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1  Introduction

Generally, quantum chemical calculations of electronic 
structure take the number of electrons in the molecule as 
a fixed parameter which states for a closed system [1, 2], 
i.e., for its neutral state of N electrons or for any of their 
ionic configurations. This is usually the correct approach 
for a molecule in gas phase but not within the framework 
of a surrounding environment which may donate or accept 
electrons as for instance in the treatment of solvation phe-
nomena, surface chemistry, or enzyme mechanisms, among 
others. Therefore, this scenario induces to describe these 
problems by means of fragments or physical domains 
as moieties like individual or group of atoms within the 
molecular structure. Thus, to associate non-integer charges 
to them is the main key to the understanding at atomic scale 
of complex processes of electron distributions undergo-
ing charge flux transfer among subsystems of atoms and 
molecules under the influence of reactive interactions and/
or external perturbations, conformational changes or inter-
actions, related to chemical reactivity [3–5]. For such a 
goal, the fundamental magnitudes to be described are the 
energy, the electron density and their derivatives [3, 4, 6]. 
Therefore, an accurate quantum treatment which attempts 
to reach a complete and rigorous description of the elec-
tron distribution and of ulterior way the determination of 
the physicochemical properties, needs a precise definition 
of the system, its energy and state. These problems merit 
the introduction of the Atoms in Molecules (AIM) concept 
and the energy and state dependence with the number of 
particles in the system.

It has been a common trend in the literature to assume 
under certain success that the quadratic electrostatic 
interactions constitute a suitable approach of the energy 
dependence on fractional charge and independent of the 
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strength scale of the interaction [6–10]. Nevertheless, 
the inadequacy of this model has been noted, and a linear 
dependence within the density functional theory (DFT) 
and also for the state function approach was proposed 
as an attempt to obtain the right energy dependence 
for non-integral electron number N  and its differenti-
ability [4, 5, 11]. Recently, a general proof for that pro-
posal going beyond the DFT and the pure state function 
approaches has been presented [12] under the hypoth-
esis of the ground state energy convexity for atomic 
and molecular systems driven by Coulombic interac-
tions [4, 5, 12, 13]. To understand the mechanism of 
charge transfer mentioned above, the fragments within 
the molecular structure or even a whole molecular sys-
tem may be interpreted as open systems that exchange 
electrons and energy between them and/or with a reser-
voir [4, 14, 15]. Therefore, it follows that a non-integer 
electron number may arise as a time average caused by 
the fluctuating number of particles and thus the open 
system need to be described by a statistical mixture or 
ensemble of states with different number of particles [4, 
6, 8, 12–14]. Regarding the dependence of each magni-
tude, i.e., energy and/or the density, with the number of 
particles, two kinds of descriptors arise from them. The 
zero-order descriptors are those which are integrated 
functions of the magnitudes itself such as those describ-
ing the electronic distribution from electron populations 
as atomic charges, covalent bond orders, valencies, free 
valencies among others [16, 17] or local indicators as 
those coming from the topological approach like criti-
cal points of the density, their ellipticity or the Lapla-
cian functions of the density, among others [18, 19]. 
The other type are the so-called higher-order descrip-
tors depending on the successive derivatives of these 
magnitudes as for instance, the chemical potential, the 
hardness, Fukui functions, etc. [3]. The behavior of the 
energy, density or other properties for ensemble [4, 12, 
13] or even for pure states distributions [20, 21] is of 
fundamental importance for the latter type because of 
the discontinuities they undergo at integer numbers [4]. 
So that the system definition is supported on the AIM 
notion giving rise to atomistic models for molecules [18, 
22, 23] which permits to determine the concept of net 
charge on an atom as the key variable for determining 
its energy [4, 9, 12]. The energy and the density matrices 
(DM) are piecewise-continuous linear functions of the 
number of particles N  [4, 12], and consequently, its first 
derivatives are N -staircase functions being undefined at 
the integers and constant in between [24]. So that, sec-
ond derivatives vanish in between and are not defined 
at the integers. Hence, descriptors like hardness vanish 
[3]. This dependence has contradictory consequences 
as for instance, the violation of the electronegativity 

equalization principle [3, 6] closely related to reactivi-
ties and hardness [3].

In Ref. [24], it is clearly noted that the formal N  piece-
wise-continuous linear dependence of the physical magni-
tudes with the number of particles contains the essence of 
the model for non-integer electron systems [4, 12]. Thus, 
admitting the onset of a more accurate reactivity theory 
going beyond the mentioned inconsistencies, it must be 
recognized that reactivity descriptors are chemical environ-
ment dependent and may not be defined for isolated spe-
cies without considering a fragment and/or reservoir inter-
action, i.e., generally, system–reservoir (S–R) interactions 
from which the species exchanges or transfers electrons 
[24]. A formal approach which addresses the problem and 
proposed a formal solution at an ensemble level can found 
in Ref. [25].

The objective of this work is to introduce some recent 
rigorous developments about the structure of the density 
matrices (DM), i.e., the state of the system as an ensem-
ble of pure states of different number of fixed particles M 
commonly called grand-canonical ensemble (GC), the cal-
culation of the energy under the hypothesis of its convex-
ity for ground state isolated molecular systems and their 
extensions to systems under the influence of an environ-
ment interaction, i.e., a fragment or a reservoir [14]. In this 
way, we attempt to obtain a solution based on the interac-
tion between the subsystems (S–R) inducing a coherent 
DM distribution which overcomes the inconsistencies men-
tioned above. Hence, the solution lies within the formal 
structure of reactivity theory, and the second-type chemical 
descriptors (second derivatives) are obtained in the natural 
scenario of the GC [12, 13] and the chemical context in 
which the species exchanges or transfers electrons.

Finally, the marginal distributions of the GC DMs, i.e., 
p-RDMs of the non-coherent (isolated systems) [13] dis-
tributions of the molecular open systems, are calculated 
by means of the contraction mappings [13, 26] in order to 
evaluate the properties as averages of the associated quan-
tum observable. As an example, an explicit derivation and 
generalization of the Fukui functions are shown as a first-
order descriptor of the density from this formalism without 
using the finite difference methods. The article is organized 
as follows. Section 2 presents the theoretical aspects intro-
ducing the definition, characterization and features of the 
systems, the energy determination, their states (DM) and 
marginal distributions, i.e., the reduced density matrices 
p-RDMs in the GC ensemble. Also in this section, some 
important properties for the open systems are sketched. In 
Sect.  3, the chemical descriptors of interest and the solu-
tion for the quantum state of the system in the framework 
of the S–R interaction are presented to show the machin-
ery in action. A final Section is dedicated to the concluding 
remarks.
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2 � Theoretical background

2.1 � The system

The dissociation process of a molecule leads to sepa-
rated atoms, i.e., physically isolated, which are neutral. 
This is an experimentally very well-supported result 
because the greatest electron affinity (EA) of all the 
neutral atoms is smaller than the least ionization poten-
tial (IP) [5, 6]. The inverse process of the dissociation is 
the formation of a stable structure by bonding interac-
tions where their densities distort from the isolated ones 
and then polarize to produce a charge transfer as is also 
very well known by experimentalists [27]. Consequently, 
they become fractionally charged to form covalent, ionic 
or any other type of distribution [18, 19] regarding the 
linked atoms as open systems free to exchange electrons 
between them [4, 5] and no longer as isolated. Therefore, 
the notion of an atom in a molecule (AIM) as a physical 
domain within the physical space is needed for a theoreti-
cal determination of the transferred fraction of charge. 
For practical implementations, each physical magnitude 
may be decomposed for atoms or a group of them like 
moieties that can be for instance a functional group or 
a simple atom. Two equivalent methods but of different 
nature may be considered, the topological ones based 
on the physical partition of the real space by means of 
a rigorous methodology like the Bader’s AIM [16–18, 
28–30] or those supported by empirical parameters as 
the “fuzzy” atoms [22, 31, 32] while others, the fragment 
methods (FM) which are not of topological nature [23]. 
These ideas introduce the concept we will have in mind 
when we invoke the treatment of a non-integer domain 
population, i.e., they house a number of particles N  with 
N ∈ R . In general, these systems can be considered a 
subsystem within a molecular framework or a whole mol-
ecule in contact with an electron reservoir so that both 
schemes admit the electron exchange [15].

2.2 � Energy and states

To describe these systems, the physical extension of the 
ground energy level EN

0
 where N  is the number of parti-

cles with N ∈ R, as well as their states as a function of a 
continuous number of particles is needed. The most general 
description of the state of a quantum system is the density 
matrix D [26, 33]. It describes the state of an isolated sys-
tem as a non-coherent convex sum of the complete set of 
all accessible M-electron pure state density matrices [26, 
33, 34]

(1)
MD�M

k
= |�M

k ���M
k |

in the mixture, where |�M
k > is the kth quantum state 

function in the antisymmetric M-electron Hilbert space 
FM (Hamiltonian eigenstates) [34, 35]. Therefore, D is 
expressed by [34, 35]

where ω�M
k

 are the statistical weights, i.e., the probability 
of occurrence of the pure state |�M

k � in the mixture. The 
carrier space for this type of description is the entire Fock 
space F =

⊕∞
M=0 FM, where the symbol 

⊕

 indicates direct 
sum [35]. These states admit particle number fluctuation, 
and the number of particles is an average so that the sys-
tem may posses a non-integer number of particles. We will 
refer to this state as the grand-canonical distribution (GC). 
The background of the GC formalism ideas to be used for 
systems with a few number of particles, like a molecule or 
an atom, is supported by the statistical interpretation of the 
DM and the existence of some physical criteria to determine 
the weights for the distribution, i.e., maximum entropy in 
statistical physics [6] or minimum energy in ground states 
of systems with a non-integer number of particles as shown 
in Ref. [12] on the mathematical basis of a finite subspace 
of the Fock space [36]. Hence, this representation admits 
the different number of particles M of the system, and 
therefore, their populations ω�M

k
 are the variables defining 

any state DM [12, 13]. Note that it stands for a generaliza-
tion of the PPLB [4] conjecture. D is an Hermitian, posi-
tive semi-definite (all eigenvalues are nonnegative or van-
ishing), bounded (the module of its elements are bounded) 
and finite trace (sum of the diagonal elements) matrix, and 
because of its probabilistic interpretation it may be normal-
ized to unity, i.e., Tr(D) =

∑

M

∑

�M
k

w�M
k
= 1 [33, 34]. 

Let us mention that the well-known canonical distribution 
(C, all states in the mixture posses the same number of par-
ticles N), expressed by ND =

∑

�N
k
ω�N

k
|�N

k ���
N
k |, and 

the microcanonical distribution (MC, all weights vanish 
except one), i.e., pure states ND�N

k
= |�N

k ���
N
k |, are par-

ticular cases of the GC distribution.
The energy E is the average of the Hamiltonian over the 

distribution D and is defined by [33, 34]

where H is the system Hamiltonian operator, and Tr means 
the mathematical trace operation. Let MD0 be a non-degen-
erate or removable degenerate ground pure state DM [37, 
38] of the M-particle system and its associated energy 
given by

(2)

D =
∑

M

∑

�M

k

ω�M

k

|�M

k
���M

k
|;

∑

M

∑

�M

k

ω�M

k

= 1; ω�M

k

≥ 0

(3)
E = Tr(D H) =

∑

M

∑

�M
k

ω�M
k
Tr

(

MD�M
k
H

)
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Introducing the notation, �M = E
M−1
0

− EM
0

 as the energy 
difference convenient interval, i.e., the first ionization 
potential of the system, and the assumption that for M > 1 , 
the �M > �M+1 > 0 inequality holds [4–6, 24], then 
it results that the sequence 

{

EM
0

}

M∈N
 verifies the above 

inequality for arbitrary N ,M ∈ N numbers, such that for 
M �= N ,N + 1, it follows

and the equality holds only for M = N ,N + 1 [12]. Equa-
tion (5) stands for the mathematical expression of the 
energy convexity for the ground state energies with respect 
to the number of particles. Let us introduce explicitly the 
non-integer number of electrons in the systems, N = N + ν 
with N ∈ N and ν ∈ (0, 1), i.e., between the consecutive 
integer numbers, N and N +  1, to extend the dependence 
of the energy between these numbers. The use of the varia-
tional principle for the energy in Eq. (3) with the statistical 
weights {ω�M

k
} as variational parameters and the constrain 

of the number of particles N  leads to the solution for this 
problem in which D is unique and expressed by [12]

Consequently, the energy of the system with non-integer 
number of particles reads as [12]

which is the rigorous derivation of the PPLB proposal 
[4] and consequently for the corresponding DM structure 
of Eq. (6). Therefore, it follows that Eqs. (6) and (7) are 
valid for any type of state function, i.e., particle independ-
ent or correlated models [39]. At this stage, it is important 
to mention that all results are also valid for N − ν, so we 
only refer to the N + ν case unless necessary for a clarify-
ing need.

The fundamental chemical concepts derived from the 
physical properties and the chemical descriptors of a sys-
tem are the summary of the physical information contained 
in the p-particle reduced density matrices pD (p-RDM) of 
an M-electron molecular system (p < M) which are derived 
by contraction operations from the DM and represent its 
marginal distributions [26]. Any property associated with a 
physical magnitude A is the average of the corresponding 
quantum observable A expressed by

In general, the operators A are not a function of the coor-
dinates of all particles in the system but only of a few of 

(4)E
M
0 = Tr

(

MD0 H

)

(5)E
M
0 ≥ (N + 1−M)EN

0 + (M − N)E
N+1
0

(6)D = (1− ν) ND0 + ν N+1D0

(7)E
N+ν
0

= (1− ν)EN
0 + νEN+1

0
.

(8)�A� = Tr(DA)

them, a subset p. They connect p-particles and are called 
p-particle operators noted by pA, as for instance kinetic, 
nucleus–electron interaction potential or dipolar moment 
are 1-particle operators, 1A; electron–electron interaction 
potential are 2-particle operators, 2A and so on [26, 40]. So 
that, the averages become [26, 40]

As said above, pD are the marginal distributions of the 
whole distribution D. To obtain them, the contraction 
mapping (CM) operation may be performed on D in order 
to reduce the number of variables from a fixed M num-
ber of particles to p, i.e., the order of contraction [26, 41]. 
In order to define this operation for the GC distribution 
which has no fixed number of particles, let us first sketch 
it for the MC and C distributions. For this goal, we intro-
duce the p-RDMs in terms of the p-order replacement 
operators pE [42] in the second quantization formalism 
[43]

in which i, j, k, l, . . . indices denote spin orbitals of an 
orthogonal basis set, and c+, c stand for the usual creation 
and annihilation fermion operators, respectively [43]. For a 
pure state MD, the CM becomes defined by Eq. (11) as [26, 
38]

The p-RDMs are hermitian, positive semi-definite and 
bounded [26] and obey the essential property of repre-
sentability which states for the constraints that a given 
p-RDM must fulfill to be derivable from a DM [26, 44]. 
For both C and MC distributions in which the number of 
particles is fixed for all states in the distribution, any two 
of the reduced density matrices, say qD and pD (q < p), are 
related by a contraction operation [26, 41]. Equation (11) 
can be expressed in a more compact equivalent form by

where CM denoted by the symbol L̂Mp  is applied to MD and 
thus the p-RDM arise for both C or MC states [26, 41]. The 
binomial symbol 

(

M
p

)

 is the Coleman’s normalization factor 
or the number of the composed p-particles or p-ons [26]; 
p = 1, 2, . . . stand for the one-electron reduced density 
matrix 1D of M particles; the two-electron reduced density 
matrix 2D of 

(

M
2

)

 pairs, and so on. More explicitly, it reads,

(9)�pA� = Tr(pD pA)

(10)pE
i1,i2,...,ip
j1,j2,...,jp

= c+i1 c
+
i2
. . . c+ip cjp . . . cj2cj1

(11)pD
i1,i2,...,ip
j1,j2,...,jp

= Tr(MD pE
i1,i2,...,ip
j1,j2,...,jp

)

(12)pD =

(

M

p

)

L̂Mp {MD}

(13)
pD

i1,i2,...,ip
j1,j2,...,jp

=
∑

�M
k

ω�M
k

pD
i1,i2,...,ip
j1,j2,...,jp

(�M
k )
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where pD
i1,i2,...,ip
j1,j2,...,jp

(�M
k ) =

(

M
p

)

L̂Mp {MD�M
k
} stands for the 

p-RDM associated with the |�M
k � kth accessible M-particle 

pure state of the system. The physical meaning of this oper-
ation is nothing but an averaging process over the remain-
ing M − p variables [45].

As stated above, any physical system featured by a 
non-integer number of particles N  cannot be described 
by any other state than the GC. Therefore, a CM to take 
into account properly the M-particle different states in D 
defined by Eq. (2) in Fock space to calculate the p-RDMs 
marginal distributions may be introduced. This expression 
has been obtained recently [13] as

Equation (14) is the definition for the GC CM L̂p and per-
mits to note that it involves several pure states MD�M

k
 with 

the condition that the number of particles was M ≥ p, i.e., 
the order of contraction p must be less than or equal to M 
and all states in the mixture not lying in this interval, i.e., 
M < p, will not contribute to the GC distribution, while for 
M = p, no action is needed [13]. These mathematical con-
ditions are expressed by

and

with I  and O, the identity and null superoperators, respec-
tively [13]. These requirements complete the definition for 
the CM in Fock space, and the p-RDMs may be expressed 
by the expansion,

It is worthy to note that the trace operation calculated by 
Tr(pD) =

∑

{�M
k ,M≥p} ω�M

k

(

M
p

)

= �
(

M
p

)

� is the num-
ber of p-ons number in the system as an average which 
is noted by the symbol 〈. . . 〉. In particular, for p  =  1, 
Tr
(

1D
)

=
∑

{�M
k ,M≥1} ω�M

k
M = �M�, is the num-

ber of particles expressed by the non-integer number 
�M� = N + ν mentioned above.

To finish this section, let us mention some important 
consequences coming from the marginal distributions in 
the GC structure of the density matrices which we will not 
treat in this work. As noted in this section, within the C 
and MC states, any qD may be obtained from other matrix 
pD with q < p by a contraction operation [26]. The same 

(14)
pD = L̂p{D} =

∑

{�M
k ,M≥p}

ω�M
k

(

M

p

)

L̂Mp {MD�M
k
}

L̂Mp {MD�M
k
} = O M < p

L̂pp{
pD�

p
k
} = I

pD�
p
k
= pD�

p
k

(15)
pD =

∑

{�M
k ,M≥p}

ω�M
k

pD�M
k

is not true within the GC distribution [cf. Eq. (2)] with-
out losing some information and hence any matrix may 
be only obtained directly by contraction of D [13]. Nev-
ertheless, for the case of our interest in which the energy 
has a convex structure [cf. Eq. (6)], no information is lost, 
except for the case in which q = N and p = N + 1 [13]. 
The other consequence we want to mention is that for 
a closed atomic and molecular systems, the energy is a 
functional of the second-order reduced density matrix 
as EN

0
= Tr

(

2DN
o
2KN

)

, where 2KN stands for the Cole-
man reduced Hamiltonian, 2DN

o  the ground state second-
order reduced density matrix with a supra-index N which 
indicates that the 2-RDM comes from contraction of a 
N-particle DM [26, 38]. In contrast, for an open atomic or 
molecular system, the energy cannot be expressed simi-
larly as a functional of the corresponding 2DN+ν

o  but as 
E
N+ν
0

= νTr
(

2DN+1
o

2KN+1

)

+ (1− ν) Tr
(

2DN
o

2KN

)

  , 
namely the energy is a functional F of 2DN

o ,
2 DN+1

o  
and the fractional population number ν, i.e., 
E
N+ν
0

= F(2DN+1
o , 2DN

o , ν) [13, 46].

3 � Chemical descriptors: system–environment 
interactions and derivative discontinuities

The higher chemical descriptors are derivatives of the 
energy or of the electron density with respect of the number 
of particles N  [3]. They are related to the concept of reac-
tivity interpreted as a response function to proper chemi-
cal interactions [24]. Joint together with the zero-order 
descriptors, i.e., energy and functions of the density itself, 
provides the complete and detailed description of a molec-
ular system and its intra- (with a solvent, a reservoir, etc.) 
and inner-interactions (between different fragments in the 
molecule). So that it imposes the knowledge of these mag-
nitudes, EN

0
 and ρN  (or more generally the associated DM 

from which ρN  is obtained), dependence with N  [5, 12, 
13]. The common use of the method of finite differences 
with respect to integer number of the particles of isolated 
species to evaluate the derivatives [3] neglects their values 
at non-integer numbers [24] and consequently the true elec-
tron exchange between molecular subsystems which con-
stitutes the onset of chemical behavior.

For ground states, the dependence of the energy EN
0

 
and the DMs is a piecewise-continuous linear functions of 
N  and only the closed systems with integers N and N ± 1 
enter in this ensemble as stated by Eqs. (6) and (7), respec-
tively [12]. Hence, all ground state properties then have 
similar dependence, and the first derivatives of the energy 
and the density are staircase functions of N , undefined at 
the integers and constant in between [24] leading to the 
second derivatives to vanish in between integers [4, 24]. 
The consequences of this dependence are nonphysical, 



	 Theor Chem Acc  (2015) 134:138 

1 3

 138   Page 6 of 9

for example, the electronegativity equalization principle 
and the electronic principles based on hardness are sense-
less because they lose their foundations [3, 4, 24]. Let us 
show such dependence and make explicit the inconsisten-
cies. The chemical potential is defined at constant external 
potential υ by [3, 6]

which by explicit use of the ground state energy expression 
for open systems for both signs, i.e., ±ν in Eq. (7) [4, 12]

with EN±ν
0

, EN
0

 and EN±1
0

 the energy of the systems with 
non-integer N ± ν, N and N ± 1 number of electrons, 
respectively; then regarding ∂N = ±∂ν(N = constant), 
the derivative is

yielding the two branches [4]

with EA and IP the electron affinity and ionization poten-
tial energies, respectively [1, 2]. Hence, since both energies 
are different, the discontinuity becomes explicit. The other 
important first derivative is that of the electron density ρ(r) 
at point r in space, at constant external field υ which is also 
expressed into two branches by

which stand for the well-known Fukui functions [3, 6, 47, 
48]. The two derivatives appear by considering the cases 
in which N  increases/decreases from N to N ± ν, respec-
tively. This expression may be generalized to matrix form 
taking into account that ρ(r) is the diagonal element of 1D 
in the coordinate representation [26]. Therefore, applica-
tion of the CM of Eq. (14) to D matrix of Eq. (6) and intro-
ducing the expression for 1D

N±ν, where the supra-index 
indicates the matrix comes from the state of N±ν electrons, 
it results

It establishes a rigorous justification to the forms used to 
deal with accurate Fukui functions [3]. It is worthy to note 

(16)µ =

(

∂ENo

∂N

)

υ

(17)E
N±ν
0

= (1− ν)EN
0 + νEN±1

0
.

(18)µ± = ±

(

∂ENo

∂ν

)

υ

= ±
(

E
N±1
0

− E
N
0

)

(19)
µ+ = E

N+1
0

− E
N
0 = −EA, µ− = E

N
0 − E

N−1
0

= −IP

(20)f±(r) =

(

∂ρ(r)

∂N

)±

υ

= ±

(

∂ρ(r)

∂ν

)±

υ

(21)F±(r|r′) = ±
(

1D
N±1

(r|r′) − 1D
N
(r|r′)

)

Ref. [49] as a previous GC DFT formulation of the prob-
lem coincident with the determination performed by finite 
differences. For a complete description and properties of a 
matrix formulation of these magnitudes, see Refs. [50, 51]. 
Nevertheless, this magnitude has a different physical mean-
ing than those coming from the energy, and it will not be 
subject of the present work.

The example of the chemical potential shows the nature 
of the discontinuities caused by the lack of terms depend-
ing on the charge transferred coupling the states of differ-
ent number of particles. Hence, it does not enable the onset 
of nonvanishing higher-order derivatives. Let us deal with 
this lacking information and relate it to the interaction of 
the subsystem (fragment) within a molecular frame and/
or the interaction of the whole molecule with an environ-
ment (reservoir) which permits electron exchange and so 
charge transfer. Some attempts based in the treatment of 
the energy dependence from the point of view of the state 
function approach have been reported in order to overcome 
these discontinuities and thus incorporate the information 
into the descriptors [5, 15, 52]. Nevertheless, as the theory 
indicates, a general statistical formulation is needed at the 
GC level of description to consider the interaction of the 
system with the environment, i.e., other subsystem and/or 
reservoir (S–R) interactions. Early attempts to implement 
such formulation within the DFT can be found in Ref. [25].

The remaining part of this report will be devoted to this 
topic in order to introduce such interactions within the DM 
structure [4, 12, 13] and thus calculate the expressions for 
the descriptors to shed some light into the essence of these 
reactivity indices.

In the previous section, it has been shown that the con-
vex structure of D and the energy for ground states evolve 
into two branches, each one as a two-state level model of N 
and N ± 1 Hilbert spaces as expressed in Eqs. (6) and (7) 
[4, 12, 13]. The corresponding pure ground state DMs in 
Dirac notation reads,

and

respectively. The interaction of the system (subsystem) 
with the environment may be described by means of a 
potential Uν which may have diverse nature regarding the 
type of interaction we are dealing with and depends on 
the electron fraction ν as indicated by the subscript. For 
instance, such potential may be considered as describing 
the interaction between subsystem fragments within the 
Atoms in Molecules (AIM) framework [11] or fragment 
methods [53], reservoir interactions effects [34], the influ-
ence of a solvent field on molecular systems (liquid phase) 

ND0 = |�N
0 ���

N
0 |

N±1D0 = |�N±1
0

���N±1
0

|,
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[54, 55] or environmental effects [55] among others. There-
fore, the Hamiltonian in the adiabatic approximation [56] 
for each of the two branches,

can be expressed in matrix form as

where H0 represents the isolated system Hamiltonian 
whose spectra and eigenstates are noted in Eq. (23) by the 
energies EN

0
 and EN±1

0
, and |�N

0
� and |�N±1

0
� for the neu-

tral and the ionic states, respectively. H0 is diagonal at the 
basis set of its eigenstates as well as its density matrix D. 
The action of the interaction potential induces a new distri-
bution D̃ which may describe the open system and reflects 
the coupling between both states, that of N with those of 
N ± 1 [57, 58]. This equilibrium state may reach a perma-
nent regime of electron exchange, i.e., the rate of electron 
exchange is constant in time. Therefore, the density matrix 
D̃ may exhibit a coherent structure (nondiagonal elements 
or coherences are no vanishing) due to the action of the 
interaction potential Uν [34], so that it will be expressed by

where the first term stands for the isolated distribution of 
Eq. (6), i.e., corresponding to H0 [4, 12, 13], while the last 
two terms describe the coupling interaction of the |�N

0
� 

and |�N±1
0

� states. The coherences must obey the ine-
quality related to its diagonal elements (or populations), 
|D̃nm|

2 ≤ D̃nnD̃mm whose physical meaning is that there can 
be coherences only between states whose populations are 
not zero; in this case, 

∣

∣�±
ν

∣

∣

2
≤ (1− ν)ν and if ν = 1, 0, i.e., 

one of the states, that of N or N ± 1 respectively, has no 
populations. Thus, the coherence between them vanishes, 
so that �±

0
= 0 [59]. Then, the energy for the system inter-

acting with the environment using Eq. (3) with D̃ distribu-
tion is expressed by

where the symbol Re indicates the real part of the complex 
number U±

ν
∗
�±

ν . This term determines the interaction with 
the environment, and because the interaction potential must 
depend on the fraction ν to ensure the electron transfer, it 
introduces a ν-nonlinearity dependence for the energy and 
the DM. Thus, it enable us to perform the calculation of the 
chemical descriptors of arbitrary order avoiding the discon-
tinuity problem. To show the machinery in action, let us 
write the descriptors defined above in order to clarify these 
ideas. The chemical potential of Eq. (16) becomes

(22)H = H0 + Uν

(23)
H = E

N
0 |�

N
0 ���

N
0 | + E

N±1
0

|�N±1
0

���N±1
0

|

+ U
±
ν |�N

0 ���
N±1
0

| + U
±
ν

∗
|�N±1

0
���N

0 |

(24)D̃ = D + �±
ν |�N

0 ���
N±1
0

| + �±
ν

∗
|�N±1

0
���N

0 |

(25)Ẽ
N±ν
0

= Tr(HD̃) = E
N±ν
0

+ 2Re(U±
ν

∗
�±

ν )

and then it results

The second term of the r.h.s of Eq. (27) permits to avoid 
the chemical potential discontinuity [4, 24], and thus the 
equalization principle can be fulfilled [3]. To understand it, 
let us consider two fragments �A and �B within a molecu-
lar framework which at equilibrium must obey the condi-
tion µ̃+

�A
= µ̃−

�B
, i.e., the chemical potential of the donor 

fragment must be equal to that of the acceptor fragment; 
it is the second term of the r.h.s. of Eq. (27) which enables 
this condition. Hence, the hardness which vanishes iden-
tically because of the chemical potential discontinuity for 
an isolated system, i.e., without interaction with an envi-
ronment [24], becomes non-null due to the interaction and 
reads

showing the two signs as in the case of the chemical poten-
tial because of the openness of the systems.

4 � Discussion and concluding remarks

The GC distribution has been used here avoiding the con-
cept of temperature but explicitly based on the electronic 
information. This description has been recognized ade-
quate to introduce the S–R interactions on the descriptors 
and permits by the means of a charge-dependent interac-
tion potential to overcome the problem of the discontinui-
ties in the derivatives of the energy. This treatment recovers 
the piecewise dependence when the interaction vanishes, 
i.e., Uν → 0, as expected. This formulation, as has been 
pointed out, is more realistic than evaluating the descriptors 
in isolated systems by finite difference methods. In conclu-
sion, the GC distribution for open molecular domains ena-
bles to introduce statistical concepts to describe electron 
distributions in the molecular structure even they are few 
body systems.

It may be noted that for the present developments, the 
general structure of the DMs has been used, and hence, the 
results are valid at any level of approximation of the state 
functions, i.e., particle independent or correlated ones. Fur-
thermore, it depends only of the model used for system–
environment interaction.

(26)µ̃± =

(

∂ ẼN
0

∂N

)

υ

= ±

(

∂ ẼN±ν
0

∂ν

)

υ

(27)µ̃± = µ± ± 2Re

(

∂(U±
ν
∗
�±

ν )

∂ν

)

υ

(28)η̃± =
1

2

(

∂2ẼN
0

∂2N

)

υ

= ±Re

(

∂2(U±
ν
∗
�±

ν )

∂2ν

)

υ
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Several topics deserve our attention as natural continu-
ation of the present work to continue the understanding of 
the reactivity phenomena from a rigorous point of view and 
are being considered in our laboratory. Some of them are 
related to obtain an equation that preserves the constant 
rate of electron transfer between the open domains in the 
molecular structure and provides DM evolution within this 
context, the modeling of the interaction potential of differ-
ent nature and the contraction mappings in Fock space for 
coherent density matrices, among others.
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