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The inverse problem of capillary filling, as defined in this work, consists in determining the
capillary radius profile from experimental data of the meniscus position l as function of time t. This
problem is central in diverse applications, such as the characterization of nanopore arrays or the
design of passive transport in microfluidics; it is mathematically ill-posed and has multiple solutions,
i.e. capillaries with different geometries may produce the same imbibition kinematics. Here a
suitable approach is proposed to solve this problem, which is based on measuring the imbibition
kinematics in both tube directions. Capillary filling experiments to validate calculation were made
in a wide range of length-scales: glass capillaries with radius around 150 µm and anodized alumina
membranes with pores radius around 30 nm were used. The proposed method was successful to
identify the radius profile in both systems. Fundamental aspects also emerge in this study, notably
the fact that the l(t) ∝ t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform
cross-sectional capillaries.

PACS numbers: 47.85.-g, 47.55.nb, 02.30.Zz

Though capillary-driven imbibition of micro and nano
tubes has been well-documented over the last century [1],
the topic is experiencing a renascence at present. This
is because capillarity phenomena enter a wide variety of
systems that range from living organisms to lab-on-a-
chip devices. Several fundamental and practical aspects
of the phenomena are currently being discussed in the
literature, such as the effects of inertia [2, 3], wall rough-
ness [4], contact angle [5], and strong confinements [6].
In particular, here we deal with the capillary filling of
tubes with non uniform cross-sections, in the fluid dy-
namic regime where the fluid kinematics is controlled by
viscous dissipation [2, 3]. Thus, if inertial and gravity
effects are neglected, the meniscus velocity u = dl/dt,
where l is the meniscus position and t is time, is given by

u (l) =
γ cos(θ)

4µr (l)
3 ∫ l

0
r (x)

−4
dx

(1)

In this expression, x is the axial coordinate along the
tube, r(x) is the axially dependent tube radius, µ is the
fluid dynamic viscosity, γ is the air-liquid surface tension,
and θ is the equilibrium contact angle made by the liquid
with the solid. The case of ideal surfaces is considered,
with smooth radius variations and homogeneous proper-
ties along the tube, so that the variation of the contact
angle is negligible in relation to the equilibrium one. Eq.
1 derives from the balance between Laplace driving force
and the viscous resistance in capillaries of circular cross
section, and it has been used by several authors to pre-
dict the instantaneous position of the meniscus, given a
function r(x) specified beforehand [7–10]. That proce-
dure may be designated direct, or forward, calculation.
In fact, in the context of Eq. 1, the inverse problem con-
sists in determining a completely unknown function r(x)
from the curve of experimental data u(x). This possibil-

ity has not been discussed in the literature before, and it
is the objective of the present work.

It is worth to reveal here that extracting r(x) from Eq.
1 is an ill-posed problem, meaning that it has multiple
solutions. This may appear rather trivial from the view
point of mathematics, however it represents a novelty
in physics of fluids: capillaries with different geometries
may have the same l(t) curve, including the well-known
relation l(t) ∝ t1/2, i.e. Lucas-Washburn(LW) result
[11, 12], which has been invariably associated to uniform
capillaries. Apart from the fundamental aspect, solving
the inverse problem of Eq. 1 involves several potential ap-
plications, for example in the design of capillary pumps
for microfluidic systems, where the liquid handling is en-
coded in the geometric design of microchannels [13]. On
the other hand, determining r(x) from the kinematics of
capillary filling offers the possibility to characterize the
inner geometry of nanopores in a non destructive manner
(the detailed internal structure of nanochannels is still
inaccessible to ordinary techniques used in nanotechnol-
ogy laboratories). This is of great interest in the case of
nanoporous substrates, which are produced for a number
of applications, for instance in optofluidic microsystems
[14].In any case, solving the inverse problem of Eq. 1
presents several difficulties, as it is discussed below.

Eq. 1 can be converted into a differential equation by
using the Leibnitz rule, which yields

d

dl

[
r(l)u(l)

1/3
]

= −4u(l)
4/3

3α
(2)

where α = γ cos(θ)/µ is a coefficient that characterize
fluid properties, and can be assumed as a constant for a
given temperature. Integrating Eq. 2 leads to an explicit
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FIG. 1: (a) Relative meniscus position as a function of nor-
malized time for a capillary tube of uniform radius R and
length L; tfill = 2L2/(αR) is the filling time. (b) Functions
r(x) obtained from Eq. 3 with u(l) calculated from data l(t)
on the left, for different values of r(l0). (c) Fluid volume
fraction related to the meniscus position as a function of nor-
malized time for a capillary tube of uniform radius R and
length L. (d) Functions r(x) obtained from Eq. 4 with Q(v)
calculated from data v(t) on the left, for different values of
r(v0).

expression of the unknown function r(l),

r(l) =

[
r(l0)u(l0)

1/3
+

4

3α

∫ l0

l

u(l)
4/3

dl

]
u(l)

−1/3
(3)

where l0 is an arbitrary limit of integration. The multi-
plicity of solutions of Eq. 3 is illustrated in Fig. 1. If one
introduces u(l) as the meniscus velocity corresponding to
a cylindrical capillary of radius R, that is, from the curve
l(t) corresponding to LW result [Fig. 1(a)], then Eq. 3
yields an infinite family of curves r(x) parameterized by
r(l0), as shown in Fig. 1(b).

From the physical point of view, a remarkable fea-
ture here is that any of the tube profiles r(x) plotted
in Fig. 1(b), when imbibed by capillary action, produces
the curve l(t) plotted Fig. 1(a), which in this example
corresponds to the LW dynamics for cylindrical tubes. It
means that, in doing the direct calculation with Eq. 1,
there are several capillary geometries that produce the
same meniscus velocity u(l).

Concerning the inverse problem, it is evident that iden-
tifying the right r(x) solution among the parameterized
family of curves demands additional information from
the problem. One needs to know r(l0) or any single data
other than the curve u(l), for example the total tube vol-
ume. The previous knowledge of symmetric variations of
the tube profile is also useful for this purpose. Actually,
in Eq. 3, r(l0) is the boundary condition required to con-
fer uniqueness to the solution. In this regard, choosing
l0 = L is the most appropriate option to compute the

integral in Eq. 3, provided the ending radius r(L) could
be measured. Nevertheless, this calculation procedure
propagates the inaccuracy of r(L) to the entire solution
r(x).

Alternatively, here we propose a different strategy that
avoids the necessity of knowing the radius at any posi-
tion. It takes advantage of the possibility to measure
capillary filling in both tube directions: from x = 0 to L,
and from x = L to 0. The second measurement, when
processed through Eq. 3, generates a new family of r(x)
curves, where one of them must reproduce the menis-
cus velocity of the first measurement. Thus the proce-
dure allows one to identify the right function r(x) that
represents the tube geometry. It is worth to add that,
since this method produces two solutions, now the in-
verse problem is over determined. Nevertheless, cross-
checking the two independent solutions also serves as a
consistency test for the model.

In order to validate this approach, experiments of cap-
illary filling were made in a wide range of length-scales.
Two different systems were used: a glass capillary of ra-
dius around 150 µm, and an anodized alumina membrane
with straight, non-interconnected, monodisperse pores of
radius around 30 nm, with both ends open to the atmo-
sphere. In the first case, the radius profile r(x) can be
readily determined by optical methods, which is useful to
contrast with theoretical calculations. In the second case,
r(x) is unknown and the experiment serves to demon-
strate the method utility.

Next the solution of the inverse problem in the glass
capillary is discussed. The non-uniform cross-sectional
tube was fabricated in our lab by heating and pulling
a glass capillary. Neither the load at the capillary end
nor the local heating were uniform, so as to produce a
smooth variation of the tube radius along the capillary
[Fig. 2(b)]. The resulting radius profile was determined
by photography image analysis [Fig. 2(d), black curve].
A glycerol–2-propanol mixture was employed, with the
viscosity tuned to fill the 5 cm length capillary in about
10 minutes. The meniscus position was followed by us-
ing a CCD camera [9, 15, 16]; images were recorded at
the rate of 3 pictures per second. Before each run, the
capillary was systematically washed with water, acetone,
and 2-propanol, and then dried in an oven. Experiments
were made at room temperature. The time variation of
the meniscus position obtained in typical runs are plotted
in Fig. 2(c).

In what follows we will call red to the filling process
in the left-to-right direction [red curve in Fig. 2(c)] and
blue to the filling in the opposite direction [blue curve
in Fig. 2(c)]. The velocities u(l) in both directions were
obtained by numerical differentiation of the curves l vs.
t using local quadratic regression. Taking u(l) from red
data, and using Eq. 3 with arbitrary r(L) values, yields
a family of possible solutions for r(x). With these func-
tions, the expected blue filling data is simulated by using
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FIG. 2: (a) Experimental setup to measure the filling dynam-
ics of a glass capillary, including a scheme of the capillary with
the imbibing fluid, and the coordinate systems used in calcu-
lations. (b) Picture of the non-uniform cross-sectional glass
capillary. (c) Meniscus position as a function of time mea-
sured from x = 0 to L (red) and from x = L to 0 (blue). (d)
Capillary radius as a function of the axial distance. The black
curve is the measured profile determined by photography im-
age analysis. The red and blue curves are the predicted r(x)
functions. The shaded area represents the confidence bounds
obtained from different trials.

Eq. 1. The simulated l vs. t curves are compared to
the measured blue curve, to identify the right r(x) func-
tion by minimum least squares fit. The r(x) solution
thus obtained is plotted in Fig. 2(d) (red curve). The
whole procedure is then repeated starting with the blue
l vs. t curve [Fig. 2(c)], which produces the blue r(x)
curve in Fig. 2(d). All calculations were made by us-
ing α = 0.18 ms−1. The shaded area in Fig. 2(d) was
obtained by propagating the uncertainties of the exper-
imental data from five measurements in each direction,
by using Monte Carlo simulations of synthetic data sets
[17].

It is relevant to note that the overlapping of the two
obtained solutions shows the consistency of the calcu-
lation procedure. Furthermore, the close agreement of

these solutions with the experimentally measured r(x)
data [black curve; Fig. 2(d)] indicates that the fluid dy-
namic model used is appropriate.

The imbibition process can be experimentally assessed
by using other techniques, apart from the one described
above to capture the instantaneous position of the menis-
cus. In fact, particularly for nanoporous matrices, it is
usual to measure the amount of imbibed fluid as a func-
tion of time by using gravimetric methods [18], neutrons
absorption [19], reflected light interference [10, 20], or
simply by geometric measurement of the imbibed vol-
ume [21]. To take into account these possibilities, we
extend the model to the case where experimental data
are proportional to the volume of imbibed fluid v(l). In-
troducing dv(x) = πr(x)2dx into Eq. 1 and reproducing
the procedure to derive Eq. 3 yields

r(v) =

[
r(v0)

5
Q(v0)

5
+

20

απ2

∫ v0

v

Q(v)
6
dv

]1/5
Q(v)

−1
,

(4)
where Q = dv/dt is the volume flow rate. It is worth
noting that this change of variables does not avoid the
ill-posed nature of the problem. The multiplicity of solu-
tions of Eq. 4 is illustrated in Fig. 1(d). In this figure, the
parameterized curves r(x) involves different tubelengths,
as they correspond to the same capillary volume V.

Next the solution of the inverse problem in the an-
odized alumina membrane is discussed. The nanoporous
membrane was fabricated by the two-step anodization
process described elsewhere [10, 22]. The membrane sur-
faces were inspected by SEM, and a typical image is in-
cluded in Fig. 3(a). The measured interpore distance di
was around 101 ± 1 nm, and pore radii were estimated
to be around 34 ± 5 and 28 ± 5 nm, for each side of
the membrane, respectively (SEM image analysis). The
membrane thickness was L = 75 µm, as obtained by
optical microscopy. Capillary filling measurements were
carried out by using the experimental setup reported in
previous works [10, 20]. Between runs the membrane
was washed with 2-propanol and dried at room temper-
ature. Reflected light intensity as a function of time is
measured after a liquid drop (2-propanol) impinges over
the membrane, as shown in Fig. 3(a). The sensed light
intensity is the result of the interference of light reflected
from the two fixed interfaces [10, 20]. The oscillations in
reflectance [inset in Fig. 3(b)] are consequence of con-
structive and destructive interference when the effective
optical thickness of the membrane is increased by the liq-
uid intake. With a simple model of effective medium, the
extreme positions are converted into the imbibed fluid
volume fraction v/V [Fig. 3(b)]. Additionally, the total
number of extremes N and the membrane thickness L
can be used to obtain the membrane porosity, P ≈ 34 %
[10, 20].

Given the well ordered array of pores in anodized alu-
mina [Fig. 3(a)], the membrane is regarded as anassem-
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FIG. 3: (a) Diagram of the experimental setup including a
SEM image of the membrane, and a schematic representation
of the nanochannels array with the imbibing fluid and the co-
ordinate systems used in calculations. (b)Square volume frac-
tion of the imbibed fluid as a function of time, obtained from
the extremes of the reflectance oscillations (inset), measured
from different sides of the membrane. (c) Capillary radius as
a function of the axial distance. The red and blue curves are
the predicted r(x) functions. The shaded area represents the
confidence bounds obtained from five different trials in each
direction.

bly of straight nanochannels aligned in the flow direction,
all of them with the same length and pore radius pro-
file [22]. Thus the velocity at which the liquid invades
the membrane is that of the capillary-driven flow in each
single pore, and hence the single capillary model can be
used to interpret the filling dynamics of the whole mem-
brane. To determine the membrane pore radius profile,
a procedure analogous to that used above for the glass
capillary is followed. The measured volume fraction v/V
was numerical differentiated by central differences to ob-
tain Q(v)/V . The solutions for measurements in each
direction [red and blue data; Fig. 3(b)] were obtained

using Eq. 4, and they are reported in Fig. 3(c). The
radii as function of volume are converted into radii as
function of position with dv(x) = πr(x)2dx. Absolute
values of the radius profile were obtained by using the
experimental value of L and the tabulated properties of
2-propanol at 20◦C.

The solutions r(x) obtained [red and blue data; Fig.
3(c)] coincide within the shaded area that represents
the error. This agreement shows the consistency of the
method. Moreover, the radius values at the pore ends
are in agreement with those obtained from SEM image
analysis in both membrane faces. Besides, the mem-
brane porosity estimated with the results in Fig. 3(c)
and the interpore distance is P = 36%, which coincides
with the porosity obtained from the total number of ex-
tremes N . These results confirm that the solution of the
inverse problem proposed here is suitable to determine
the pore radius profile in a wide range of length scales.
The method is also self-sufficient in the sense that no
additional data is needed to identify the right solution.

In conclusion, one may observe that the present work
contributes to elucidate two main aspects of capillary fill-
ing: firstly, the ill-posed problem related to the inversion
of Eq. 1 is revealed. The physical consequences of this
mathematical feature are remarkable, namely the fact
that capillaries with different radius profiles may present
the same filling dynamics. The second relevant aspect
concerns the attractive applications of the method pro-
posed to solve the inverse problem. In fact, the pos-
sibility to accurately identify the internal geometry of
nanochannels in a nondestructive manner is of particu-
lar interest for the characterization of nanoporous ma-
trices. In addition, both the model and the calculation
procedure are useful to rationalize the design of passive
microfluidic pumps, where the liquid transport is con-
trolled by the geometry of micro and nanochannels. In
microfluidic systems, however, rectangular cross-sections
channels having sharp corners pose several troubles to
model capillary driven transport, due to the particular
effect of edges. Besides, the hydrodynamic resistance in-
volves two possible dimensional variations (width and/or
depth, as a function of axial distance). Handling these
difficulties in modeling is precisely one of our research
lines at present.
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