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Abstract
Deriving minimum evolution times is of paramount importance in quantum
mechanics. Bounds on the speed of evolution are given by the so called
quantum speed limit (QSL). In this work we use quantum optimal control
methods to study the QSL for driven many level systems which exhibit local
two-level interactions in the form of avoided crossings (ACs). Remarkably, we
find that optimal evolution times are proportionally smaller than those pre-
dicted by the well-known two-level case, even when the ACs are isolated. We
show that the physical mechanism for such enhancement is due to non-trivial
cooperative effects between the AC and other levels, which are dynamically
induced by the shape of the optimized control field.

Keywords: quantum mechanics, optimal quantum control, quantum speed
limit, quantum state transfer, avoided level crossings

Introduction

The ability to precisely control quantum systems in a coherent way is one of the major
challenges faced nowadays by physical sciences. This is because many technological
developments, from electronic nanodevices [1, 2] to quantum simulators and computers [3, 4]
require unprecedented control over quantum systems. In this context, a lot of recent work has
been devoted to the development of quantum control methods, both in theoretical [5, 6] and
experimental [7, 8] grounds.

An important part of theoretical quantum control analysis is the derivation of optimal
evolution times [9, 10], mainly because it is desirable for quantum operations to be imple-
mented in the fastest possible way to avoid unwanted environmental effects which can
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destroy the coherence properties of the system. This task is usually tackled by quantum
optimal control methods, either analitically [10–13] or numerically [14, 15]. The typical
problem in optimal control is to derive the field t( ) which optimizes a particular dynamical
process (e.g. a transition from an initial state 0∣ to another goal state g∣ ) for a system
described by a Hamiltonian H ( ).

The issue of time-optimal evolution is deeply connected with the fundamentals of
quantum theory, as constraints on the speed of evolution are imposed by the time–energy
uncertainty relation. The formal study of such constrains, due originally to Mandelstam and
Tamm [16], has led to the concept generally known as quantum speed limit (QSL) [17–22].
The QSL determines the theoretical upper bound on the speed of evolution of a quantum
system, and has been studied for both closed and open systems [23–26]. The connection
between the time-dependent formulation of the QSL and quantum control has also been
studied [27–29]. Although the usual formulation of the QSL can sometimes give no mean-
ingful bound for the evolution time in a quantum process, a recent work demonstrated a deep
connection between the implementation of optimal control and QSL [30]. In particular, for a
two-level system it was shown that the performance of the optimization is directly influenced
by the relation between the (fixed) evolution time T fed to the algorithm and the QSL time
TQSL: the process did not converge if T TQSL. This result motivated the use of quantum
optimal control as tool that allows to study the QSL in an heuristic fashion, specially for
systems which are driven externally and are too complex to be studied analitically.

In this letter, we implement quantum optimal control as a tool to study the QSL in many-
level (i.e., more than two) systems, which show several avoided-crossings (ACs) in their
energy spectrum. We show that the QSL time for processes involving more than one AC is in
general smaller than the algebraic sum of the optimal times for each crossing, even when they
appear to be well-isolated. We base our study on the analysis of a three-level system which
shows two ACs. Through analysis of the obtained optimal fields, we study the physical
mechanism involved in such speed up. We show that this field generates a non-trivial
occupation of the levels which are initially uncoupled from the AC under consideration, but
are on resonance with the applied field. Finally we extend our analysis to general N-level
systems, and show that the speed up reaches a saturation value as N increases.

Three-level model and optimal control

We are interested in analyzing quantum systems which show ACs in their energy spectrum as
an external parameter is varied. This model is of paramount importance in physics as it
accounts for many interesting quantum phenomena, such as Landau–Zener transitions [31],
Landau–Zener–Stuckelberg interferometry [32] and quantum phase transitions [33]. More-
over, ACs can serve as a pathway for designing robust control protocols [34–36]. Real
quantum systems usually present a complicated many-level spectrum with many ACs, and in
most of the cases mentioned above, the analysis relies on the fact that one of such ACs can be
regarded as isolated.

We begin by considering the simplest extension of the two-level model showing one AC.
Consider a three-level system described by the following Hamiltonian matrix given in the
diabatic basis 0 , 1 , 2{∣ ∣ ∣ }
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where we define V (H0) as the diagonal (non-diagonal) part of H ( ). This model has been
widely studied in quantum optics, as it is suitable for describing a three-level atom in a Λ
configuration [37, 38]. In that context, the control parameters are usually A and B, which
leads to the well-known STIRAP protocol for three-state control [38]. Here, we take λ to be
our control parameter, which we allow to be time-dependent, while A, B and 0 are fixed
parameters of the system. In figure 1(a) we show the energy spectrum of Hamiltonian (1) as a
function of λ. If ,A B0 , the system presents two well-defined ACs, located at

0A ( B 0), with a mininum gap equal to A ( B). Under these conditions, it
can be considered that only two states contribute to the dynamics of the system at each AC,
while the remaining one can be adiabatically eliminated [37]. Here, we will focus on control
processes that connect some initial diabatic state 0∣ to a target g∣ . The simplest example is
depicted in figure 1(b), where 10∣ ∣ and 0g∣ ∣ . As those states are involved in the
AC labeled ‘A’, it suffices to set the control field equal to A for a time TS A

1( ) in order

Figure 1. (a) Eigenenergies of the Hamiltonian (1) as a function of the control
parameter . The energy levels form two isolated avoided crossings at A and B (for
this example we used 10A0 and 1B A ). The eigenstates corresponding to
each level (far from the ACs) are depicted with matching colours. (b) Schematics of
control process I, which involves AC ‘A’. Here, the initial state is 1∣ and the goal
state is 0∣ . Below, we show a possible choice for the control field t( ) that generates
such process. (c) Same as (b) but for process II, involving both ACs. The initial state
is 0∣ and the goal state is 2∣ .
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to generate the desired evolution. Moreover, state 2∣ does not take part in the process, and so
this case could be described by a two-level system. Indeed, it has been shown [10] that, in this
model, TS

1( ) is indeed the minimum possible time required to connect two orthogonal states (as
long as the minimum gap is fixed). We call the associated control field t( ) a ‘sudden-switch’
field [39], which is a special case of the so-called composite-pulse protocol [10, 40], which is
of bang-bang type (see also the discussion in [29]). We point out that this result can be
interpreted in terms of the usual QSL formulation, which is derived from the time-
independent Mandelstam–Tamm inequality [16]

T
E

T
1

arccos , 20( )( ) ( )

where T is the evolution time E2 is the variance of the Hamiltonian, E H H2 2〈( 〈 ) .
An AC as discussed above can be described by a Hamiltonian H 2 x z( ) , where i

are the Pauli matrices. Setting 0 for the sudden-switch field, and picking the initial state
0∣ as an eigenstate of z, inequality (2) gives precisely T .
A slightly more complicated process for the three-level system is depicted in figure 1(c).

There, 00∣ ∣ and 2g∣ ∣ , which are not directly connected by any of the ACs in the
spectrum. However, extending the previous protocol is straightforward: starting from 0∣ , the
control field t( ) can be kept constant at A as before, and then switch instantly to B, where
is kept constant for a time B. In a such way, we can apply two succesive sudden-switch
fields to generate the desired process. As a consequence, the total evolution time will be the
sum of the required elapsed time at each individual AC,

T . 3S
A B

2 ( )( )

Albeit being composed of two optimal protocols, it is not a priori clear that the multiple
sudden-switch is also optimal. We recurr to optimal control methods in order to find the QSL
time for this process. We use a Krotov optimization algorithm, as described in many previous
works (see [42, 43]). This procedure takes as an input the fixed evolution time T, an initial
guess for the control field t0 ( )( ) and, of course, the Hamiltonian (1) and both the initial and
final states 0∣ and g∣ . Each step k of the algorithm delivers an updated control field tk ( )( )

and the corresponding evolved state tk∣ ( )( ) .
We define the infidelity T1k g

k 2∣〈 ∣ ( ) ∣( ) as a measure of the success of the
control process in the k-th iteration. In our case, for every value of 0 (the distance between
the ACs), several runs of the algorithm were realized for different evolution times T. The
initial guess was chosen in the following way. For each T we take the sudden switch field (see
figure 1) and appropiately shrink or expand it to fit each value of T. The field is then smoothed
over to remove the discontinuities of the original function (the results we present are inde-
pendent of the particular choice of smoothing), and also added an small correction linear in
time. We will expand on the shape of the control fields later on.

QSL time and optimal control fields

In order to obtain the desired QSL time for the model described above, we follow the method
introduced in [30]. The basic idea is that the fidelity 1k k cannot grow indefinitely if
T should be smaller than the QSL time. Formally, for each value of T we look at the second
derivative of k (with respect to k) and analyze its sign. Then, the minimum value of T which
gives k 0( ) asymptotically, is chosen as the QSL time.
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We applied this procedure to the two control process discussed, and calculated T i
QSL
( )

(i = 1, 2) in each case for several values of 0, the parameter which measures the distance
between the ACs in the energy spectrum (see figure 1). The results we obtained are shown in
figure 2. In the first case, it can be seen that TQSL

1( ) is considerably larger than TS A
1( ) for

small 0, see figure 2(b). This is, in principle, natural since in this regime the AC ‘A’ is
strongly affected by the AC ‘B’, which in turn leads to significant variations of the interaction
rates (see [37] for more details). Away from that regime, TQSL

1( ) converges to TS
1( ), which is the

well-known result for the two-level system, as discussed above. This result is indeed rea-
sonable, since only the states 2∣ and 1∣ are involved in the process, and they both interact at
AC ‘A’. However, it is interesting to point out that this behaviour allows us to quantitatively
define the regime in which the ACs are well isolated. In the case shown in the figure, for
which B A, this is achieved for 5A0 .

For process II, which involves both ACs, we first analyzed how the calculated QSL time
changes when the size of one the gaps is modified, for a fixed value of 0. Results are shown
in figure 2(c), where it can be seen that TQSL

2( ) in fact scales as B
1, as expected from the

dependance of the prediction TS
2( ) with the magnitude of the gaps, see expression (3). Indeed,

the obtained data points can be fitted by T TSQSL
2 2( ) ( ), where 1. This results implies that

the calculated QSL time is smaller than TS
2( ). Remarkably, this result holds in all cases, even

for large 0. The difference between TQSL
2( ) and our prediction is larger for small 0, and

decreases as the ACs are brought apart. However, for A0 as large as 100, the difference is
still larger than 7%. This striking behaviour indicates that the control optimization can
generate successful (i.e., with arbitrary fidelity) control processes which are significantly
shorter in time than the double sudden-switch, a process wich is time-optimal at each AC, as
discussed above.

Figure 2. (a) QSL time calculated from the optimal control procedure (see text for
details) as a function of A0 , for processes I (crossing one AC) and II (crossing two
ACs). Dashed lines correspond to the time required by the sudden-switch protocol in
each case, TS

1( ) and TS
2( ). (b) Close-up of (a) in the region of low A0 , where the ACs

strongly interact. (c) QSL time for the case 5A0 as a function of B A, for
process II. The dashed line corresponds to the prediction (3). The same for the full line,
but rescaled.
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In order to further analyze these results, we studied the optimal control fields derived
from the quantum optimal control procedure, and the corresponding evolutions they generate.
An example is shown in figures 3(a) and (b), for a particular value of A0 . There, it can be
seen that t( ) develops oscillations which are mounted on a step-wise function, the latter
being a feature that is preserved from the initial guess. For all values of 0, the final shape of
the field can be characterized mainly by the maximum amplitude Amax and the frequency f of
the oscillations, which we obtain by calculating the fourier transform of t( ) . We plot those
quantities as a function of the distance between the ACs in figure 3(c). Remarkably, we found
that both scale linearly with 0. Moreover, the equality f 20 seems to hold perfectly
for all cases considered. This analysis indicates that, in this model, the optimization leads to a
control field that is not only reliable, but also simple and robust in the sense that it can be fully
accounted for by means of just a few paramaters, which show a well-defined dependance with
the rest of the systems parameters, see figure 3(c). This result is indeed remarkable in at least
two ways. In a pragmatic sense, it provides the means to develop a deeper theoretical
understading of the time dependent problem. In fact, an explicit control protocol can be
formulated and solved analytically for this problem [44]. But also, it provides further insight

Figure 3. (a) Initial and optimized control fields t( ) for process II, using 1B A

and 10A0 . (b) Time evolution of the populations Pk(t) for each one of the
diabatic states k∣ (k 0, 1, 2), for the same parameter values as (a). Evolution time is
fixed at T T T0.91 SQSL

2 2( ) ( ). The maximum value achieved by P2 is shown. (c)
Frequency f (right axis) and maximum oscillation amplitude Amax (left axis) as a
function of 0. Dashed lines indicate lineal dependences of both quantities with 0.
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into the power of quantum optimal control theory. It is interesting to point out that, for a two-
level model, optimal control techniques have been reported to lead (by extrapolation) to an
analytical optimal control field [40]. However, for more complex systems, this procedure is
expected to lead to complicated, non-analytical control fields. Also, we point out that some
interesting discussions on the relation between complexity and quantum optimal control have
been recently put forward in the literature [46, 47].

We will now describe how the particular shape of the optimized fields provides the
physical mechanism for the overall speed-up of the evolution. As pointed out before, the field
preserves the step-wise feature of the original sudden-switch field but with the novelty of
showing oscillations. This behaviour can be understood in terms of navigation of the energy
spectrum (figure 1). At the beginning of the protocol, the field activates the 0 1∣ ∣
interaction by setting A. As a consequence, the initial population of state 0∣ starts to
move to state 1∣ . Simultaneously, the control parameter λ starts to oscillate both rapidly (i.e.
with a frequency f A0 ) and with large amplitude (again, of the order of 0). This
makes the control parameter λ navigate areas of the spectrum close to the AC ‘B’. As a
consequence, the previously uncoupled state 2∣ starts to get populated. Note that this is the
target state g∣ for this process. When the first step is finalized, i.e. when the mean value of λ
switches to B, the three diabatic states have non-zero population. This is the key of the
speed-up with respect to the sudden-switch field: the target state is already activated in the
first half of the evolution. The protocol finishes by activating the dominant interaction
1 2∣ ∣ , so that the population of 2∣ continues to grow to 1. As happened in the first half of
the evolution, the field also oscillates, now to drive λ close to AC ‘A’ with the purpose of
depopulating state 1∣ . It is interesting to point out that the simultaneous activation of multiple
ACs seen in this process, can be regarded as an analogous effect to the wavefunction
spreading reported in the optimal state transfer in spin chains [30].

Going through ACs in N-level systems

In the previous paragraphs we showed how a process involving two ACs showed an
enhancement of the QSL time. This result motivates the question of wether this phenomenon
can be further exploited by adding more levels to the system. In order to adress this problem,
we generalize the three-level model described by the Hamiltonian (1) to a N-level system.
This can be done straightforwardly by defining the following Hamiltonian

H n n n

n n n

n n n n

2 2

2 1 2 1

2
1 1 , 4

N
n

n

n

N
n

0
0

0
0

0

2

N

N

1
2

2
2

)

( )( ) ∣ 〈 ∣

∣ 〈 ∣

(∣ 〈 ∣ ∣ 〈 ∣ ( )

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

where x[ ] denotes the integer part of x. We schematically depict the energy spectra of these
systems in figure 4(a). Note that this models are constructed from the usual two-level
spectrum with one AC by succesively adding diabatic levels which are parallel or
perpendicular between each other. For N = 3, this scheme generates two crossings, but for
N = 4 and N = 5, there are four and six crossings, respectively. We wish to study control
processes involving N 1( ) ACs, as indicated in the figure. To do so, we construct the
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Hamiltonian in such a way that only those crossings are avoided, while the others must be
kept closed (i.e. exact degeneracies in the spectrum). Note that there is no loss of genereality
in making this assumption. If all the crossings are non-degenerate, the shortest control process
which connects two-diabatic states will be the one which goes through the minimum possible
amount of ACs (most likely, less than N 1). By closing some of the ACs, we are just
forcing the system to follow a deliberate path.

For this general model, we applied a procedure analogous to the one used for N = 3 and
extract TQSL as a function of N. For simplicity, we show here results for the case in which any
adjacent crossings are separated by a distance 0 and all the gaps have equal sizes n for
all n. Note that the sudden-switch protocol introduced at the beggining of this letter can be
trivially adapted to this model. For a process going through N 1 ACs in a N-level system,
the total evolution time is proportional to N and given by

T N 1 . 5S
N 1 ( ) ( )( )

The figure of merit for this analysis can be defined as the ratio between the calculated
QSL time and TS

N 1( ). We plot this quantity for several values of N in figure 4(b), where it can
be seen that it decreases as N grows. This remarkable result shows that the control processes
benefits from the existence of more levels. It is even more interesting to note that this result
can be derived just by considering the speed-up already registered in the N = 3 case. As seen
above, the key to the speed-up is that in each step, the control field draws a small population

Figure 4. (a) Schematic representation of some the N-level processes considered in this
work. Gray lines correspond to the diabatic energy levels as a function of the control
parameter. Blue lines show the path of the control process. The crossings between the
levels which are traversed by the blue lines are avoided, while the others are exact (i.e.
they do not interact, see main text for more details). (b) Ratio between the calculated
QSL time TQSL and TS

N 1( ) as a function of N. Dashed line corresponds to the estimaton
in ec. (7). The parameter τ was chosen so to fit the data. For all cases, the distance
between the ACs was set to 100 , where 1 is minimum gap for all the ACs.
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to an adjacent level, originally not coupled to the AC. Also, given the shape of the spectrum,
there cannot be more than three ACs simultanously active during the protocol: the one
activated by the sudden-switch field and its adjacent neighbors. As a consequence, the QSL
time will be smaller or equal than TS

N 1( ) for all N 2, and the difference is proportional to
N, so that we can write

T T N 2 6S
N

QSL
1 ( ) ( )( )

for some value of TS
N 1( ). This leads to

N
N

1
2
1

. 7( )

The parameter N( ) is then found to decay with N to a constant value below 1, thus
proving the existence of a speed-up for this control process.

Final remarks

In this letter we studied the QSL of systems which show more than one (localized) AC in their
energy spectrum. For this purpose we exploited quantum optimal control methods to find the
minimum evolution time required to implement control processes involving many ACs. We
found that the procedure introduced in [30] allows to correctly discriminate the QSL time for
N-level systems with multiple ACs. By analizing two different control processes in a three-
level model, we show the minimum time required to cross two ACs is smaller than the sum of
the optimal times at each crossing. We then generalized this result to N-level systems,
showing that the derived speed-up still holds but reaches a saturation points as N increases. As
an interesting byproduct of our analysis, we found that the optimized control fields derived in
this procedure are easily described by means of a few well-defined parameters. Thanks to that,
we identified that the physical mechanism that cause the QSL enhancement is based on the
collective effects between the states which interact at each AC and others, which are dyna-
mically coupled by the control fields. For future studies, it would be interesting to relate the
observed phenomenon to the recently demonstrated environment assisted speed-up of the
evolution of a quantum system [45]. In this context, the systems initial 0∣ and final states
g∣ could be interpreted as forming a two-level system interacting with an environment

which produces the aforementioned speed-up via a non-markovian effective dynamics.
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