Oligoryzomys fornesi (Massoia, 1973), Mammalia, Rodentia, Sigmodontinae: Distribution extension

Natália L. Boroni¹*, Ulyses F. J. Pardiñas² & Gisele Lessa¹

ABSTRACT: We report the easternmost record for the Fornes’ Colilargo, *Oligoryzomys fornesi* in the state of Minas Gerais, Brazil extending more than 500 km to the southeast the geographic range of the species. The studied specimens were found in owl pellets collected in caves. This is the first record of *O. fornesi* in the municipalities of Lagoa Santa, Sete Lagoas and Cordisburgo, a karst transition zone between the Atlantic Forest and Cerrado biomes.

Key-words: Geographic distribution, owl pellets, karst area, Minas Gerais

RESUMO: *Oligoryzomys fornesi* (Massoia, 1973), Mammalia, Rodentia, Sigmodontinae: Extensão da distribuição. Relatamos o registro mais oriental para o rato-do-mato *Oligoryzomys fornesi* no estado de Minas Gerais, Brasil ampliando a distribuição da espécie em mais de 500 km para o sudoeste. Os espécimes foram amostrados por pelotas de coruja coletadas em cavernas. Este é o primeiro registro de *O. fornesi* nos municípios de Lagoa Santa, Sete Lagoas e Cordisburgo, uma área cárstica de transição entre a Mata Atlântica e o Cerrado.

Palavras-chaves: Distribuição geográfica, pelotas de coruja, área cárstica, Minas Gerais

Oligoryzomys Bangs, 1900 comprises a group of small sigmodontinae mice distributed from Central America to southern South America (Musser & Carleton, 2005). In Brazil, nine species of *Oligoryzomys* have been reported: *O. chacoensis* (Myers & Carleton, 1981), *O. flavescens* (Waterhouse, 1837),

¹ Museu de Zoologia João Moojen, Universidade Federal de Viçosa, Vila Gianetti, nº 32, Campus, Viçosa, Minas Gerais, Brasil.
² Instituto de Diversidade y Evolución Austral (IDEAus-CONICET), CC 128, 9120 Puerto Madryn, Chubut, Argentina.
*Corresponding author: natalia_boroni@hotmail.com

Recebido: 30 jan 2015 – Aceito: 22 abr 2015
O. fornesi (Massoia, 1973), O. fulvescens (Saussure, 1860), O. microtis (J. A. Allen, 1916), O. moojeni Weksler & Bonvicino, 2005, O. nigripes (Olfers, 1818), O. rupestris Weksler & Bonvicino, 2005 and O. stramineus Bonvicino & Weksler, 1998 (Paglia et al., 2012). Recently another species, Oligoryzomys utiaritensis J. A. Allen, 1916, was recognized for the country (Agrellos et al., 2012). These mice can be found in forested and open formations in the Amazon Forest, Atlantic Forest, Cerrado, Caatinga and Pantanal biomes (Bonvicino et al., 2008).

In Brazil, Oligoryzomys fornesi primarily inhabits open formations in the Cerrado (Federal District, Minas Gerais, Goiás, Bahia) and Caatinga domains (Pernambuco), but it can also be found in forest formations in these biomes (Weskler & Bonvicino, 2005; Pereira & Geise, 2009). This species have also been reported in eastern Paraguay and northern Argentina, where the type locality is situated, in Formosa Province (Weskler & Bonvicino, 2005; Teta & Pereira, 2009; Teta & Pardiñas, 2010). The aim of this study is to report a record that extend the current geographic distribution of O. fornesi more than 500 km to the southeast, being the most eastern locality known for the species in the state of Minas Gerais and in Brazil.

Between 2010 and 2012 we collected owl pellets of Tyto furcata (Aves, Tytonidae) from three caves in a karst area in the state of Minas Gerais, Brazil. Samples of pellets were collected in three different areas: Sumidouro State Park (19º33’30’’ S, 43º57’03’’W), Lagoa Santa; Mata Grande Cave (19º30’02’’S, 44º15’59’’W), Sete Lagoas; Peter Lund Natural Monument (19º07’17’’S, 44º28’24’’W), Cordisburgo (Fig. 1). According to the Köppen classification, the climate in the region is the type Aw tropical humid, characterized by hot, rainy summers and dry winters (IEF, 2008; Travassos, 2010). The annual average temperature is 22ºC in Cordisburgo and 21,4ºC in the Lagoa Santa region (IEF, 2008; Travassos, 2010). The annual average precipitation varies between 1250 mm to 1500 mm in Cordisburgo (Travassos, 2010) and in Lagoa Santa the annual pluviometric average is 1206.80 mm (IEF, 2008; Travassos, 2010). The area is inserted in the Cerrado biome, with some peculiarities related to the presence of enclaves similar to Caatinga vegetation, with Deciduous Seasonal Forest (‘‘dry forest’’) in the areas of limestone outcrops (Piló, 1998). Currently the sampled area is disturbed, often the vegetation is restricted to cerrado in regeneration or in transition and ‘‘dry forest’’ in the limestone outcrops (Berbert-Born, 2002) along with pastures, crops and eucalyptus plantations (IEF, 2008; Travassos, 2010). Fieldwork was carried out with IEF (Instituto Estadual de Florestas) and SISBIO (Sistema de Autorização e Informação em Biodiversidade) permits (Permit # 13045-1). The pellets were disaggregated and accumulated in the cave floor. The skulls and mandibles were recovered by hand and identified to
the lowest taxonomic level based on specific literature (Bonvicino & Weksler, 1998; Paresque, 2010; Weskler & Bonvicino, 2005; Weksler & Percequillo, 2011) and the reference material at the Mastozoology Collection at the João Moojen Zoology Museum (MZUFV, Universidade Federal de Viçosa, Brasil). Some of the specimens examined were identified as *O. fornesi*. Posteriorly were tumbled in batches according to locality (with the other specimens from the pellets) and deposited in this collection, under the reference numbers: MZUFV 3814 (Lagoa Santa); MZUFV 3843 (Sete Lagoas); MZUFV 3856 (Cordisburgo).

As the studied material is originated by owls pellets, in most cases the bones are disarticulated and fragmented. Is common to find skulls and mandibles

Figure 1. Collecting localities (white squares) and previous records in the state of Minas Gerais (black squares) of *Oligoryzomys fornesi*. Localities 1 and 2 are in the Cerrado biome (dark gray) and localities 3 to 5 are in the transition zone between Cerrado/Atlantic Rainforest biome (light gray) (IEF, 2014). Localities in the state of Minas Gerais: 1) Grande Sertão Veredas National Park, Formoso (Paresque, 2010); 2) Panga Ecological Station, Uberlândia (Bruna et al., 2010); 3) Peter Lund Natural Monument, Cordisburgo; 4) Mata Grande Cave, Sete Lagoas; 5) Sumidouro State Park, Lagoa Santa.
broken, beyond just maxilla bones with molars. Mandibles, maxillas (left and right of both) and one fragmented skull of *Oligoryzomys fornesi* were found in the owl pellets sampled. For the taxon, was calculated the number of identified specimens (NISP), being the sum of all fragments (mandibles, maxillae, skull) of the taxon. Of the total 499 (NISP) of cranial and mandibular remains of *Oligoryzomys*, 49 specimens (NISP), were assigned to *O. fornesi* (Fig. 2) based on the following combinations of traits: 1) skull with a strong anterior constriction of the interorbital area and divergent posteriorly; 2) short incisive foramen not reaching M1; 3) reduction of mesoloph/mesolophid in the molars; 4) mandibular with a slightly dilated capsular process (Wekslor & Bonvicino, 2005; Paresque, 2010). The reduced mesoloph and mesolophid in the molars was an important feature to differentiate *O. fornesi* from others *Oligoryzomys* species that can occur in the studied area. The mesoloph/mesolophid can be reduced in most specimens of *O. fornesi* (see Paresque, 2010). See the Table 1 for comparison of the diagnostic cranial characters used to identify *O. fornesi* and among other *Oligoryzomys* species which can be sympatric in the region.

This is the first record of *Oligoryzomys fornesi* in the central karst of Minas Gerais, a transition zone between the Cerrado and Atlantic Forest. Few records of *O. fornesi* in the state are available in the literature, all in areas of Cerrado: Grande Sertão Veredas National Park (15°23’S, 45°54’W), in the municipality of Formoso, about 700 km northwest of Lagoa Santa (Paresque, 2010) and Panga Ecological Station (19°10’S, 48°23’W) (Bruna *et al*., 2010), in Uberlândia, approximately 570 km west of Lagoa Santa (Fig. 1). In these studies the external characteristics were used for identification of specimens, but Paresque (2010) also examined the cranial features and karyotype.

In addition to *O. fornesi*, 15 other rodent species were found in the owl pellets collected in the three localities, including *Oligoryzomys nigripes* (NISP = 334) (Table 2). *O. fornesi* can be sympatric with *O. nigripes*, *O. flavescens* and *O. stramineus* in Brazil (Bonvicino & Weksler, 1998; Weksler & Bonvicino, 2005; Pereira & Geise, 2009; Bruna *et al*., 2010). Despite being sympatric in some regions of Cerrado, these species are usually found in different habitats. *O. fornesi* is generally found in open vegetation formations in the Cerrado, unlike *O. nigripes* (Weskler & Bonvicino, 2005). Among the species of the genus *Oligoryzomys*, *O. nigripes* is the most generalist in its habitat preferences, occurring in primary and secondary vegetation formations, especially in forested areas such as gallery forests in the Cerrado, Montane and Sub-Montane Forest in the Atlantic Forest (Weskler & Bonvicino, 2005).

Despite several studies on the taxonomy, morphology, cytogenetics, and molecular phylogeny (*e.g.* Weskler & Bonvicino, 2005; Paresque *et al*., 2007; Trott *et al*., 2007; Palma *et al*., 2010; Paresque, 2010; Machado *et al*., 2011;
Figure 2. Remains of *Oligoryzomys fornesi* found in the karst central area of Minas Gerais, Brazil. From top to bottom: anterior fragment of skull in dorsal (A) and ventral view (B), mandible in labial view (C) and upper and lower molars (D, E). D – Superior molar 1,50 mm in length. E – Inferior molar 1,46 mm in length. Specimens voucher: MZUFV 3856, Cordisburgo. Scale bar = 10 mm.
Table 1. Cranial and molar comparison among sympatric *Oligoryzomys* species of Minas Gerais. Adapted from Weksler & Bonvicino (2005) and Paresque (2010).

<table>
<thead>
<tr>
<th>Species</th>
<th>Interorbital region</th>
<th>Incisive foramina</th>
<th>Mandible</th>
<th>Mesoloph and mesolophid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligoryzomys fornesi</td>
<td>Convergent anteriorly, giving a triangular appearance; supraorbital margins with sharp edges</td>
<td>Lenticular shape; usually reaches the first molar; vomer appears dilated along all their extension</td>
<td>Capsular process of lower incisor alveolus slightly dilated, not exceeding the mandibular notch line</td>
<td>Frequently present, but may be reduced</td>
</tr>
<tr>
<td>Oligoryzomys flavescens</td>
<td>Hourglass-shaped and rounded, may presents a slight posterior divergence; supraorbital margins tenuous and little curvy</td>
<td>Teardrop shape; often surpass the anterior edge of the first molar; vomer appears dilated only on 2/3 previous</td>
<td>Capsular process of lower incisor alveolus poorly developed; masseteric crest unclear</td>
<td>Frequently present</td>
</tr>
<tr>
<td>Oligoryzomys nigripes</td>
<td>Hourglass-shaped with a long constriction, following the molar rows; supraorbital margins rounded</td>
<td>Lenticular shape; may reach the anterior edge of the first molar; dilation of the vomer varies widely, usually appears 2/3 dilated</td>
<td>Capsular process of lower incisor alveolus slightly dilated, not exceeding the mandibular notch line</td>
<td>Frequently present</td>
</tr>
<tr>
<td>Oligoryzomys stramineus</td>
<td>Convergent anteriorly; supraorbital margins slightly sharp</td>
<td>Lenticular shape; may reach the anterior edge of the first molar; dilation of the vomer varies widely, usually appears 2/3 dilated</td>
<td>Capsular process of lower incisor alveolus slightly dilated, not exceeding the mandibular notch line</td>
<td>Frequently present</td>
</tr>
</tbody>
</table>

Table 2. NISP (number of identified specimens) of *Oligoryzomys* collected in owl pellets from the Sumidouro State Park, Lagoa Santa; Mata Grande Cave, Sete Lagoas; Peter Lund Natural Monument, Cordisburgo.

<table>
<thead>
<tr>
<th></th>
<th>Lagoa Santa</th>
<th>Sete Lagoas</th>
<th>Cordisburgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligoryzomys nigripes</td>
<td>54</td>
<td>219</td>
<td>61</td>
</tr>
<tr>
<td>Oligoryzomys fornesi</td>
<td>6</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>Oligoryzomys sp.</td>
<td>7</td>
<td>92</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>344</td>
<td>88</td>
</tr>
</tbody>
</table>
Weksler & Percequillo, 2011), *Oligoryzomys* is a complex genus with many morphological similarities between species. This makes the identification of the species difficult, especially because many are sympatric in different localities. In some cases, the use of molecular and cytogenetic data is essential for the identification of *Oligoryzomys* species.

Oligoryzomys fornesi might have already been collected in other regions of Cerrado in eastern Minas Gerais, between Uberlandia and Lagoa Santa, and further north between Formoso and Lagoa Santa, but assigned as another species of *Oligoryzomys* or *O. nigripes*, the most common species of the genus. Minas Gerais is a large state and many areas of Cerrado have not yet been surveyed, which also explains the lack of information about the geographic distribution of this species in the state.

Recently studies with *Oligoryzomys* molecular phylogeny suggest a taxonomic revision for populations assigned to *O. fornesi* in Brazil (González-Ittig *et al.*, 2010; González-Ittig *et al.*, 2014). These authors point out the distinctiveness of specimens from Brazil and the ones from the type locality (Naineck in Formosa, Argentina), since they are recovered in different clades, with Brazilian *O. fornesi* grouped into a basal group (González-Ittig *et al.*, 2010; González-Ittig *et al.*, 2014). More extensive studies are needed to clarify the taxonomic status of *Oligoryzomys* populations from central Brazil, including the recent proposition to refer to *O. mattogrossae* the records previously assigned to *O. fornesi* from Cerrado and Caatinga (see Weksler & Bonvicino, 2015).

It should be pointed out that some species of this genus are important hantavirus reservoirs, such as *Oligoryzomys nigripes* and *O. fornesi*. They have been identified as reservoirs by serological and molecular methods in different Brazilian regions (Lemos *et al.*, 2004; Suzuki *et al.*, 2004; Oliveira *et al.*, 2013; Guterres *et al.*, 2014). The hantavirus, subject of studies worldwide, is among the most important zoonotic pathogens of humans and the role in hantaviruses cycles reinforce the importance of rodent inventories in poorly sampled regions and taxonomic studies on this genus. The karst area of Lagoa Santa can be considered poorly sampled actually because no small mammals survey was done since Lund and Winge’s work in 1887. Some works were made in nearby regions such as the Parque Nacional Serra do Cipó (Leal *et al.*, 2008), Parque Nacional das Sempre-Vivas (Camara *et al.*, 2007) and Conceição do Mato Dentro (Ávila Pires, 1960)

Our findings also show the importance and effectiveness of owl pellets to inventory small mammal assemblages in poorly known regions. The analysis of barn owl pellets is a valuable, quick, and cost-effective tool for surveying small mammals and it should be extensively used in Brazil.
Acknowledgments

We are grateful to Marcelo Weksler for the identification of some specimens. We thank the staff of Sumidouro State Park, Peter Lund National Monument and mining company Mata Grande for allowing the use of their facilities for the collection of samples. We are also grateful to Leonardo Dias for assistance in the field, Rodolfo Stumpp for doing the map and comments (Figure 1) and Leonardo Lôbo for taking the picture (Figure 2). The Federal Forest Institute (IEF) granted permits for the collection of specimens. This study was supported by FAPEMIG (APQ-02262-12) grant to Gisele Lessa.

Literature Cited

Paglia, A.; Fonseca, G. A.; Rylands, A. B.; Hermann, G.; Aguiar, L. M. S.;

