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We study the contribution of the thermal zero modes to the Casimir free energy in the case of a
fluctuating electromagnetic (EM) field in the presence of real materials described by frequency-dependent,
local and isotropic permittivity (ϵ) and permeability (μ) functions. Those zero modes, present at any finite
temperature, become dominant at high temperatures since the theory is dimensionally reduced. Our work,
within the context of the derivative expansion (DE) approach, focuses on the emergence of nonanalyticities
in that dimensionally reduced theory. We conclude that the DE is well defined whenever the functionΩðωÞ,
defined by ½ΩðωÞ�2 ≡ ω2ϵðωÞ, vanishes in the zero-frequency limit for at least one of the two material
media involved.
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I. INTRODUCTION

Casimir forces are one of the most remarkable macro-
scopic manifestations of the vacuum fluctuations of the
electromagnetic (EM) field [1]. The precision achieved in
recent experiments to measure those forces has encouraged
further work to obtain more detailed theoretical predictions
for them; in particular, it has become increasingly clear that
the geometry and electromagnetic properties of the materi-
als are the two most important aspects that must be taken
into account for those predictions to be accurate.
In spite of the intense activity in this field of research,

comparison between theory and experiment is not yet
entirely satisfying, which leaves some room for debate
[2]. Among the most widely used tools to tackle these
issues, the Lifshitz formula [3] occupies a prominent place.
Indeed, on the one hand, it can be used as the starting point
for computing the Casimir force away from the idealized,
perfect conductivity case. On the other hand, it can also
be applied to incorporate nontrivial geometrical effects, at
least when the surfaces involved are close to each other and
smooth. Indeed, the Lifshitz formula, originally meant just
for flat and parallel slabs may also be thought of as the
leading term, the so-called proximity force approximation
[4] (PFA), in a derivative expansion (DE) of the free energy,
regarded as a functional of the shape of the function(s)
defining the surfaces involved [5,6]. In the language of
quantum field theory, the DEmay be consistently viewed as
a low-momentum expansion of the vertex functions, with
the PFA playing the role of leading term, involving the
summation of an infinite number of vertex functions at
zero momentum. The next-to-leading-order term, in turn,
requires the knowledge of vertex functions at the second

order in momentum. A similar approach has also been
applied in [7] to find an interesting approximation for the
Casimir-Polder interaction force, assuming that the surfaces
are gently curved.
Regarding the EM properties of the media involved, it is

usually sufficient to use a version of the Lifshitz formula
which describes them by means of an isotropic, frequency-
dependent permittivity ϵðωÞ and, when magnetic properties
are relevant, also its permeability μðωÞ. Note, however, that
even though Lifshitz formula has been derived using a
variety of approaches [8], its applicability to dissipative
systems is still debated [2,9,10].
It has been shown that, in some particular situations,

nonanalyticities in the expansion of the vertex functions
could produce nonlocal NTLO corrections to the PFA
within the context of the DE. This has been explicitly
shown for quantum scalar fields at nonzero temperature in
the presence of perfect mirrors described by Neumann
boundary conditions) [11]. This also holds true for a real
scalar field with Neumann conditions in 2þ 1 dimensions,
albeit it can be shown that the non-analyticity can be cured
(in a concrete model) by introducing a small departure from
perfect Neumann conditions [12].
In this article, we analyze the emergence of nonanaly-

ticities in the DE for real materials which, based on the
insight from our previous work [12], should come from
contributions due to the dimensionally reduced massless
modes, which appear as the zero frequency terms in a
Matsubara expansion of the fields. To carry out such an
analysis, it is convenient to have a general formula for the
DE, corresponding to the free energy for the EM field in the
presence of media with realistic properties. This kind of
formula has been used (although not explicitly displayed)
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by other authors in a previous work [6]. There, the Casimir
free energy has been evaluated using the scattering matrix
approach, based on earlier results about the S-matrix
elements for the scattering of electromagnetic waves,
computed in a perturbative expansion in the departure
from the planar surface case [13].
It is our aim in this work to carry out an analysis of the

validity of the DE using a different approach, for a closely
related physical system: we incorporate the possibility for
the media to have nontrivial magnetic properties. On the
other hand, our approach to the construction of the DE
proceeds along different lines: we use a functional integral
approach and the Matsubara formalism to single out the
zero mode contributions from the very beginning. We then
apply the DE approach, performing an independent per-
turbative calculation in that dimensionally reduced theory.
We find conditions for the DE to be well-defined, and
single out models where those conditions are not met.
In the first principles functional approach that we follow,

the derivation dwells on a subtle point related to the choice of
the temporal gauge for the EM field at a nonzero temperature
[14], which allows for a clean isolation of the problematic
zero mode, the origin of the “plasma-Drude” controversy in
the calculation of the Casimir force at a nonvanishing
temperature [2,9,15]. Remarkably, it is precisely this zero
mode the same which, depending on the case considered,
may or not exhibit a nonanalytic behavior as a function of the
external momenta of the generalized vertices.
The structure of this article is as follows: in Sect. II we

present the system that we want to study and the main
assumptions made in order to calculate its Casimir free
energy, having in mind its treatment within the context of
the DE approach. Then, in Sect. III we present explicit
results on the zero-mode contributions to the free energy,
for media described by nontrivial permittivities or perme-
abilities. In Sect. IV we study the eventual emergence of
nonanalyticities in the NTLO correction of the PFA.
Finally, in Sect. V we present our conclusions. Some
technical but nevertheless relevant details of the calcula-
tions are presented in the Appendix.

II. THE SYSTEM

A. Geometrical set-up, definitions and conventions

The geometry of the systems that we consider can be
determined by specifying just two surfaces, denoted by L
and R. Our construction will begin with cases where they
are the boundaries between two spatial regions, filled by
material media.
The surfaces L and R are, respectively, defined by x3 ¼ 0

and x3 ¼ ψðx1; x2Þ, where ψ is a smooth function of two
Cartesian coordinates on an x3 ¼ constant plane, for which
we will adopt the shorthand notation x∥ ≡ ðx1; x2Þ.
A real medium will be described by introducing isotropic,

spatially local permittivities and permeabilities (in other

words, they are defined by scalar functions, since the
corresponding tensors are proportional to the identitymatrix).
The perfect-conductor case will be obtained as a par-

ticular limit.

B. Free energy and partition function

Since we deal with a quantum field at a finite temper-
ature, it is convenient to introduce its free energy FðψÞ, a
function of the inverse temperature β ¼ T−1 (in our
conventions, Boltzmann’s constant kB ≡ 1) and a real
functional, i.e., a real-valued function, of ψðx∥Þ. For the
sake of notational clarity, the dependence on β is not
explicitly shown. F may be written in terms of the partition
function, ZðψÞ, as follows:

FðψÞ ¼ −
1

β
log

�
ZðψÞ
Z0

�
; ð1Þ

where the denominator, Z0, denotes the partition function
for the free EM field, i.e., in the absence of media. The
effect of that denominator is to subtract the free energy of a
free Bose gas of photons in the absence of the mirrors,
which does not contribute to the force between them. There
are other contributions to the free energy which are
independent of the distance between the two media,
namely, that are invariant under ψðx∥Þ → ψðx∥Þ þ b
(b≡ constant). They can, usually in a rather straightfor-
ward way, be identified with self-energies of the mirrors.
That is, contributions which measure the energy of the
distorted vacuum corresponding to the EM field in the
presence of just one medium (taking the zero-point energy
of the EM field as reference). Since we are ultimately
interested in the calculation of the part of the free energy
which is responsible for the (normal) force between the two
media, those terms will be discarded.
In the Matsubara (imaginary-time) formalism, a func-

tional integral expression for the partition function ZðψÞ
can be constructed by integrating over field configurations
depending on the spatial coordinates x and the imaginary
time x0 ≡ τ. The fields are periodic, with period β, in the
imaginary time. Denoting by A ¼ ðAμÞ, (μ ¼ 0, 1, 2, 3) the
4-potential in Euclidean spacetime, the form of ZðψÞ is as
follows,

ZðψÞ ¼
Z

½DA�e−SinvðAÞ; ð2Þ

where SinvðAÞ is the gauge-invariant action for A, with
gauge transformations given by AμðxÞ → AμðxÞ þ δλAμðxÞ,
δλAμðxÞ ¼ ∂μλðxÞ. DA is the unconstrained functional-
integration measure, while ½DA� is used to denote that
measure after gauge fixing.
In terms of the components of the field strength

tensor Fμν ¼ ∂μAν − ∂νAμ, the form of the gauge-invariant
action is
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SinvðAÞ ¼
Z

β

0

dτ
Z

β

0

dτ0
Z

d3x

�
1

2
F0jðτ;xÞϵðτ − τ0;xÞF0jðτ0;xÞ

þ 1

4
Fijðτ;xÞμ−1ðτ − τ0;xÞFijðτ;xÞ

�
; ð3Þ

where indices from the middle of the Roman alphabet run over spatial indices (Einstein summation convention has been
adopted), and ϵðτ − τ0;xÞ and μðτ − τ0;xÞ denote the Euclidean versions of the permittivity and permeability, respectively
(μ−1 is the inverse integral kernel of μ, with respect to its timelike arguments). Space locality of those response functions has
been assumed implicitly.
On account of our assumptions on the geometry of the system, we have that

ϵðτ − τ0;xÞ ¼ θð−x3ÞϵLðτ − τ0Þ þ θðx3Þθðψðx∥Þ − x3Þ þ θðx3 − ψðx∥ÞÞϵRðτ − τ0Þ
μðτ − τ0;xÞ ¼ θð−x3ÞμLðτ − τ0Þ þ θðx3Þθðψðx∥Þ − x3Þ þ θðx3 − ψðx∥ÞÞμRðτ − τ0Þ; ð4Þ

where ϵL;Rðτ − τ0Þ and μL;Rðτ − τ0Þ characterize the per-
mittivity and permeability of the respective mirror.
Note that the free (vacuum) form of the action is

SðvacÞ
inv ðAÞ ¼ 1

4

Z
d4xFμνFμν; ð5Þ

where d4x≡ dτdx, the integral over τ, goes from 0 to β (the
fields being periodic, any interval of length β can be used as
the extent of the imaginary time coordinate to define the
action).

C. Matsubara modes and gauge fixing

The action is invariant under translations in the imagi-
nary time: τ → τ þ constant. This suggests the use of
mixed Fourier transformations for the fields, as well as
for the response functions,

Aμðτ;xÞ ¼
1

β

Xþ∞

n¼−∞

~AðnÞ
μ ðxÞeiωnτ

ϵðτ − τ0;xÞ ¼ 1

β

Xþ∞

n¼−∞
~ϵðnÞðxÞeiωnðτ−τ0Þ

μðτ − τ0;xÞ ¼ 1

β

Xþ∞

n¼−∞
~μðnÞðxÞeiωnðτ−τ0Þ; ð6Þ

where ωn ≡ 2πn
β ðn ∈ ZÞ are the Matsubara frequencies.

The gauge transformations can be represented in Fourier
space; to that end, note that since the field Aμðτ;xÞ is
periodic, so must be δλAμðτ;xÞ. Then we can expand this
object in terms of a Fourier series:

δλAμðτ;xÞ ¼
1

β

Xþ∞

n¼−∞
cðnÞμ ðxÞeiωnτ: ð7Þ

Note, however, that λðτ;xÞ needs not be periodic. It may be
seen that its more general form is as follows,

λðτ;xÞ ¼ Cτ þDþ λPðτ;xÞ; ð8Þ

where C and D are constants, and λPðτ;xÞ is periodic,

λPðτ;xÞ ¼
1

β

Xþ∞

n¼−∞

~λðnÞP ðxÞeiωnτ: ð9Þ

Hence, the full set of gauge transformations for the gauge
field may be written, using a Fourier transform for the time
arguments, as follows:

δλ ~A
ðnÞ
j ðxÞ ¼ ∂j

~λðnÞP ðxÞ

δλ ~A
ðnÞ
0 ðxÞ ¼

�
iωn

~λðnÞP ðxÞ if n ≠ 0

C if n ¼ 0
: ð10Þ

From the explicit form above for the gauge transformations
in the same “mixed” Fourier representation, we see that one
possible gauge fixing condition, which we will adopt
throughout this article, is the temporal gauge, which in
this finite-temperature setup is given by

~AðnÞ
0 ðxÞ ¼ 0; ∀ n ≠ 0: ð11Þ

We then write the thermal partition function using the
mixed Fourier representation. Using the properties
~AðnÞ�
μ ¼ ~Að−nÞ

μ , ~ϵð−nÞ ¼ ~ϵðnÞ and ~μð−nÞ ¼ ~μðnÞ, it is rather
straightforward to see that it may be written as an infinite
product of (decoupled) integrals, involving the zero mode,
and just the positive (or, alternatively, negative) modes,

ZðψÞ ¼
Y∞
n¼0

ZðnÞðψÞ; ð12Þ

where

Zð0ÞðψÞ ¼
Z

½D ~Að0Þ
0 D ~Að0Þ

j �e−Sð0Þð ~Að0Þ
0
; ~Að0Þ

j Þ ð13Þ
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and, for n ≥ 1,

ZðnÞðψÞ ¼
Z

½D ~AðnÞ
j D ~AðnÞ�

j �e−SðnÞð ~AðnÞ
j ; ~AðnÞ�

j Þ; ð14Þ

where Sð0Þ involves two real fields: one of them is the zero-
frequency component of ~A0, which behaves as a scalar in
the Euclidean 2þ 1-dimensional space. The other, corre-
sponding to the zero mode for ~Aj, is a real vector field,

Sð0Þð ~Að0Þ
0 ; ~Að0Þ

j Þ ¼ 1

β

Z
d3x

�
1

2
~ϵð0ÞðxÞð∂j

~Að0Þ
0 Þ2

þ 1

4~μð0ÞðxÞ ð
~Fð0Þ
jk Þ2 þ

1

2
Ω2

0ðxÞð ~Að0Þ
j Þ2

�
;

ð15Þ
where we have introduced

Ω2
0ðxÞ≡ lim

n→0
½ω2

n ~ϵ
ðnÞðxÞ�: ð16Þ

Note that Ω0 vanishes for a dielectric and also for a metal
described by the Drude model. On the other hand, it equals
the plasma frequency for a metal described by the
plasma model.
Since, by assumption, there is a vacuum between the two

mirrors, ~ϵð0Þ ¼ ~μð0Þ ¼ 1, and Ω2
0 ¼ 0 in that region. Thus

the scalar and vector fields behave there as a free massless
scalar and a free gauge field, respectively. In each one of the
regions occupied by a mirror, the scalar field Lagrangian is
multiplied by a constant (in a wave-function renormaliza-
tion fashion), while the vector field also has a constant
Proca-like mass (each constant is determined by the
properties of the medium on the mirror considered).
Besides, the latter also has a factor similar to the scalar
field one, but determined by the permeability.
As a consequence of the temporal gauge choice, there is

no scalar field mode in the Sn>0 terms. They always involve
just a complex vector field,

SðnÞð ~AðnÞ
j ; ~AðnÞ�

j Þ ¼ 1

β

Z
d3x

�
1

2
j ~FðnÞ

jk j2 þΩ2
nðxÞj ~Að0Þ

j j2
�
;

ð17Þ

with a Proca-like mass Ω2
nðxÞ ¼ ~ϵðnÞðxÞω2

n which, contrary
to what happened for the zero mode, is nonvanishing
between the mirrors. Note that, except for the n ¼ 0 mode,
each term corresponds to combining two different
Matsubara modes, namely, n and −n into the action for
a complex field. This is possible because of the reality of
the permittivity in Fourier space, which is, in turn, a
reflection of the parity in its time argument.
In any case, the free energy will be obtained as a sum of

infinite terms, each one corresponding to a given value of
the index n,

FðψÞ ¼
X∞
n¼0

FðnÞðψÞ; ð18Þ

where

FðnÞðψÞ ¼ −
1

β
log

�
ZðnÞðψÞ
ZðnÞ

0

�
: ð19Þ

In the special case of n ¼ 0, we may split the free energy
according to its origin being the scalar (s) or vector (v)
fields,

Fð0Þ ¼ FsðψÞ þ Fð0Þ
v ðψÞ; ð20Þ

while for n ≥ 1, we only have contributions originated in a

vector field FðnÞ ¼ FðnÞ
v , ∀n ≥ 1.

III. RESULTS FOR THE ZERO MODE
FREE ENERGIES

This contribution to the free energy is composed of two

independent terms, Fð0Þ ¼ Fs þ Fð0Þ
v ; each one of them can

be obtained from the calculation of a path integral over a
(unconstrained) real field, namely,

e−βFsðψÞ ¼
Z

D ~Að0Þ
0 e−

1
2β

R
d3x~ϵð0ÞðxÞð∂j ~Að0Þ

0
Þ2 ð21Þ

and

e−βF
ð0Þ
v ðψÞ ¼

Z
D ~Að0Þ

j e
−1
β

R
d3x½ 1

4~μð0ÞðxÞ
ð ~Fð0Þ

jk Þ2þ1
2
Ω2

0
ðxÞð ~Að0Þ

j Þ2�
: ð22Þ

The functions ~ϵð0Þ, ~μð0Þ and Ω0 are model dependent.
Nevertheless, since by assumption we have a vacuum
between the plates, we can write

~ϵð0ÞðxÞ ¼ ϵLθð−x3Þ þ θðx3Þθðψðx∥Þ − x3Þ
þ ϵRθðx3 − ψðx∥ÞÞ; ð23Þ

~μð0ÞðxÞ ¼ μLθð−x3Þ þ θðx3Þθðψðx∥Þ − x3Þ
þ μRθðx3 − ψðx∥ÞÞ; ð24Þ

and

Ω2
0ðxÞ ¼ Ω2

Lθð−x3Þ þΩ2
Rθðx3 − ψðx∥ÞÞ; ð25Þ

where we have introduced the constants

ϵL;R ¼ lim
n→0

~ϵðnÞL;R

Ω2
L;R ¼ lim

n→0
½ω2

n ~ϵ
ðnÞ
L;R�; ð26Þ
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which are entirely determined by the parameters of the
model used for the permittivity.
We take advantage of the fact that the two contributions

above are decoupled, to consider and present the corre-
sponding results separately below. Before doing this, it is
instructive to discuss the limit of perfectly conducting

materials for the scalar and vector contributions. The ~Að0Þ
0

field behaves as a scalar, and when the infinite permittivity
limit is taken, its gradient inside the region occupied by the
mirror vanishes. Thus, the field is constant in that region;
assuming that the conductors are grounded, that constant
vanishes, so that the field itself is zero. That is, this field
becomes a Dirichlet mode, corresponding to the transverse
magnetic (TM) EM mode.
The vector zero mode, on the other hand, behaves as an

EM field in 2þ 1 dimensions. If ΩL, say, tends to infinity,
then the EM field will vanish identically in the region
occupied by that mirror. It then has perfect conductor
boundary conditions at x3 ¼ 0. (Of course, the same will
happen on the other surface if the corresponding constant
tends to infinity.) But we have shown this to be equivalent
to a real scalar field with Neumann conditions [12].
Therefore, this is a Neumann mode, corresponding to
the transverse electric (TE) EM mode.

A. The scalar zero-mode contribution FsðψÞ
We first note that a formal result of the functional integral

for this mode can be written in terms of the determinant of
an operator Ks,

e−βFsðψÞ ¼ ½detKs�−1
2

Ks ¼ −∂j ~ϵ
ð0ÞðxÞ∂j; ð27Þ

where we have neglected a global constant which does not
contribute to the interaction energy between the mirrors.
Within the DE approach to the second order, Fs is given

by an expression with the form

½FsðψÞ�DE ¼
Z

d2x∥½VsðψÞ þ ZsðψÞ∂aψðxÞ∂aψðxÞ�:

ð28Þ

The functions Vs and Zs may be determined from the first
and third terms in the expansion of Fsðaþ ηÞ in powers of
η: Fsðaþ ηÞ ¼ Fs;0ðaÞ þ Fs;1ða; ηÞ þ Fs;2ða; ηÞ þ � � �, as
described in our previous works [5].

1. Zeroth-order term

The first term, which contains no derivatives, allows us
to construct the corresponding “potential” in the DE,

VsðaÞ ¼
1

L2
Fs;0ðaÞ; ð29Þ

where L2 denotes the area of each surface (L → ∞). From
(27), this implies

VsðaÞ ¼
1

2β

Z
d2k∥

ð2πÞ2 log det½Ksjψðx∥¼a�: ð30Þ

This contribution can be evaluated exactly, taking
advantage of the fact that it corresponds to a system where
~ϵð0ÞðxÞ depends only on x3, by using, for example, the
Gelfand-Yaglom theorem approach [16]. Since the calcu-
lation is already a standard one, we omit the details. The
result is

VsðaÞ ¼
1

2β

Z
d2k∥

ð2πÞ2 logð1 − rLrRe−2jk∥jaÞ; ð31Þ

where

rL;R ≡ 1 − ϵL;R
1þ ϵL;R

: ð32Þ

As expected, in the limit ϵL;R → ∞, one obtains the result
corresponding to a scalar field in 2þ 1 dimensions,
satisfying Dirichlet boundary conditions times 1=β [11].

2. First-order term

The first-order term, Fs;1, is not required in order to
determine the DE; however, we calculate it in order to have
a consistency check for some of the ingredients we use in
our work. We first note that FsðψÞ can be conveniently
written in an equivalent form, where the zeroth-order term
is extracted explicitly,

e−βFs ¼ e−βFs;0e−βFs;I ; ð33Þ

where Fs;I contains all the perturbative corrections:

Fs;I ¼ −
1

β
loghe−Ss;Ii: ð34Þ

The average symbol is given by a functional integral with
the action corresponding to η≡ 0:

h…i ¼
R
D ~Að0Þ

0 …e−Ss;0ð ~Að0Þ
0
Þ

R
D ~Að0Þ

0 e−Ss;0ð ~Að0Þ
0
Þ
: ð35Þ

Here,

Ss ¼ Ss;0 þ Ss;I ð36Þ

and

Ss;0 ≡ Ssjψðx∥Þ¼a: ð37Þ
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Then, the first-order term becomes

Fs;1 ¼
1

β
hSs;1i; ð38Þ

where the first-order term in the action, Ss;1, is given by

Ss;1 ¼
1 − ϵR
2β

Z
d3xδðx3 − aÞj∇ ~Að0Þ

0 ðxÞj2: ð39Þ

Thus,

Fs;1 ¼
1 − ϵR
2β2

Z
d3xδðx3 − aÞΔjjðx∥;x∥Þ; ð40Þ

where we have introduced the objects

Δjlðx∥; y∥Þ≡ Δjlðx∥ − y∥Þ ¼ h∂j
~Að0Þ
0 ðxÞ∂l

~Að0Þ
0 ðyÞijx3;y3→a:

ð41Þ

On the other hand, the correlation function whose coinci-
dence limit appears above is ill-defined when one of
the indices j, l equals 3. Indeed, the derivatives of the
field have a discontinuity whenever the permittivity has a
jump. We then introduce in Ss;1 the point split action,
before evaluating the average,

Sη
s;1 ¼

1 − ϵR
2β

Z
d3x∂j

~Að0Þ
0 ðx∥; aþ ηÞ∂j

~Að0Þ
0 ðx∥; a − ηÞ;

ð42Þ

and obtain the result for the free energy by taking the η → 0
limit after evaluating the average.
Thus, we see that the first-order term is given by

Fs;1 ¼
1 − ϵR
2β2

Z
d2x∥½Δþ−

aa ðx∥;x∥Þ þ Δþ−
33 ðx∥;x∥Þ�ηðx∥Þ;

ð43Þ

where

Δþ−
jl ðx∥ − y∥Þ≡ ½h∂j

~Að0Þ
0 ðxÞ∂l

~Að0Þ
0 ðyÞijx3→aþ;y3→a−

≡
Z

d2k∥

ð2πÞ2
~Δþ−
jl ðk∥Þeik∥·ðx∥−y∥Þ: ð44Þ

We note that the � in Δab (a ≠ 3, b ≠ 3) may be
omitted since that object is well defined, continuous
at x3 ¼ y3 ¼ a.
A rather straightforward calculation shows that, when

both indices are different from 3,

~Δabðk∥Þ ¼ β ~Δðk∥Þkakb; ð45Þ

with

~Δðk∥Þ ¼
1

2jk∥j
�
1

ϵR
þ 1

1 − rLrRe−2jk∥ja

×

�
rL

�
2

1þ ϵR
þ rR
ϵR

�
e−2jk∥ja −

rR
ϵR

��
: ð46Þ

On the other hand,

~Δþ−
33 ðk∥Þ ¼ ~Δ−þ

33 ðk∥Þ ¼ −βϵRjk∥j
�
1

ϵR
− ~Δðk∥Þjk∥j

�
;

ð47Þ

with the same ~Δ as in the previous equation.
Thus, at the first order,

Fs;1 ¼
1 − ϵR
2β2

Z
d2x∥ηðx∥Þ

×
Z

d2k∥

ð2πÞ2 ½
~Δaaðk∥Þ þ ~Δþ−

33 ðk∥Þ�: ð48Þ

Discarding a-independent terms, we find that the free
energy per unit area is

Fs;1

L2
¼ η0

rLrR
β

Z
d2k∥

ð2πÞ2
jk∥j

e2jk∥ja − rLrR
; ð49Þ

with η0 ≡
R

d2x∥ηðx∥Þ
L2 .

The consistency check is completed by noting that this
term agrees with η0

∂
∂a VsðaÞ.

3. Second-order term

The second-order term is obtained by collecting the
second-order terms in the expansion in powers of η.
Discarding self-energy-like contributions, and with the
same notations introduced above, we see that it is, in
principle, given by

Fs;2 ¼ −
1

4β3
ð1 − ϵRÞ2

Z
d2x∥

×
Z

d2y∥½h∂j
~Að0Þ
0 ðxÞ∂k

~Að0Þ
0 ðyÞijx3¼y3¼a�2ηðx∥Þηðy∥Þ:

ð50Þ

The expression is, however, ill defined. Using the point-
splitting procedure, in the same form as in the first-order
calculation, to make sense of the ill-defined vertices, we
obtain

C. D. FOSCO, F. C. LOMBARDO, and F. D. MAZZITELLI PHYSICAL REVIEW D 92, 125007 (2015)

125007-6



Fs;2 ¼ −
1

8β3
ð1 − ϵRÞ2

Z
d2x∥

Z
d2y∥½2Δabðx∥ − y∥ÞΔabðx∥ − y∥Þ þ Δþþ

33 ðx∥ − y∥ÞΔ−−
33 ðx∥ − y∥Þ

þ Δþ−
33 ðx∥ − y∥ÞΔ−þ

33 ðx∥ − y∥Þ þ Δþ−
3a ðx∥ − y∥ÞΔ−þ

3a ðx∥ − y∥Þ þ Δþþ
3a ðx∥ − y∥ÞΔ−−

3a ðx∥ − y∥Þ�ηðx∥Þηðy∥Þ: ð51Þ

This term, being quadratic in η, can be represented in (parallel) Fourier space in terms of a kernel fð2Þs ,

Fð2Þ
s ¼ 1

2

Z
d2k∥
ð2πÞ2 f

ð2Þ
s ðk∥; aÞj~ηðk∥Þj2; ð52Þ

where k∥ ¼ jk∥j. The function ZsðψÞ in Eq. (28) can be obtained from

ZsðψÞ ¼
1

2

∂fð2Þs

∂k2∥ ð0;ψÞ: ð53Þ

Note that, as ϵR;L are dimensionless, dimensional analysis implies that Zs is 1=ðβψ4Þ times a function of ϵR;L.
The explicit form for fð2Þs becomes

fð2Þs ðk∥; aÞ ¼ −
1

2β
ð1 − ϵRÞ2

Z
d2p∥

ð2πÞ2
�
~Δðp∥Þ ~Δðp∥ þ k∥Þ½ðp∥ · ðp∥ þ k∥ÞÞ2 − 2ϵRjp∥∥p∥ þ k∥jp∥ · ðp∥ þ k∥Þ�

þ ϵ2R

�
−

1

ϵR
jp∥j þ ~Δðp∥Þjp∥j2

��
−

1

ϵR
jp∥ þ k∥j þ ~Δðp∥ þ k∥Þjp∥ þ k∥j2

��
: ð54Þ

Subtracting from fð2Þs its value at a → ∞, we obtain, in the particular case ϵR ¼ ϵL ¼ ϵ,

fð2Þs ðk∥; aÞ ¼ −
1

2β
ð1 − ϵÞ2

Z
d2p∥

ð2πÞ2
�

1

jp∥∥p∥ þ k∥j
�
A−ðp∥ÞA−ðp∥ þ k∥Þ −

1

ð1þ ϵÞ2
�

× ½ðp∥ · ðp∥ þ k∥ÞÞ2 − 2ϵjp∥∥p∥ þ k∥jp∥ · ðp∥ þ k∥Þ�

þ jp∥∥p∥ þ k∥j
�
ϵ2Aþðp∥ÞAþðp∥ þ k∥Þ −

1

ð1þ ϵÞ2
��

; ð55Þ

where

A�ðp∥Þ ¼
1

2ϵ

�
1� rð1 − e−2jp∥jaÞ

1 − r2e−2jp∥ja

�
: ð56Þ

In the limit ϵ → ∞, and omitting a term independent of k∥,
it reduces to

fð2Þs ðk∥; aÞ ¼ −
2

β

Z
d2p∥

ð2πÞ2
jp∥∥p∥ þ k∥j

ð1 − e−2jp∥jaÞðe2jp∥þk∥ja − 1Þ :

ð57Þ

As expected, this result coincides with 1=β times the
one obtained for a Dirichlet scalar field in 2þ 1
dimensions [11].
It is interesting to remark that Eq. (55) can be obtained

with a rather different approach, based on the scattering
formula for the Casimir free energy [6], using standard
perturbation theory for the analysis of the incidence of

classical electromagnetic waves on rough surfaces of a
small slope [13] (see Appendix). The derivation presented
here sheds light on the gauge-fixing procedure in the
functional integral: the temporal gauge does not fix the
zero-frequency component of ~A0, giving rise to the scalar
contribution to the Casimir free energy.

B. The vector zero-mode contribution FvðψÞ
Again, within the DE approach to the second order, we

will have for Fs an expression with the form

½FvðψÞ�DE ¼
Z

d2x∥½VvðψÞ þ ZvðψÞ∂aψðxÞ∂aψðxÞ�:

ð58Þ

The functions Vv and Zv may be determined from the first
and third terms in the expansion of Fvðaþ ηÞ in powers of
η: Fvðaþ ηÞ ¼ Fv;0ðaÞ þ Fv;1ða; ηÞ þ Fv;2ða; ηÞ þ � � �.
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In what follows, we will consider separately the case of
magnetic materials with a permittivity such that Ω0ðxÞ
vanishes identically (for example, if the permittivity has a
regular zero-frequency limit) and the case of nonmagnetic
materials with ~μð0Þ ¼ 1 and Ω0ðxÞ ≠ 0.

1. The case ~μð0Þ ≠ 1 and Ω0 ¼ 0

In this situation, the Casimir free energy is given by

e−βF
ð0Þ
v ðψÞ ¼

Z
D ~Að0Þ

j e
− 1
4β

R
d3x 1

~μð0ÞðxÞ
ð ~Fð0Þ

jk Þ2 : ð59Þ

In order to evaluate the functional integral, we apply a
result we obtained in a previous paper [12], whereby we
have shown that the calculation of the effective action for a
gauge field in the presence of imperfect mirrors could be
mapped to a scalar field model. Indeed, using the duality

∂jϕ ↔ ϵjik∂iAk; ð60Þ

the free energy can be written in terms of the scalar field as

e−βF
ð0Þ
v ðψÞ ¼

Z
Dϕe

− 1
2β

R
d3x 1

~μð0ÞðxÞ
ð∂jϕÞ2 : ð61Þ

Therefore, the result for the previous integral can be
borrowed from the ones we have already obtained for
the scalar zero mode, by extending the results to 0 < ϵ < 1
and replacing ϵL;R → 1=μL;R.
One can readily check that, in the limit μL;R → ∞, one

recovers the TEmode of the perfect conductor case. Indeed,
taking the corresponding limit ϵL;R → 0 in Eqs. (31)
and (55), one obtains

fð2Þv ðk∥; aÞ ¼ −
2

β

Z
d2p∥

ð2πÞ2
ðp∥ · ðp∥ þ k∥ÞÞ2
jp∥∥p∥ þ k∥j

×
1

ð1 − e−2jp∥jaÞðe2jp∥þk∥ja − 1Þ ; ð62Þ

which is 1=β times the result for a Neumann scalar field in
2þ 1 dimensions.

2. The case ~μð0Þ ¼ 1 and Ω0 ≠ 0

The “potential” term in the DE can again be evaluated
exactly since it corresponds to a system where ~ϵð0ÞðxÞ
depends only on x3. An application of the Gelfand-Yaglom
theorem approach yields

VvðaÞ ¼
1

2β

Z
d2k∥

ð2πÞ2 logð1 − ρLρRe−2jk∥jaÞ; ð63Þ

where we have introduced

ρL;Rðk∥Þ ¼
Ω2

L;R

ðjk∥j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk∥j2 þΩ2

L;R

q
Þ2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk∥j2 þΩ2

L;R

q
− jk∥jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jk∥j2 þ Ω2
L;R

q
þ jk∥j

: ð64Þ

Having already illustrated the computation of the
Casimir free energy using the functional approach, and
in order to avoid a rather lengthy calculation, for the
second-order term we will use the known results based on
the scattering matrix approach. As shown in the Appendix,
the result for the second-order kernel is, in the particular
case ΩL ¼ ΩR ¼ Ω,

fð2Þv ðk∥Þ ¼ −
2

β

Z
d2p∥

ð2πÞ2
jp∥jρ2ðp∥Þ
gðp∥Þ

e−2jp∥ja
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 þ jp∥j2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ jp∥ þ k∥j2

q

þ ðp∥ · ðp∥ þ k∥ÞÞ2
jp∥j2jp∥ þ k∥jgðp∥ þ k∥Þ

�
; ð65Þ

where we introduced the notation

gðk∥Þ ¼ 1 − ρ2ðk∥Þe−2jk∥ja: ð66Þ

The perfect conductor limit is obtained as Ω → ∞. In
this limit, the difference of square roots in Eq. (65)
vanishes, the reflection coefficient ρ → 1 and the final
result correspond to a Neumann scalar field in 2þ 1
dimensions [see Eq. (62)].

IV. ANALYTICITY OF THE DERIVATIVE
EXPANSION

In this section we analyze the structure of the NTLO
correction to the PFA. As repeatedly emphasized in our
previous works [5,11,12], the DE is based on the low-
momentum expansion of the kernels that appear in the
perturbative evaluation of the Casimir free energy, when
the shape of the interface between different media is
ψðx∥Þ ¼ aþ ηðx∥Þ with a ≪ η (in the present work, these

kernels are fð2Þs and fð2Þv ).
If the kernels admit an expansion in powers of k2∥, the

NTLO correction to the PFA can be written locally in terms
of derivatives of ψ . In the opposite case, when the low-
momentum behavior is nonanalytic in k2∥, the NTLO
correction is nonlocal. For perfect conductors, we have
shown that at finite temperature the TE contribution contains
a nonanalytic contribution [11]. The origin of the non-
analyticity is in the zero-frequency mode, which behaves as
a scalar field with Neumann boundary conditions. Imperfect
boundary conditions may restore the analyticity of the
kernels, at least in the toy model considered in Ref. [12].
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A question that naturally suggests itself is whether the
departure from perfect conditions will always restore the
analyticity. To that end, the question we address here is
whether the boundary conditions for the EM field in the
presence of real materials at finite temperature make the
kernels analytic or not—in other words, if the resulting
NTLO correction to PFA, for realistic conditions at finite
temperature, is spatially local or not.
In order to analyze the low-momentum behavior of fð2Þs

and fð2Þv , we can proceed as follows: we first expand the
integrand defining both kernels [see Eqs. (55) and (65)] in
powers of k2∥ and then look for eventual infrared diver-
gences in the term proportional to the first power of k2∥,
which, when it is well defined, constitutes the NTLO
correction to PFA in the DE approach.
The expansion of jp∥ þ k∥j in powers of k∥ generates

inverse powers of p∥: assuming that k∥ points in the x
direction, we have

jp∥ þ k∥j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp∥j2 þ jk∥j2 þ 2jp∥jk∥j cos θ

q

≃ jp∥j þ cos θjk∥j þ
1

2jp∥j
sin2θjk∥j2 þ � � � ;

ð67Þ
so the term proportional to k2∥ is inversely proportional to
p∥. This is one source of potential infrared divergences.
Additional inverse powers of p∥ may appear when the
reflection coefficients tend to one [see Eq. (66)].
For the scalar kernel [Eq. (55)], the functions A� and

their derivatives contain at most one inverse power of p∥.
Therefore, by power counting, one can check that for any
value 0 < ϵ < ∞, there are no infrared divergences and the
NTLO correction to PFA is local (the consideration of
values 0 < ϵ < 1 is useful, since to analyze the case of
magnetic materials, we apply the duality μ≡ 1=ϵ).
In the limit ϵ → ∞, one obtains the Dirichlet kernel,

which does not contain infrared divergences. Using this
limit, it is easy to see that, for high temperatures, the DE of
the Casimir free energy for the Drude model is well defined
and coincides with that of a Dirichlet scalar field. This is
consistent with the exact results for the sphere-plane
geometry obtained in Ref. [17], where it is shown that
the LO and NTLO contributions to the free energy are the
same for a Dirichlet scalar and a Drude metal.
In the opposite limit ϵ → 0, the result corresponds to

the Neumann kernel, which has an infrared divergence
when expanded in powers of k∥. Therefore, we conclude
that the scalar contribution generates a well-defined DE and
that magnetic materials regulate the nonanalyticity of the
TE mode when considering very large (but not infinite)
values of μ.
We have confirmed these results with numerical

evaluations. In Fig. 1 we plot Zs, defined in Eq. (53) as

a function of ϵ. Zs ¼ 0 for ϵ ¼ 1 and tends to the 2þ 1
Dirichlet value [11]

ZD
s ¼ −

Γð3=2Þ½1þ 6ζð3Þ�
12ð4πÞ3=2 ≃ −0.0136 ð68Þ

for large values of ϵ.
In Fig. 2, we plot Zv in the case of magnetic materials as a

functionof the permeabilityμ. Asdescribed in Sec. III B 1,Zv
formally coincides withZs after the replacement ϵ → 1=μ, so
the numerical evaluation is similar to the previous one. Zv
vanishes as μ → 1 and diverges for μ ≫ 1, as expected for a
Neumann mode in 2þ 1 dimensions.
Let us now consider the vector zero-mode contribution in

Eq. (65). The term proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ jp∥ þ k∥j2

q
does

not generate inverse powers of p∥ when expanded in
powers of k∥ (the plasma frequency acts as an infrared
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FIG. 2 (color online). Numerical evaluation of ZvðaÞ (in units
of βa4) for the magnetic case as a function of μ. Zv ¼ 0 for μ ¼ 1
and diverges when μ ≫ 1, as expected for a 2þ 1 Neumann
mode.
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FIG. 1 (color online). Numerical evaluation of ZsðaÞ (in units
of βa4) given in Eq. (53) as a function of ϵ. Zs vanishes when
ϵ → 1 and tends to the value for a 2þ 1 Dirichlet mode
(−0.0136) when ϵ → ∞.
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regulator). To analyze the last term, it is useful to consider
the identity

ðp∥ · ðp∥ þ k∥ÞÞ2
jp∥∥p∥ þ k∥j

¼ jp∥∥p∥ þ k∥j −
jp∥jsin2θ
jp∥ þ k∥j

jk∥j2: ð69Þ

The second term in the above equation generates an
infrared divergence in the vector kernel. Indeed, when
inserting this identity in Eq. (65), the term proportional to
sin2 θ reads, up to order jk∥j2,

−
2jk∥j2
β

Z
d2p∥

ð2πÞ2
ρ2ðp∥Þ
g2ðp∥Þ

e−2jp∥jasin2θ: ð70Þ

For small values of p∥, we have ρ2 ≃ 1 and g≃ p∥, and
therefore the integral above is logarithmically divergent in
the infrared. This result shows that the NTLO correction to
PFA for the zero-frequency vector mode is nonlocal as long
asΩ is different from zero. Unlike for magnetic materials, a
finite value of Ω does not regulate the infrared divergence.
This can be traced back to the fact that the reflection
coefficient ρ2 → 1 as p∥ → 0 for any value of Ω.

V. CONCLUSIONS

In this paper we have analyzed in detail the zero-
frequency contribution to the Casimir free energy in the
presence of real materials. We used a functional approach
and clarified the use of the temporal gauge in the context of
the Casimir effect, since it does not fix the zero frequency
mode of ~A0. This mode does, in fact, generate a TM
contribution to the free energy.
We have also computed the kernels that are necessary to

obtain the DE of the Casimir free energy in order to discuss
the validity of the DE for real materials. We have shown
that the TM contribution does always produce a NTLO
correction to the PFA, which is local in derivatives of the
function ψ that defines the shape of the curved interface.
The same happens for the TE contribution in the case of
magnetic materials. There is only one situation where the
DE would fail, that is, when ω2ϵðωÞ → Ω2 ≠ 0 as ω → 0
for both mirrors [18]. In terms of the models usually
considered in the Casimir literature to describe real materi-
als, this condition corresponds to the plasma model.
In summary, the nonanalyticities we observed for perfect

conductors in our previous work [11] survive only under
the assumption of perfectly lossless materials. Related to
this, in recent works [10,19] it has been claimed that the
Lifshitz-Matsubara formula does not apply for the plasma
model and that it should be understood as the lossless limit
of the Drude model (note, however, that this claim has been
contested in Ref. [20]). If this were the case, then Ω2 would
vanish, and there would be no vector (or TE) contribution to
the zero mode. Consequently, the NTLO correction to PFA
would be local even in this lossless limit.
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APPENDIX: THE SCATTERING APPROACH

In this appendix we outline the calculation of fð2Þ ¼
fð2Þs þ fð2Þv using the approach of Ref. [6] (note that fð2Þ has
been computed previously in Ref. [21], using a different
approach). We have [6]

fð2Þðk∥; aÞ ¼ −
1

β

Z
d2p∥

ð2πÞ2
X
Q

jp∥jrQðp∥Þ
gQðp∥Þ

e−2jp∥ja

×

�
ðB2ÞQQðp∥;p∥;p∥ þ k∥Þ

þ 2
X
Q0

jp∥ þ k∥jrQ0 ðp∥ þ k∥Þ
gQ0 ðp∥ þ k∥Þ

e−2jp∥þk∥jaBQQ0

× ðp∥;p∥ þ k∥ÞBQ0Qðp∥ þ k∥;p∥Þ
�
; ðA1Þ

where the indicesQ,Q0 denote the two polarizations, rQ are
the Fresnel reflection coefficients and

gQðp∥Þ ¼ 1 − r2Qe
−2jp∥ja: ðA2Þ

We are assuming here that both media have the same EM
properties.
The crucial ingredients in the above formula are the

coefficients BQQ0 and ðB2ÞQQ, which describe the scattering
of a classical EM wave at the rough interface between two
homogeneous half-spaces. These coefficients have been
computed inRef. [13] using small-slope perturbation theory.
The notation there is slightly different: BQQ0 → B22

αα0 and
ðB2ÞQQ → iðB2Þ22αα0 . The situation where both media have
the same permittivity ϵ is obtained by setting ϵ1 ¼ ϵ and
ϵ2 ¼ 1 in the results of Ref. [13].
As the explicit formula for fð2Þ is needed for the analysis

of the emergence of nonanalyticities of theDE,wewill work
it out here. The coefficients BQQ0 are given in Eq. (4.15) of
Ref. [13].One can check that, aswe are considering the zero-
frequency mode, they vanish for Q ≠ Q0. Therefore, fð2Þ in
Eq. (A1) has two separate contributions: Q ¼ Q0 ¼ 1 and

Q ¼ Q0 ¼ 2, which correspond to the scalar ðfð2Þs Þ and

vector ðfð2Þv Þ contributions, respectively. The coefficients
ðB2ÞQQ are given in Appendix D of Ref. [13].

1. Scalar contribution

The Fresnel reflection coefficient reads, in this case,

r1 ¼
ϵ − 1

ϵþ 1
; ðA3Þ
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and the scattering coefficients,

B11ðp∥;p0
∥Þ¼−

ðϵ−1Þ
ðϵþ1Þ2

�
ϵþ p∥ ·p0

∥

jp∥∥p0
∥j
�

ðB2Þ11ðp∥;p∥;p0
∥Þ¼

2ðϵ−1Þ
ðϵþ1Þ2jp∥j2

� ðϵ−1Þ
ðϵþ1Þjp0

∥j
ðϵjp∥j2jp0

∥j2

−ðp∥ ·p0
∥Þ2Þþ

4ϵjp∥j
ðϵþ1Þp∥ ·p0

∥

�
: ðA4Þ

Inserting Eq. (A4) into Eq. (A1), one obtains the scalar
contribution to fð2Þ. After a rather long calculation, one can
show that the result coincides with Eq. (55).

2. Vector contribution

For Q ¼ 2, the Fresnel reflection coefficient reads

r2 ¼
jk∥j −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk∥j2 þ Ω2

q

jk∥j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk∥j2 þΩ2

q : ðA5Þ

Note that it coincides with the coefficient −ρ defined in
Eq. (64), in the particular case ΩL ¼ ΩR ¼ Ω.
On the other hand, we have

B22ðp∥;p0
∥Þ ¼

Ω2	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ jp∥j2

q
þ jp∥j


	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ jp0

∥j2
q

þ jp0
∥j

 p∥ · p0

∥

jp∥∥p0
∥j

ðB2Þ22ðp∥;p∥;p0
∥Þ ¼ −2ρðp∥Þ

�ðp∥ · p0
∥Þ2

jp∥j2jp0
∥j

þ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 þ jp∥j2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ jp0

∥j2
q 
�

: ðA6Þ

Inserting Eq. (A6) into Eq. (A1), one obtains the vector contribution to fð2Þ, which is given in Eq. (65).
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