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We have studied Markov processes on denumerable state space and continuous time. We found that all these
processes are connected via gauge transformations. We have used this result before as a method to resolve
equations, included the case in a previous work in which the sample space is time-dependent [Phys. Rev. E 90,
022125 (2014)]. We found a general solution through dilation of the state space, although the prior probability
distribution of the states defined in this new space takes smaller values with respect to that in the initial problem.
The gauge (local) group of dilations modifies the distribution on the dilated space to restore the original process.
In this work, we show how the Markov process in general could be linked via gauge (local) transformations, and
we present some illustrative examples for this result.
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I. INTRODUCTION

Continuous-time Markov processes are used to describe
a variety of stochastic complex processes. They have been
widely used in mathematical physics to describe the properties
of important models in equilibrium and nonequilibrium, such
as the Ising model [1].

Another important application is the use of continuous-time
Markov chains in queueing theory [2]. In the field of biology,
Markov chains are used to explain the properties of reaction
networks, chemical systems involving multiple reactions and
chemical species [3], and the kinetics of linear arrays of
enzymes [4].

In this work, we demonstrate how to connect a given
pair of Markov processes via gauge transformations. The link
between different processes is a mathematical observation that
enriches the description of the stochastic process. In addition,
in some cases this observation could become a useful tool
to study a particularly complex Markov problem using a
simpler auxiliary Markov process, and we propose an adequate
transformation to link both of them.

This approach was explored heuristically in our recent work
[5] as an alternative method for the resolution of Markov
process equations on denumerable state spaces and continuous
time. Nevertheless, in order to obtain a phenomenological
or approximate solution to a certain Markov process, some
knowledge of the system parameters must be obtained. This is
precisely the case in Ref. [5].

The structure of the paper is as follows: In Sec. II we
present a mathematical description of a general stochastic
system; Sec. III outlines the motivation of the problem; Sec. IV
contains the formal aspects of the equivalence of the process;
and finally the conclusions and final comments are presented
in Sec. V.

*mcaruso@ugr.es
†cecilia.jarne@unq.edu.ar

II. MARKOVIAN PROCESS IN A DENUMERABLE STATE
SPACE AND CONTINUOUS TIME

We start by reviewing the basics aspects of this class
of stochastic processes. Let us consider a stochastic system
described by a Markov process with a random variable x(t),
which takes values from the state space at the instant t ,

S = {xn : n ∈ ���}, (1)

where t represent a time variable, i.e., some parameter used to
describe the evolution of the process, which takes values from
a set T ⊆ R, and ��� is the countable set of labels for the states,
such that ��� ⊆ Z+

0 .
We defined the conditional probability to find the system in

the state xl , at the instant t , given that at that instant s was in
the state xk , denoted by

Plk(t,s) = P(x(t) = xl|x(s) = xk). (2)

We understand this conditional probability as a transitional
element between the states xk �−→ xl and with a temporal
evolution s �−→ t . These conditional probabilities describe the
time evolution of the stochastic system in the sense that they
allow us to connect any two ordered pairs (xk,s), (xl,t).

The time evolution of a Markov process is determined by
the knowledge of a prior probability distribution for each t ,
denoted by

pn(t) = P(x(t) = xn) (3)

for all (t,n) ∈ T × ���.
An equivalent way to describe this process is through an

initial value pn(0) and a conditional probability Pnm(t,s),
which represents the transition matrix elements of the states
xm �−→ xn. For each t the events are mutually exclusive, thus

pn(t) =
∑
m∈���

Pnm(t,s) pm(s). (4)
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FIG. 1. Diagram associated with the finite pure birth process with
the infinitesimal generator QQQ+.

Consequently, at the time t + ε the probability to find the
system in xn is given by the transition from xm at time t as

pn(t + ε) =
∑
m∈���

Pnm(t + ε,t) pm(t). (5)

After some elementary operations, we get

dtpn(t) =
∑
m∈���

Qnm(t) pm(t), (6)

where dt denotes the total time derivative, and Qnm(t) is given
by

Qnm(t) = ∂tPnm(t,s)|s=t , (7)

where Qnm(t) is called the infinitesimal generator.
Equation (6) is called the Kolmogorov equation, which is

the foundational work of Ref. [6]. Other authors later referred
to (6) as the forward Kolmogorov equation [7].

We defineϕϕϕ(t) as an |S|-tuple of the probability distribution
as ϕϕϕ(t) = ( p0(t),p1(t), . . . )ᵀ. In addition, we use a notation
for the cardinal number of a setSSS given by |SSS|, and ᵀ represents
the transposition operation.

The evolution equation for the process can be expressed in
matrix form as [8]

dtϕϕϕ(t) = QQQ(t) ϕϕϕ(t). (8)

In this way, we have a mathematical description of a Markov
process in terms of a set of prior probabilities {p0(t),p1(t), . . . }
and an infinitesimal generator QQQ(t).

III. MOTIVATION OF THE PROBLEM

In this section, we present a motivational example to show
how a given pair of Markov processes could be linked via gauge
transformations. Let us consider two particular stochastic
processes, with their respective infinitesimal generators

QQQ+ =
(−ν 0

ν 0

)
, QQQ− =

(
0 μ

0 −μ

)
. (9)

These matricesQQQ+ andQQQ− correspond to a pure birth process
and a pure death process, where ν and μ are the birth and
death rates, respectively. Note thatQQQ+ + QQQ−, from (9), is equal
to another infinitesimal generator that corresponds to a finite
two-state birth-death process. Also, to be more explicit, we
can represent each of these processes through the diagrams in
Figs. 1 and 2.

The differential equation from (8) applied for each of these
processes is summarized by

dtϕϕϕ+(t) = QQQ+(t) ϕϕϕ+(t),

dtϕϕϕ−(t) = QQQ−(t) ϕϕϕ−(t). (10)

FIG. 2. Diagram associated with the finite pure death process
with the infinitesimal generator QQQ−.

We demonstrate that there is a 2 × 2 matrix λλλ that connects
the solutions ϕϕϕ+ and ϕϕϕ− in the following way:

ϕϕϕ+ = λλλϕϕϕ−. (11)

First of all, only for the particular case ν = μ will we have a
constant matrix λλλ,

λλλ =
(

0 1
1 0

)
, (12)

which corresponds to an interchange of the states 1 2 .
In other words, (12) corresponds to a reflection that inter-
changes Fig. 1 with Fig. 2 and vice versa. Explicitly for the
case ν = μ, using (12), we have

QQQ+ = λλλ QQQ− λλλ−1. (13)

The preceding equation together with (10) involves (11). The
matrixλλλ from (12) is a time-independent change of coordinates
between Eqs. (10) for the case ν = μ.

We have noticed that λλλ is not a constant matrix for the
case ν �= μ. For the present case, we obtain the solutions with
nontrivial initial conditions as

ϕϕϕ+ =
(

e−ν t

1 − e−ν t

)
, ϕϕϕ− =

(
1 − e−μ t

e−μ t

)
. (14)

Using the explicit solutions (14), the proof that Eq. (11) is true
is straightforward, since there is a matrix

λλλ =
(

0 e(μ−ν) t

1 1 − e(μ−ν) t

)
, (15)

thus Eq. (11) is true.
This example shows, in pedagogical way, that it is possible

to write the solution of a stochastic process starting from an-
other process. The bridge between ϕϕϕ+ and ϕϕϕ− is built through
a local transformation λλλ. In addition, the corresponding link
between QQQ+ and QQQ− through a local transformation λλλ is given
by

QQQ+ = λλλQQQ−λλλ−1 + dtλλλλλλ−1 (16)

for all ν and μ. Expression (16) is almost equal to (13) but
with an added term dtλλλλλλ−1.

We will see that the group of this kind of transformation is
structured as a gauge group. We formalize and generalize this
idea in the following sections, and we prove that it is possible
to connect any pair of infinitesimal generators (QQQ,QQQ′) and any
pair of prior distributions of probability (ϕϕϕ,ϕϕϕ′) associated with
these infinitesimal generators in a similar way to (16) and (11),
respectively,

QQQ′ = λλλQQQλλλ−1 + dtλλλλλλ−1,

ϕϕϕ′ = λλλϕϕϕ. (17)
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IV. FORMAL ASPECTS OF EQUIVALENT
MARKOV PROCESSES

We considered a map �λ�λ�λ, given a nonsingular matrix λλλ,
which transforms a matrix QQQ as

���λλλ(QQQ) = λλλQQQλλλ−1 + dtλλλλλλ−1, (18)

where λλλ, QQQ ∈ R|���|×|���| are t-dependent differentiable matrices.
Thereby, λλλ is a local transformation, and we will prove that �λ�λ�λ

forms a group of local (gauge) transformations. In particular,
�λ�λ�λ ∈ R|���|×|���|.

In addition, in this section we study the possibility that for
all pairs of matrices QQQ and QQQ′, t-dependent and differentiable,
there is a nonsingular matrixλλλ, t-dependent and differentiable,
that connects QQQ and QQQ′ as

QQQ′ = ���λλλ(QQQ). (19)

If we compose two transformations �λ�λ�λ ◦ ���λλλ′ with λλλ and λλλ′
nonsingular, we see that

�λ�λ�λ ◦ ���λλλ′(QQQ) = ���λλλλλλ′(QQQ). (20)

From (20) we see that

[λ,λλ,λλ,λ′] = 000 =⇒ �λ�λ�λ ◦ ���λλλ′(QQQ) = ���λλλ′ ◦ ���λλλ(QQQ). (21)

Using this properties of composition (20) and (21), we give
an expression for the inverse map �λ�λ�λ

−1. First of all, we have
trivially

�1�1�1(QQQ) = QQQ, (22)

where 111 is the identity matrix. If we consider the composed
transform λλλ′′ = λλλλλλ′ such that λλλλλλ′ = 111 = λλλ′λλλ, then from (21)
we have

�λ�λ�λ ◦ ���λλλ′ = 111 = ���λλλ′ ◦ ���λλλ. (23)

Finally from (23) the inverse of ���λλλ is unique and is given by

�λ�λ�λ
−1 = ���λλλ−1 . (24)

For more details on the properties of composition (20) and the
inverse transformation (24), see Appendix A 1.

We will demonstrate that for any pair of t-dependent
differentiable matrices QQQ and QQQ′, for both |���| × |���| there exist
nonsingular t-dependent differentiable matrices λλλ of |���| × |���|
that connect them. For that we can define the following
equivalence relation:

QQQ′ ∼ QQQ ⇐⇒ ∃λλλ : QQQ′ = ���λλλ(QQQ). (25)

For more evidence that ∼ is a well-defined equivalence
relation, see Appendix A 1. From the equivalence relation (25),
λλλ satisfies the differential equation

dtλλλ = QQQ′λλλ − λQλQλQ. (26)

First of all, the solution of (26) exists for the trivial cases
QQQ = 000 and QQQ′ = 000, i.e., we denote by λλλ1 and λλλ2 the respective
solutions for each case,

dtλλλ1 = QQQ′λλλ1, (27)

dtλλλ2 = −λλλ2QQQ. (28)

We can obtain (λλλ1,λλλ2) as an iterative nonsingular solution. For
more details of this solution, see Appendix A 2. The existence
of solutions for (27) and (28) implies that λλλ1 and λλλ2 connect
QQQ′ ∼ 000 and 000 ∼ QQQ, respectively. This implication is true from
the definition of the equivalence relation. From the existence
of solutions for (27) and (28), we have

∃λλλ1 : QQQ′ = ���λλλ1 (000) ⇐⇒ QQQ′ ∼ 000, (29)

∃λλλ2 : 000 = ���λλλ2 (QQQ) ⇐⇒ 000 ∼ QQQ, (30)

and from the transitivity of the equivalence relation (25) we
have QQQ′ ∼ QQQ, which means that there is a given λλλ that QQQ′ =
���λλλ(QQQ).

We express the solution λλλ as a function of the solutions
of (27) and (28), (λλλ1,λλλ2), respectively. We say that a solution
λλλ built in this way is a transitive solution, or a composite
solution. The name will become clear in the construction
procedure of the solution λλλ. From (29) and (30) we see that
the transitivity solution is constructed from the composition of
transformations QQQ′ = ���λλλ1 (000) and 000 = ���λλλ2 (QQQ) as follows:

QQQ′ = ���λλλ1 (���λλλ2 (QQQ)))) (31)

from the composition rule (20) applied to (31),

QQQ′ = ���λλλ1λλλ2 (QQQ), (32)

where the transitive solution is given by

λλλ = λλλ1λλλ2. (33)

We have demonstrated that for any pair of matrices (QQQ,QQQ′),
t-dependent and differentiable, there is a nonsingular matrixλλλ,
t-dependent and differentiable, that connect QQQ and QQQ′ through
the map �λ�λ�λ, given by the expression (18),

QQQ′ = �λ�λ�λ(QQQ). (34)

Suppose now that QQQ and QQQ′ are the infinitesimal generators,
t-dependent and differentiable, of the following differential
equations:

dtϕϕϕ = QQQ ϕϕϕ,

dtϕϕϕ
′ = QQQ′ϕϕϕ′. (35)

Finally, from (34) and (35) we have

ϕϕϕ′ = λλλϕϕϕ. (36)

We found that for any pair of infinitesimal generators, t-
dependent and differentiable, with (QQQ,QQQ′) associated to (35),
there exists another t-dependent and differentiable matrix λλλ

that connects the distribution of probability ϕϕϕ and ϕϕϕ′.
Up to now we have considered the equivalence of Markov

processes of the same dimension, i.e., the state spaces of every
couple of processes have the same cardinality. We will go one
step further now and prove the equivalence of all continuous-
time Markov processes on a denumerable state space.

Without loss of generality, we define (QQQ,S) and (QQQ′,S ′) as
the respective infinitesimal generators and state spaces, such
that n = |S| < |S ′| = n′. We can construct another process
associated with QQQ, such that the infinitesimal generator, QQQ, is
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FIG. 3. (Color online) This diagram shows the composed process
on the state space S ≈ S ′, in the sense that |S| = |S ′|, with the
infinitesimal generator QQQ.

given by

Qij =
{
Qij , ∀ i,j ∈ [1,n] ⊆ N,

0, ∀ i,j ∈ [n + 1,n′] ⊆ N
(37)

or in block form

QQQ =

⎛
⎜⎝
QQQ 0 · · ·
0 0 · · ·
...

...
. . .

⎞
⎟⎠. (38)

The matrix QQQ corresponds to a new process on a state space
S that has the same cardinality of S ′. We have completed the
process on S with a number of redundant states, such that the
resulting state space S satisfies |S| = n′ = |S ′|. For illustrative
purposes, Fig. 3 shows the composed state space S fromS and a

set of isolated and absorbing states { k : k ∈ [n + 1,n′] ⊆ N}:
All the states of { k : k ∈ [n + 1,n′] ⊆ N} are isolated or

mutually disconnected and are also from each state of S; they

are all absorbing states. If the process starts in some k of this
redundant set, it stays there forever.

A final comment is related to the case in which the state
space is a time-dependent Markov process. In this sense, its
cardinality is a function of time nt , meaning that for a given
generation time t (i.e., t ∈ N), the state space St : |St | = nt .
Explicitly, we have

St = {x1,x2, . . . ,xnt
} (39)

for a given t . If QQQt is the infinitesimal generator for each t , we
can construct another process associated with QQQt such that the
infinitesimal generator, QQQ, is constructed in a similar way to
(37),

Qij =
{

(Qt )ij , ∀ i,j ∈ [1,nt ] ⊆ N,

0, ∀ i,j ∈ [nt + 1,N ] ⊆ N
(40)

for a sufficiently big number N ∈ Z+
0 . In other terms, we can

write

Qij = (Qt )ij u(nt − i)u(nt − j ), (41)

where u(x) is a Heaviside step function,

u(x) :=
{

0 : x < 0,

1 : x � 0.
(42)

In matrix form we express the dilution of St inside S =
{x1,x2, . . . ,xN } for a finite value of N or N → ∞:

QQQ =

⎛
⎜⎝
QQQt 0 · · ·
0 0 · · ·
...

...
. . .

⎞
⎟⎠. (43)

The matrix QQQ corresponds to a new process on a state space S,
which is equivalent to any other.

V. CONCLUSION AND FINAL OBSERVATIONS

The aim of present work is to demonstrate that there is a
way to modify the solution for a simple or known process,
which is represented by the infinitesimal generator QQQ, in order
to get another process partially known, or at least with a very
profound difficulty to be resolved, and represented by QQQ′. We
have shown how for a given pair of Markov processes (QQQ,S) and
(QQQ′,S ′) they could be linked via gauge (local) transformationsλλλ

that allow us obtainQQQ′ fromQQQ via�λ�λ�λ. Even when the state space
of each process has different cardinality, it is still possible to
establish a link via a local transformation. This connection also
could be explored when the state space is time-dependent, in
the sense that the number of states changes with time, which
was used intuitively in [5].

In addition, we can address a new problem through a
nonlocal modulation of the well-known solution following the
expression (36). We have not only shown that this is feasible
to do through a formal and constructive proof of existence of
λλλ, but also we indicated that it should be done across a linear
and local (time-dependent) operation.

Future research from the standpoint of a Lagrangian
description (working process) may reveal novel applications
of the present proposal. In this approach, the role of this kind
of transformation λλλ will be a symmetry of the Lagrangian. A
gauge theory of stochastic processes can be improved formally
through a variational principle.
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APPENDIX

We considered the study of an evolution over a time-
dependent and denumerable state space S with a random
variable x(t) and probability distribution pn(t) = P[X(t) =
xn]. This evolution is governed by the conditional probability
given by

Pnm(t,s) = P[x(t) = xn|x(s) = xm]. (A1)

The matrix P(t,s) satisfies the Chapman-Kolmogorov identity
[7,8]

P(t,s) = P(t,u)P(u,s) (A2)
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for 0 � s � u � t . It is a matrix form of each identity,

Plj (t,s) =
∑
k∈���

Plk(t,u)Pkj (u,s). (A3)

Also, the sum of each element of every column is∑
n∈���

Pnm(t,s) = 1. (A4)

For the general case, we can develop a power series of the
matrix P(t + ε,s) for a fixed value of s. Then we have

Pnm(t + ε,s) = Pnm(t,s) + ε ∂tPnm(t,s) + · · · , (A5)

where ∂t is a simplified notation of the partial time derivative
∂
∂t

.
To obtain Eq. (6), we study the time evolution t �−→ t + ε

for a small value of ε. We need to know Pnm(t + ε,t).
Expression (A.5) then becomes

Pnm(t + ε,t) = δnm + ε ∂tPnm(t,s)|s=t + · · · . (A6)

We can recognize the second term of A.7 as the infinitesimal
generator Qnm(t),

Qnm(t) = lim
ε→0

Pnm(t + ε,t) − δnm

ε
. (A7)

We express Pnm(t + ε,t) from A.7,

Pnm(t + ε,t) = δnm + Qnm(t)ε + Ot (ε), (A8)

where Ot (x) represents a type of function that goes to zero
with x faster than x for a given t , that is,

lim
x→0

Ot (x)

x
= 0. (A9)

Replacing (A8) in expression (5) from Sec. II, we have

pn(t + ε) =
∑
m∈���

[δnm + Qnm(t)ε + Ot (ε)] pm(t).

Then

pn(t + ε) − pn(t)

ε
=

∑
m∈���

[
Qnm(t) + Ot (ε)

ε

]
pm(t),

taking the limit ε → 0,

dtpn(t) =
∑
m∈���

Qnm(t) pm(t). (A10)

The stochastic process described by Eq. (A10) corresponds
to the general class of stochastic dynamics of the Markov
process on a denumerable state space.

We can write (A10) in matrix form as

dtϕϕϕ(t) = QQQ(t)ϕϕϕ(t), (A11)

where ϕϕϕ(t) = (p0(t),p1(t), . . . )ᵀ and QQQ(t) = {Qnm(t)}.

1. Some relevant properties of map �λ�λ�λ

a Composite maps

We compose two transformations �λ�λ�λ ◦ �′
λ�′
λ�′
λ with λλλ and λλλ′

nonsingular, and then we prove that

�λ�λ�λ ◦ ���λλλ′(QQQ) = ���λλλλλλ′(QQQ). (A12)

We calculate directly

�λ�λ�λ ◦ ���λλλ′(QQQ) = �λ�λ�λ(λλλ′QQQλλλ′−1 + dtλλλ
′λλλ′−1)

= λλλ[λλλ′QQQλλλ′−1 + dtλλλ
′λλλ′−1]λλλ−1 + dtλλλλλλ−1

= λλλλλλ′QQQ(λλλλλλ′)−1 + λλλdtλλλ
′(λλλλλλ′)−1 + dtλλλλλλ′(λλλλλλ′)−1

= λλλλλλ′QQQ(λλλλλλ′)−1 + dt (λλλλλλ′)(λλλλλλ′)−1

= ���λλλλλλ′(QQQ),

where in the second line the term dtλλλ
′λλλ′−1 is written as

dtλλλ
′(λλλλλλ−1)λλλ′−1. This completes the demonstration that satisfies

expression (20).

b Inverse map

We calculate explicitly ���λλλ−1 (QQQ) and then prove that

���λλλ−1 (QQQ) = ���−1
λλλ (QQQ) (A13)

for all QQQ. Let us calculate the left-hand side of (A13),

���λλλ−1 (QQQ) = λλλ−1QQQλλλ + dt (λλλ
−1)λλλ

= λλλ−1QQQλλλ + dt (λλλ
−1)λλλ

= λλλ−1QQQλλλ − λλλ−1dtλλλ.

Finally, we check directly that ���λλλ−1 is equal to ���−1
λλλ ,

�λ�λ�λ ◦ ���λλλ−1 (QQQ) = �λ�λ�λ(λλλ−1QQQλλλ − λλλ−1dtλλλ)

= λλλ(λλλ−1QQQλλλ − λλλ−1dtλλλ)λλλ−1 + dtλλλλλλ−1

= λλλλλλ−1QQQλλλλλλ−1 − λλλλλλ−1dtλλλλλλ−1 + dtλλλλλλ−1

= QQQ − dtλλλλλλ−1 + dtλλλλλλ−1

= QQQ,

where we used dt (λλλ−1λλλ) = 000 =⇒ dt (λλλ−1)λλλ = −λλλ−1dtλλλ. This
completes the demonstration that (24) is true, i.e.,���λλλ−1 = ���−1

λλλ .

c �λ as an equivalence relation

We say that the map �λ�λ�λ defines an equivalence relation
between the vector space of matrices of the same dimension.
For a given two matrices (QQQ,QQQ′), we can define a relation
between them,

QQQ′ ∼ QQQ ⇐⇒ ∃λλλ : QQQ′ = ���λλλ(QQQ), (A14)

where ���λλλ(QQQ) := λλλQQQλλλ−1 + dtλλλλλλ−1, and λλλ is a nonsingular
matrix. This relation ∼ is an equivalence in the sense that
for all QQQ,QQQ′,QQQ′′ the following properties are true:

(RRR) QQQ ∼ QQQ (reflexivity),

(SSS) QQQ ∼ QQQ′ ⇒ QQQ′ ∼ QQQ (symmetry),

(TTT ) QQQ′′ ∼ QQQ′ ∧ QQQ′ ∼ QQQ ⇒ QQQ′′ ∼ QQQ (transitivity).

The first assertion (RRR) is true from the identity matrixλλλ = 1
and by definition���111(QQQ) = QQQ. The assertion (SSS) is also true from
the existence of the inverse matrix λλλ−1, and through (A13) the
inverse connection QQQ′ ∼ QQQ is constructed. The last assertion
(TTT ) is true from the composed transformation of nonsingular
matrices λλλ = λλλ′′λλλ′ and (A12), such that QQQ′′ = ���λλλ′′ (QQQ′) and QQQ′ =
���λλλ′(QQQ). Then QQQ′′ = ���λλλ′′ (���λλλ′ (QQQ)) = ���λλλ′′λλλ′(QQQ) = ���λλλ(QQQ). Finally,
we arrive at QQQ′′ ∼ QQQ.
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2. Alternative expression for gauge transformation λλλ

In the present work, in order to provide an expression for the
solution of (26), the transitivity solution is constructed from
the composed transformation λλλ = λλλ1λλλ2 and (A12),

���λλλ1λλλ2 (QQQ) = ���λλλ1 ◦ ���λλλ2 (QQQ) = QQQ′, (A15)

where λλλ1 and λλλ2 are solution of (27) and (28), respectively,

QQQ′ ∼ 000 ⇐⇒ dt λλλ1 = QQQ′λλλ1,

000 ∼ QQQ ⇐⇒ dt λλλ2 = −λλλ2QQQ. (A16)

We express the solutions of (A16) as a formal iterative
solution,

λλλ1(t) =
[

1 +
∫ t

0
QQQ(t1)dt1

+
∫ t

0

∫ t1

0
QQQ(t1)QQQ(t2)dt1dt2 + · · ·

]
λλλ1(0),

λλλ2(t) = λλλ2(0)

[
1 −

∫ t

0
QQQ′(t1)dt1

+
∫ t

0

∫ t1

0
QQQ′(t1)QQQ′(t2)dt1dt2 + · · ·

]
. (A17)

We obtain a general expression of the iterative solution
(A17) through a Magnus series [9],

λλλ1(t) = ∑
n∈N

1
n! 


n(t),

λλλ2(t) = ∑
n∈N

(−1)n

n! 


′
n(t), (A18)

where 


n(t) and 


′
n(t) are given by




n(t) =
∫ t

0
QQQ(t1)dt1

∫ t1

0
QQQ(t2)dt2 · · ·

∫ tn−1

0
QQQ(tn−1)dtn,




′
n(t) =

∫ t

0
QQQ′(t1)dt1

∫ t1

0
QQQ′(t2)dt2 · · ·

∫ tn−1

0
QQQ′(tn−1)dtn.

(A19)

[1] E. Ising, Contribution to the theory of ferromagnetism, Z. Phys.
31, 253 (1925).

[2] L. Kleinrock, Queueing Theory, Vol. I (Wiley-Interscience, New
York, 1975).

[3] D. Anderson and T. Kurtz, Design and Analysis of Biomolecular
Circuits, Continuous Time Markov Chain Models for Chemical
Reaction Networks (Springer, New York, 2011), Chap. 1.

[4] L. Shapiro and D. Zeilberger, A Markov chain occurring in
enzyme kinetics, J. Math. Biol. 15, 351 (1982).

[5] M. Caruso and C. Jarne, Markov chain approach to the distribution
of ancestors in species of biparental reproduction, Phys. Rev. E
90, 022125 (2014).

[6] A. Kolmogorov, Ber die analytischen methoden in der
wahrscheinlichkeitsrechnung, Math. Ann. 104, 415 (1931) [En-
glish version: On Analytical Methods in Probability Theory,
Selected Works of A. N. Kolmogorov (Springer, Dordrecht, the
Netherlands, 1992), Vol. II].

[7] W. Feller, An Introduction to Probability Theory and Its Applica-
tions (Wiley, New York, 1968), Vols. 1 and 2.

[8] M. Kijima, Markov Processes for Stochastic Modeling (Chapman
& Hall, New York, 1997).

[9] W. Magnus, On the exponential solution of differential equations
for a linear operator, Commun. Pure Appl. Math. VII 7, 649
(1954).

052132-6

http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1007/BF00275693
http://dx.doi.org/10.1007/BF00275693
http://dx.doi.org/10.1007/BF00275693
http://dx.doi.org/10.1007/BF00275693
http://dx.doi.org/10.1103/PhysRevE.90.022125
http://dx.doi.org/10.1103/PhysRevE.90.022125
http://dx.doi.org/10.1103/PhysRevE.90.022125
http://dx.doi.org/10.1103/PhysRevE.90.022125
http://dx.doi.org/10.1007/BF01457949
http://dx.doi.org/10.1007/BF01457949
http://dx.doi.org/10.1007/BF01457949
http://dx.doi.org/10.1007/BF01457949
http://dx.doi.org/10.1002/cpa.3160070404
http://dx.doi.org/10.1002/cpa.3160070404
http://dx.doi.org/10.1002/cpa.3160070404
http://dx.doi.org/10.1002/cpa.3160070404



