0 is type II. For the other structures
we can observe that in all cases the curves are type I.

5. Conclusions

In this work the critical behavior of non-additive lateral interactions
associated to adsorption phenomenon is analyzed. The traditional
assumption of additive interaction is reformulated to include many
body interactions in the non-additive language. We consider that the
lateral interaction depends on the occupation in its neighborhood. The
study was done within the scheme of lattice-gas model with square
geometry. In previous works the formations of new structures like the
dimeric and the tetrameric phase were found in thermodynamics stud-
ies. We can draw several important conclusions from this work.
Fig. 9. Asymmetry parameter S versus P. The intersection of the dash lines indicates the
symmetric conditions.

Image of &INS id=
Image of &INS id=
Image of Fig. 9
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1. The c(2 × 2) ordered structure formed with non-additive
interactions are in complete concordance with the order–disorder
phase transition with the Ising 2D (Potts model with q = 2) critical
exponents. The collapses of curves corroborate this conclusion.

2. The dimeric phase is characterized by order–disorder phase
transitions with critical exponents that correspond, with the statisti-
cal errors, with the universality of Potts model with q = 4.

3. The critical behavior for tetrameric phase corresponds to a first order
phase transition.

4. The θ-T phase diagram has been calculated for different condition of
non-additivity.

We observe how a strong asymmetry is induced by this kind of
interactions. The asymmetries for c(2 × 2) is stronger as the non-
additivity parameter is different from one. For the dimeric and
tetrameric phase, the structures are asymmetric in all cases.

This kind of interactions can be responsible for the strong
asymmetries observed in experimental studies.
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