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Abstract We examine the effects of stationary vortices in superfluid 6Li atoms at
zero temperature in the frame of the recently developed fluiddynamical scheme, that
includes the pair density and its associated pair current and pair kinetic energy in
addition to the fields appearing in the hydrodynamical description of normal fluids.
In this frame, the presence of any particle velocity field gives rise to the appearance
of a pair current. As an illustration, we consider a stationary vortex with cylindrical
geometry in an unpolarized fluid, and examine the effects of the rotational velocity
field on the spatial structure of the equilibrium gap and the profiles of the pair current.
We show that the latter is intrinsically complex and its imaginary part is the source
of a radial drift for the velocity field. We discuss the consequences on the stationary
regime.
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1 Introduction

Quantized rotational flow is one the fundamental features of a superfluid, either bosonic
or fermionic, as presented in numerous review papers and advanced textbooks (see e.g.,
Refs. [1–4]). The strictly quantum nature of superfluids and superconductors permits a
quasiphenomenological description of superflow in terms of quantum hydrodynamics,
where the superfluid velocity is the gradient of the phase of the particle wave function,
and can thus support quantized circulatory motion. In the case of paired fermions, an
important related issue that received attention in the past is the role of the orbital angular
momentum density as a source of mass current density both in BCS superconductors
and in anisotropic superfluids [5–9]. In the case of anisotropic 3He–A, the intrinsic
angular momentum originating in the orbital angular momentum of the Cooper pairs
density can enter as a variable in the hydrodynamics of the nonuniform textures of
helium [1,10].

It is well established that standard bosonic quantum hydrodynamics at zero tem-
perature can be derived in the frame of a mean-field dynamics of the condensate wave
function [11,12]. The superfluid density and velocity appear in the polar representa-
tion of such wave function. In the case of fermions, the simplest mean-field dynamical
frame, the Hartree–Fock–Bogoliubov theory, leads to a system of coupled evolution
equation for the particle density and pair density matrices [13,14]. A simple reduction
of these two equations to their diagonal form as a first attempt to seek a descrip-
tion in terms of macroscopic fields immediately leads to the need of introducing a
first moment of the particle density, namely the particle current. However, in order
to close these three equations one has to introduce some nontrivial physical ansatz
in the motion of the pair density [15]. The scheme exhibits then an important degree
of ambiguity whose consequence is the impossibility of reaching an essential feature
of the low energy spectrum of fermion superfluids, such as the existence of a gapped
mode that represents oscillations in the pair density [16,17].

We have recently proven that this ambiguity can be removed, recovering the mas-
sive pairing mode in homogeneous [18,19] and trapped [20] superfluids by applying
rigorously the criterion that gives rise to classical hydrodynamics. This consists of a
derivation of coupled equations of motion for the first and second moments of both
the particle and the pair density, prior to selecting the diagonal terms of the quantum
matrices. This procedure gives rise to the fluiddynamical scheme (FD) formulated
in terms of particle and pair densities, together with their current and kinetic energy
densities, and is equivalent to keeping quantum mechanics up to order h̄2 in the full
dynamics of the macroscopic fields. We have examined several aspects of equilibrium,
stationary particle currents, and low energy dynamics; various numerical applications
permit us to validate the usual local density approach (LDA) undertaken for the study
of trapped fermions [21], also showing that the full FD description is needed to reach
the low energy spectrum [15,18–20,22,23].

In the present work, we focus on one effect of the superfluid velocity field of
a quantized vortex in a trapped fermion system at zero temperature. Comprehen-
sive as well as introductory reviews to cold atomics physics that encompass basic
aspects of laser cooling and trapping techniques with the corresponding developments
can be found in Refs. [12,21,24–26]. Previous studies of rotational flow in ultracold
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fermions have mainly focused on homogeneous systems resorting to the full solutions
of Bogoliubov-de-Gennes equations [27–29]. On the other hand, we extend the FD
procedure at zero temperatures employed in our earlier studies of FD to realize the
LDA, in such a way that the local superfluid also carries a local translationally invari-
ant flow. As shown in the forthcoming sections, large values of the local superfluid
velocity such as those appearing at the vortex core suppress superfluidity giving rise
to an unpaired, normal fluid. The FD equations of motion make evident that even in
the stationary regime, such a current gives rise to a complex pair current, i.e., to a
nonvanishing first moment of the pair density matrix— that might eventually desta-
bilize the impressed vortex. We discuss the stability of the stationary regime in terms
of the two-body interaction strength g = 4π h̄2a/m, with a the scattering length, and
show that to a good approximation, even for not too low values of the latter, the flow
remains stable and the particle density undergoes very slight modifications. Taking
into account that the numerical solution of the FD scheme is far from trivial, we employ
approximations of proven validity to provide insight on future developments.

This paper is organized as follows. In Sect. 2 we shortly review the FD formalism
for a symmetric system of fermions in a harmonic trap and in Sect. 3, we derive the
form of the pair current enslaved to a stationary linear vortex. We present and discuss
numerical solutions in Sect. 4 and summarize our conclusions in Sect. 5.

2 The Fluiddynamical Equations

As is well known, the theory of fermion superfluids can be formulated in terms of a
generalized density matrix that contains expectation values of products of two field
operators Ψ †

σ (r) and Ψσ (r), namely

Rσ (r, r′) =
(

ρσ (r, r′) κ∗−σ (r, r′)
−κσ (r, r′) δ(r − r′) − ρ−σ (r′, r)

)

with

ρσ (r, r′) = 〈ρ̂σ (r, r′)〉 = 〈Ψ †
σ (r′)Ψσ (r)〉 (1)

for particle species with spin σ = ± and

κσ (r, r′) = 〈Ψσ (r)Ψ−σ (r′)〉 (2)

for the pairing tensor. The FD (see e.g., Ref. [19] for a review) is formulated in terms
of six coupled evolution equations for the particle density and pairing tensor and for
their associated current and kinetic energy densities. The latter are the first two terms
in a gradient expansion of the above matrices and read

jσ (r, r′) =
〈

h̄

2mı
(∇ − ∇′)ρ̂σ (r, r′)

〉
, (3)
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τσ (r, r′) =
〈

h̄2

2m
∇ · ∇′ρ̂σ (r, r′)

〉
(4)

and correspondingly, jκ and τκ defined as above with gradients operating upon κ(r, r′)
(hereafter we adopt the notation κ ≡ κ+). The FD equations are obtained after com-
puting the dynamical equations for the above six matrices and taking the limit for
r → r′. For an unpolarized fermion system with equal populations Nσ = N/2, they
read

∂ρ

∂t
= −∇ · j, (5)

∂j
∂t

= − ρ

m
∇μ + 4g

h̄
Im(κj∗κ), (6)

∂τ

∂t
= −∇ · jτ − ∇ (2V + gρ) · jσ + 4g

h̄
Im(κτ ∗

κ )

−4gRe
(
j∗κ · ∇κ

) − 4g

h̄

h̄2

2m
Im(κ∗∇2κ), (7)

ı h̄
∂κ

∂t
=

(
− h̄2

4m
∇2 + 2V − 2μ0

)
κ + 2τκ , (8)

ı h̄
∂jκ
∂t

=
(

− h̄2

4m
∇2 + 2V + gρ − 2μ0

)
jκ − gjκ

+ lim
s→0

(
− h̄2

m
∇2

s jκ

)
, (9)

ı h̄
∂τκ

∂t
=

(
− h̄2

4m
∇2 + 2V + gρ − 2μ0

)
τκ

−gτκ − h̄2

4m

[
∇2 (2V + gρ) κ − gρ∇2κ

]

+ lim
s→0

(
− h̄2

m
∇2

s τκ

)
(10)

with ρ, j, and τ representing the total densities, μ is the local chemical potential, μ0
the chemical potential of both species and V (r) = mω2r2/2 the isotropic trapping
potential of angular frequency ω.

It is to be noted [19] that the FD approach is not an alternative form for the two-fluid
model of superfluids; at zero temperature, ρ+ + ρ− is the superfluid density and in
the absence of jκ , Eqs. (5) and (6) are the standard equations of superfluid hydro-
dynamics [21]. In previous works [15,18–20,22,23] we have proposed two criteria
for approximations of the FD scheme that extend the standard LDA. The superfluid
Thomas–Fermi approximation [15] (STF) consists of the set (5), (6), and (8) with
the pair kinetic energy replaced by its expression for the homogeneous system, pro-
vided by the method of Ref. [30]. The extended superfluid Thomas–Fermi [19] (ESTF)
approximation corresponds to considering the full set (5) to (10), replacing the explicit
limits in the last two equations by their homogeneous expressions, obtained according
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to a generalization of [30]. We have shown [19] that ESTF does not provide remarkable
differences with respect to STF when structural features such as equilibrium densities
and low energy spectra are considered; however, all moments of the above quantum
matrices up to order h̄2, i.e., the current and kinetic energy densities, contemplated in
the full ESTF, must be taken into account to obtain massive modes such as the pairing
vibrations, that involve internal motion of the pairs [18–20].

Our present interest is to advance one more step on the understanding of currents
and their interplay with the remaining fields, especially with the particle and the pair
densities. We note that it is customary to find in the literature references to κ as the “pair
density”, overlooking the fact that it is a complex order parameter. In this philosophy,
it is natural to refer to the corresponding first and second moments as pair current and
pair kinetic energy as shorthands for pairing current tensor and pairing kinetic energy
tensor. It should, however, be kept in mind that these are complex quantities that do
not represent actual mass flow or energy content. We see that according to Eq. (9), any
particle current j acts as a source of a pair current jκ . In what follows we illustrate the
appearance of the latter and its consequences with a specific example.

3 The Pair Current in the Stationary Regime

We assume that a quantized superfluid velocity field

vs = h̄l

mr
ϕ̂ (11)

with l = 0,±1,±2, . . ., corresponding to a linear vortex with circulation Γ = hl/m
has been impressed in the gap profile. In the spirit of an LDA, the stationary density
is the solution of

∇μ ≡ ∇
[
εF(ρ, vs) + V (r) + gρ

2

]
= 0 (12)

with εF(ρ, vs) the Fermi energy of the homogeneous system with superfluid velocity
vs, computed from the total kinetic energy following Refs. [30,31]. The constant
chemical potential μ0 is set identical to the function in square brackets in Eq. (12) and
its value is obtained by normalization of the density to the total number of particles.

Since particle and superfluid velocity fields differ in general—in particular, at the
vortex core, which is populated by normal fluid—we have extended the ESTF to
determine the particle current as well, on the same footing as the particle density. The
procedure, that generalizes the ideas put forward in Ref. [30], consists in computing,
in addition to those integrals that define the pairing gap and the particle density in the
above paper, an integral for the current that derives from a velocity potential h̄q · r/m.
The substitution of the velocity h̄q/m by vs(r) in Eq. (11) permits to construct a local
superfluid which, in addition to satisfying a local equation of state, carries a local
translationally invariant flow. As shown in the Appendix, where we collect the main
formulae, this calculation is far from trivial, in view of the angular dependence that
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Fig. 1 Plots on the (r, z) plane for angular momentum l = 1. Upper panel particle density. Lower panel
superfluid gap. Calculations are done in the LDA approximation. All spatial dimensions are given in units
of the oscillator length d0 = √

h̄/mω (Color figure online)

the vector field introduces in the quasiparticle energy appearing in the integrands of
Eqs. (38), (39), and (40).

We recall that the presence of a superfluid particle current reduces the gap ampli-
tude [31]; moreover, the density profiles are sensitive to the centrifugal potential of the
velocity field. Given the microscopic structure of the gap, it is reasonable to assume
that the global velocity field incorporates a phase factor in each field operator Ψ †, Ψ .
Consequently, for the pair density κ , we propose a vortex structure with twice the
multipolarity of the velocity field, of the form

κ(r, z, ϕ) = eı2lϕκ(r, z). (13)

This is illustrated in Figs. 1 and 2, where we show contour plots on the (r, z) plane for
ρ and for the superfluid gap � = −gκ corresponding to l = 1 and 2, respectively. These
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Fig. 2 Same as Fig. 1 for l = 2 (Color figure online)

calculations correspond to N = 17,000 6Li atoms in a spherical trap with frequency
ω = 817 Hz, interacting with scattering length a = −114 nm [32].

In Figs. 1 and 2 the density profile appears rather flat at the trap center without a
strong effect of the presence of the vortex, however as we compare the density profiles
for stronger interactions, we confirm that as we increase |a| the gap and the superfluid
fraction increase, and therefore the vortex centrifugal barrier excludes more and more
atoms from the trap center, giving rise to a local depletion of the particle density. This
is illustrated in Fig. 3 for a = −114,−130, and −140 nm.

The FD equations in the preceding section indicate that a stationary pair current
sets in as the solution of (cf. Eq. 9)

H[ρ(r, z)]jκ = gκ(r, z, ϕ)j ≡ α̃(− sin ϕ, cos ϕ, 0) (14)

with
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Fig. 3 Density and gap profiles (inset) as function of r (in units of d0) at z = 0 and several values of a as
indicated in the plot (Color figure online)

H[ρ] = − h̄2∇2

4m
+ 2V (r, z) + gρ(r, z) − 2μ0, (15)

α̃(r, z, ϕ) = gκ(r, z, ϕ) j ≡ α(r, z)eı2lϕ, (16)

α(r, z) = gκ(r, z) j. (17)

Equation (14) splits then into cartesian components

Hjκx = −α̃ sin ϕ, (18)

Hjκy = α̃ cos ϕ, (19)

Hjκz = 0. (20)

The last of these equations indicates that the z-component of the pair current is either
vanishing or just an eigenfunction of the mean field, with eigenvalue μ0. For the
planar components, in correspondence with the choice for the pair density, we look
for solutions of the form

jκx = X (r, z, ϕ)eı2lϕ, (21)

jκy = Y (r, z, ϕ)eı2lϕ. (22)

Since the angular Laplacian ∂2/∂ϕ2 acting on a product of functions introduces a
single derivative, Eqs. (18) and (19) can be solved with the ansatz

X (r, z, ϕ) = −X1(r, z) sin ϕ + ı X2(r, z) cos ϕ, (23)

Y (r, z, ϕ) = ıY1(r, z) sin ϕ + Y2(r, z) cos ϕ. (24)
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Introducing (23) into (18) we readily get

Hl X1 + h̄2l

mr2 X2 = α, (25)

h̄2l

mr2 X1 + Hl X2 = 0. (26)

Here Hl is the hamiltonian in (15) plus the centrifugal potential for pairs h̄2l2/mr2.
We note that these equations are compatible with real X1 and X2. The same procedure
for the y-component yields similar relations with Y2 = X1 and Y1 = X2. Accordingly,
we can write the planar pair current in the form

jκ = eı2lϕ(X1ϕ̂ + ı X2r̂). (27)

This expression shows that in addition to the multipolarity phase factor already
imposed into the pairing field κ(r, z, ϕ), the pair current is intrinsically complex:
while the real part of the amplitude, which could be regarded as the “observable”
current, is parallel to the vortex field, there appears a divergent contribution in the
radial direction. Before analyzing further the consequences of this imaginary term, we
note that in practice, one may bypass the solution of the coupled system (25) and (26)
resorting to the quantities jκ± = jκx ± ıjκy . Equations (18) and (19) decouple as

Hjκ± = ±ı α̃e±ıϕ (28)

which is solved by

jκ± = ±ı A±eı(2l ± 1)ϕ (29)

with real A± that satisfy

[
H + h̄2(2l ± 1)2

4mr2

]
A± = α. (30)

From (29) we can reconstruct the x, y-components as

jκx = [− (A+ + A−) sin ϕ + ı (A+ − A−) cos ϕ
]

eı2lϕ, (31)

jκy = [
(A+ + A−) cos ϕ + ı (A+ − A−) sin ϕ

]
eı2lϕ (32)

from which we recognize the relations X1 = A+ + A− and X2 = A+ − A−.

4 Numerical Illustrations

We now discuss some typical current profiles computed with Eqs. (30) to (31). Plots
for the real and imaginary parts of the pair current are respectively depicted in the
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Fig. 4 Plots of the pair current on the (x, y) plane for angular momentum l = 1. The background corresponds
to contours of the pairing gap Δ. Left panel real part. Right panel imaginary part (Color figure online)
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Fig. 5 Same as Fig. 4 for l = 2 (Color figure online)

left and right panels of Figs. 4 and 5, in correspondence with Figs. 1 and 2. The ϕ-
dependence of both the real and imaginary components is due to the admixture with
the multipolar phase factor and the increasing complexity of the patterns in Fig. 5
reveals the magnitude of the angular momentum. It is interesting as well to consider
the relative magnitudes of the currents. This is seen in Fig. 6, where we can appreciate
that the value of the imaginary part of jκ is comparable with the original particle
current.

Moreover, as the imposed vs is increased, the particle current diminishes since the
gap is more depleted and therefore fewer particles participate. This is seen in the solid
line of the bottom panel in Fig. 6 as compared to the upper panel.

We note here that in the stationary regime, according to (27), Eq. (6) becomes

0 = ρ

m
∇μ + 4g

h̄
κ X2r̂ (33)
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Fig. 6 Modulus of the particle current together with the real and imaginary part of the pair current (removing
the phase factor) as functions of the distance to the trap center. Upper panel l = 1; lower panel l = 2 (Color
figure online)

which expresses the balance between the force proportional to ∇μ and the radial drift
introduced by the pair current. However, our scheme extracts the density profiles as
solutions of the LDA equation (12), which corresponds to disregarding X2 in (33);
this approach can be legitimated a posteriori by the fact that X2 is of order g. In fact,
the calculations illustrated in Fig. 6 show that the magnitude of X2 remains small
compared to the particle current, even for not too low values of the scattering length.
Consequently, a perturbation approach permits to estimate the density change relative
to the zero-order profiles obtained within STF, by setting ρc = ρ0 +δρ and linearizing
Eq. (33). We can visualize the relative size of this correction in Fig. 7, that shows
that this correction is practically vanishing for weakly interacting systems as seen in
the case a = −30 nm. The density shift for a = −114 nm can reach a 3 % near
the maximum of the dipolar configuration, and becomes stronger for the quadrupole
profile. For illustrative purposes we have also included the result for the largest |a|
considered, where the corrections can be as large as 25 % at the trap center for the
quadrupole configuration. This confirms the expectation that the perturbative approach
become less reliable for large couplings when also the mean-field approximation
involved in the fluiddynamics starts to be inaccurate. It is worthwhile remarking that
the calculation is more demanding for larger l and/or a.

We also mention that it is possible to define the pair velocity vκ by the relation
jκ = κvκ . Since the ϕ-dependence of κ(r, z, ϕ) is given by the same multipolarity
phase factor, the latter is not present in the pair velocity whose form is

vκ = 1

κ(r, z)
(X1ϕ̂ + ı X2r̂). (34)
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Fig. 7 Original density profile ρ0 (solid lines) and perturbed one ρc (dashed lines) in the presence of a
dipole and a quadrupole vortex for a = −114 and −140 nm, and of a dipole for a = −30 nm. The inset
shows the correction δρ = ρc − ρ for the case a = −30 nm (Color figure online)
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Fig. 8 Same as Fig. 4 for the pair velocity in Eq. (34) (Color figure online)

The pair velocity is illustrated in Figs. 8 and 9 for the dipolar and quadrupolar
flows, respectively. The suppression of the phase factor leaves us with a pristine radial
drift in the imaginary part, to be contrasted with the angle-dependent pair current in
Figs. 4 and 5. Taking advantage of the disappearance of the phase factor, the dynamical
equation (6) can be written as

∂j
∂t

= − ρ

m
∇μ − 4g|κ|2

h̄
Im(vκ). (35)

123

Author's personal copy



J Low Temp Phys

−5 0 5

−5

0

5

−5 0 5

Fig. 9 Same as Fig. 5 for the pair velocity (Color figure online)

Thus, while the real part of the pair velocity simply scales with the particle velocity
field, its imaginary term is the source of the additional radial force acting on the particle
current that, in a time-dependent scheme, may provide an radial destabilizing drift on
the vortex motion. In other words, the solution found by neglecting this imaginary
part in Eq. (33) is not a rigorous stationary solution, since even a drift of order g2 in
a weakly interacting system causes it to move radially towards the periphery of the
system. We can show that an exact stationary state with a particle current j that includes
a radial component may exist; in fact, the treatment in Sect. 3 holds in such a case with
a complex amplitude A±. More importantly, to compute the exact stationary solution
one needs to solve the coupled equations (5)–(10) at once, with a particle velocity
profile distorted with respect to Eq. (11) as an outcome of a much more demanding
numerical calculation, that resigns the advantages of the much simpler STF scheme.

5 Conclusions

Fermion fluiddynamics allows one to introduce aspects of the internal structure and
motion of pairs as macroscopic fields. This is an outcome of our underlying philosophy
that, seeking a fluid description in terms of fields, pursues the quantum nature of the
system to a larger extent by introducing gradients in the form of first and second
moments of the pair density, in addition to those of the particle density intrinsic to
normal fluid hydrodynamics. As a consequence any macroscopic particle current gives
rise to a pair current, which in turn contributes to the generation of particle and pair
kinetic energy densities. This occurs even in the stationary regime with impressed
vorticity, where we can explicitly compute the complex pair current employing zero-
order profiles for the particle and pair densities. For this sake, we extended the local
density approximation employed in previous versions of FD, to take into account the
presence of the superfluid velocity of an impressed vortex in the calculation of both
particle density and current profiles. We show that even for not too weak interaction
strengths, the imaginary part of the pair current can be regarded as a perturbation on
the local density and pair density; however, the ensuing modifications in the vortex
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dynamics may include destabilization of the stationary regime due to the appearance
of a radial drift.

Experiments with trapped fermions systems along the BCS–BEC crossover, see
e.g. [4,33], demonstrated the existence of vortex lattices both on the BEC and on the
BCS side of the resonance. The latter are unstable and researchers have been able
to measure the lifetime of the array, and to examine quantitatively its dependence
with the intensity of the resonance field. An important speculation was put forward
by the authors of Ref. [4]: the observed decrease in lifetime as a function of the
magnetic field close to resonance could be traced to coupling of the motion of the
loosely bound pairs to their internal motion. We believe that our theory supports this
speculation, since we are providing a formal description of one such coupling. As the
pair current is essentially the gradient of the pair density, which decreases towards the
periphery of the cloud, the real part of the current is, to some extent, an indication of
the tendency of the pairs to decouple locally; in this context, the additional force in
the particle current gives, in a local description, a drift towards those trap regions of
reduced number of pairs where vorticity cannot be supported. This effect is far from
trivial, since such a dragging force is not contemplated in the traditional superfluid
hydrodynamics.

Another possibility to extract some information about the existence of the drag-
ging force can be traced to the so-called universal character—i.e., independent of
statistics—of vortex formation and localization reported in Refs. [35,36]. From our
viewpoint, since the pair current is intrinsic to fermion statistics, the evolution pat-
tern of the released fermion and boson clouds containing vortex lattices of the
same size, built under similar conditions, should exhibit differences in their life-
times. Experiments along this line, exploring the evolution of the respective par-
ticle densities and vortex lattices in a ballistic expansion, or even in situ, could
give indications of the existence of this radial force. In any case, one should keep
in mind that the present—simplified—theory applies to a single vortex localized
at the trap center, while both in actual experiments [4,33] and theoretical predic-
tions [34] vortices appear in lattices, that evolve as the trap is released and the fermi-
ons are driven into a resonant regime from the BCS to the BEC phase [33]. Con-
sequently, the effects here predicted may be enhanced in actual experiments where
many vortices are involved, and hence our study can be useful as a starting point;
possible initial approaches for theoretical developments that could inspire future
experiments, could be to consider two singly quantized vortices in vortex–vortex or
vortex–antivortex configurations, as it has been investigated in the case of trapped
bosons.

In the present stage, the relation of the pair current to the orbital current of paired
fermions remains an open issue. It is worthwhile recalling that the microscopic descrip-
tion of the pair current in terms of the standard Bogoliubov-de-Gennes transformation
permits to view this macroscopic field as an average of particle velocities weighted
with the pair density, rather than with the particle density [19]. In this respect the pair
current cannot be related to the intrinsic angular momentum density in an obvious
manner. Its existence may show up in the more strongly interacting systems through a
moderate flattening of the peak of the equilibrium density patterns, as well as in vortex
dynamics.
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Appendix: The Homogeneous Gas with a Superfluid Velocity

Following [31] we calculate the properties of the homogeneous gas, in particular the
particle density, particle current, kinetic energy and all other equilibrium quantities in
the presence of a superfluid velocity vs.

From the BCS equations, the quasiparticle energy spectrum in the case of a uniform
superflow for μ̃ = μ − gρ/2 is given by

Ek = h̄2

m
k · q +

√
Δ2 +

(
εk + h̄2q2

2m

)2

, (36)

with the superfluid velocity vs = h̄q/m, εk = h̄2k2/2m−μ̃, and Δ the gap amplitude.
This expression arises from the fact that the BCS amplitudes uk and vk acquire respec-
tive phases e−ıq·r and eıq·r in order to account for the phase of the field operators. The
BCS procedure then gives

|uk|2 = (Ek + εk−q)2

Δ2 + (Ek + εk−q)2 ,

|vk|2 = Δ2

Δ2 + (Ek + εk−q)2 (37)

and the regularized gap equation reads [30]

1 = −g

2

∫ [
ukvk

Δ
(1 − 2Θ(−Ek)) − 1

h̄2k2/m

]
d3k

(2π)3 , (38)

where Θ is the Heaviside function. For each value of q, we can then compute both the
particle density and the particle current as

ρ =
∫ [

|vk|2 + Θ(−Ek)
(
|uk|2 − |vk|2

)] d3k

(2π)3 , (39)

j = h̄q
m

ρ + h̄q
m

∫
k · q
q2

[(
|uk|2 + |vk|2

)
Θ(−Ek) − |vk|2

] d3k

(2π)3 , (40)

and the Fermi energy εF appearing in Eq. (12) is evaluated in terms of intermediate
derivatives and current quantities as

εF = 3

5
μ̃ + ∂μ̃

∂ρ

(
3

5
ρ − 2

5

Δ2

gμ̃

3gρ − 2μ̃

Δ22μ̃ + 3g/ρ

)
. (41)
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In the present version of the local density approximations, we first solve the coupled
integral Eqs. (38) and (39) for given ρ and q and obtain the gap Δ and μ. Once this is
done we compute j and εF from Eqs. (40) and (41), that replace the integral equations
for gap and particle density in Ref. [30]. While in this reference the integrals over
momentum variables are closed in terms of Legendre functions, the angular domains
in this case set borders for the integration domain and prevent analytical results; in
other words, the integrals in (37) and (38) must be performed numerically for each
selection of parameters.
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