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Abstract 

Mechanical properties of semiconductors: CdTe, ZnTe and CdTe alloyed with 2% and 5 at% of Zn have been calculated, using 
the computer code WIEN2k. The program uses the Density Functional Theory. The results show that increasing the amount of 
Zn, results in greater values of mechanical properties and contraction of the lattice parameter since replacement of Cd by Zn 
establish lower Zn-Te distance compared with Cd-Te. The behavior is different for the C12 constant of Cd0.90Zn0.10Te, the shear 
and Young modulus of CdTe. While Poisson's ratio is constant. The calculated values for CdTe and ZnTe differ from the 
experimental values between 8% and 21%. The calculated values differ from others authors between 2% and 21%. There are no 
experimental data of the alloyed CdTe. Values of CdTe alloyed whit Zn are between the CdTe and ZnTe closest to the CdTe. 
Differences with data calculated by other authors are noticeable. 
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1. Introduction 

Properties of II-VI semiconductors are calculated [Cd1-yZnyTe (0  1) (CZT)], among them: CdTe, ZnTe, 
Cd0.96Zn0.04Te and Cd0.9Zn0.10Te, using WIEN2k code by Blaha et al. (2001). This code analyses different physical 
and chemical properties of crystalline structures applying solid state theories, based on density functional theory 
(DFT) by Kohn and Sham (1965) and Hohenberg and Kohn (1964). This theory allows an approximate resolution of 
the equations of quantum mechanics that govern the behaviour of electrons, to determine how atoms move and 
simulate the physical and chemical processes at atomic level, without any experimental data, it is an ab-initio 
method. 

A model describing the matter structure establishes the arrangement of atoms, representing their relative positions 
and their distribution in each material. For the atom structure, it is considered a nucleus and electrons around it, each 
different type of atom has Z characteristic electrons. Each one of the electrons is in a characteristic state and has a 
unique energy that corresponds to the required energy to remove it from the atom. The values of these energies can 
be represented by a model with electrons in clearly separate layers and only a certain number of electrons in each 
layer. The physical changes and chemical reactions are only related to the most external electrons. It might be said 
in good approximation, that the core of the atom, the nucleus plus the internal electrons, are immutable. 

Properties such as temperature, pressure, composition, electronic structure, disorder are those that determine the 
materials properties. Quantum mechanics is used to describe the electronic structure that is responsible for the 
properties such as chemical stability, relaxation of the atoms, phase transitions, magnetic, optical, mechanical, 
electrical behaviour, etc. Ab-initio calculations can be performed not only at 0 K but taking into account the 
variation with temperature.  

Materials properties have become accessible to computational calculation including a broad range of studies as 
the structure of solids, defects, surfaces, interfaces, thermo chemistry, mechanical properties, electronic excitations 
and magnetic behaviour. This capacity for analysis and study is of utmost importance for the experimental 
researchers and today forms part of industrial research and material engineering. Ab-initio methods, provide an 
approach that gives us a unique and deep view within materials and has a huge predictive capacity in new systems 

Nowadays literature presents very limited experimental physical-chemistry properties for CZT, so there is in 
general a serious lack of information when ternary alloys are considered. In this paper properties are simulated using 
first principles quantum mechanics methods. Computer calculations allow obtaining properties values that would be 
impossible to measure experimentally (at high temperatures and high pressures such as those in the depth of the 
mantle) or dangerous (with radioactive materials). There are also factors of cost and time that make the computer 
calculations to be chosen. This is why today the design by computers today is an indispensable tool in the research 
for the materials industry. 

The main goal is to carry out the properties modelling for CdTe, ZnTe, Cd0.96Zn0.04Te, and Cd0.90 Zn0.10Te, such 
as the optimum lattice parameters and mechanical properties such as elastic constants, bulk module, shear module, 
Young's modulus and Poisson ratio. Detectors based on CZT present technological interest since they can be used at 
room temperature. This material is used to manufacture x-ray and gamma detectors, and also as a substrate for 
epitaxial film growth of HgCdTe sensitive to IR radiation. Alloyed CdTe, since several years ago, has been 
preferred to binary CdTe as a substrate in the epitaxial growth of MCT, because Zn gives greater hardness to CdTe 
lattice and produces a lower dislocations density in the interface substrate-epitaxy as can be seen in Nöllmann et al. 
(1991), Di Stefano et al. (2004) and Walukiewicz (1989) during the growth stage. 

The ZnTe emit at wavelengths of 540 nm, with a promising use in diode lasers and emitters of high intensity light 
as was presented in Tribugó et al (2010). CZT detector applications occur in a wide range of areas: medicine 
(associated with imaging techniques such as x-ray or gamma ray tomography, x-ray fluorescence, x-ray 
simultaneous dual-energy), space technology (high energy focus telescope-HEFT) and security (monitoring of 
radioactive materials in nuclear plants) and others such as the use of CZT detector for the non-destructive 
examination of art objects in museums and archaeological sites, by Schlesinger et al. (2001), Diéguez (2011), 
McGregor (1997) and Schlesinger et al. (1995). These materials are grown in UNIDEF-MINDEF, Martínez (2012). 

2. Metodology 

The calculations were performed with WIEN2k program, developed in Vienna in 1990, by Blaha and 
collaborators (2001). Socket functions base method of linearized augmented plane waves plus orbital locations 
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(LAPW+lo). It is proven that the method LAPW+lo is one of the most precise study for solids electronic structure 
within the DFT approximation. LAPW method solves the Kohn-Sham (1965) equation of density of states for the 
fundamental states, the total energy and the band energy using functions specially adapted for the problem. 

This code is used to study the properties of the cells of CdTe and ZnTe and CdTe alloyed with 2% and 5% at. Zn 
(Fig 1). The ZnTe and CdTe belong to space group 216 (F-4 3 m) and Zn-doped cells belong to the space group 215 
(P - 43m).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Models for different compositions cells (a) CdTe (original cell) and ZnTe (Zn replaces the Cd), 
(b) Cd0.96Zn0.04Te and (c) Cd0.90Zn0.10Te. 

 
Fig. 2. RKmax parameter optimization for CdTe. 

 
Correlation and exchange potentials were used, in particular those based on parameterization PBE-GGA by 

Perdew, Burke and Ernzerhof (1996)- the generalized gradient approximation. The convergence of the base is 
regulated through the parameter RKmax which results from the product between the smaller radius of the "muffin 
tin" (RMT) and the largest expansion of reciprocal vector module (Kmax), a selected value of RKmax = 9 for pure 
CdTe and RKmax = 7.2 and 6.8 for CdTe cells alloyed with 2% and 5% at. Zn was respectively used (see Fig. 2 for 
the CdTe optimization). Also a lattice parameter optimization was performed (see Fig. 3 for the CdTe optimization); 
and the total necessary number of k-points (see Fig. 4 for the CdTe optimization) to sample the reciprocal space and 
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ensure the convergence of the total energy. The first Brillouin zone is sampled with a total of 2000 k-points for 
CdTe and 250 k-points for the supercell. In the previous mentioned cases the optimal values are presented in Table 
1. 
 

 
Fig. 3. Lattice parameter optimization for CdTe. 

 
 

 
Fig. 4. Optimization of the total number of k-points for CdTe. 
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     Table 1. Optimized data entry for Wien2k calculation. 

Semiconductors CdTe ZnTe Cd0.96Zn0.04Te Cd0.90Zn0.10Te 

Optimized Lattice parameter (Å) 6.615 6.193 13.1920 
(6.596) 

13.1660 
(6.583) 

Spatial group 216 (F-4 3 m) 216 (F-4 3 m) 215 (P-43m) 215 (P-43m) 

Atom positions 
Cd: 0,0,0  

Te: 4
1

4
1

4
1 ,,  

Zn: 0,0,0  

Te: 4
1

4
1

4
1 ,,  

Zn: 2
1

2
1

2
1 ,,  

Zn: 0,, 2
1

2
1  

Zn: 2
1

2
1 ,0,  

Zn: 2
1

2
1 ,,0  

Muffin tin radius (a. u.) RMT (Cd) = 2.35; 
RMT (Te) = 2.55 

RMT (Zn) = 2.35; 
RMT (Te) = 2.55 

RMT (Cd) = 2.35 
RMT (Te) = 2.55 
RMT (Zn) = 2.35 

RMT (Cd) = 2.35 
RMT (Te) = 2.55 
RMT (Zn) = 2.35 

Number of k-points 2000 2000 250 250 

RKmax 9 9 7.2 6.8 

3. Results and discussion 

The variation of the energy as a function of the lattice parameter (Figures 5, 6 and 7) was calculated through the 
WIEN2k to get the mechanical properties of the CZT semiconductor at 0 K. It was used the GGA exchange and 
correlation potential. The mechanical properties, using the method developed by Thomas Charpin and Morteza 
Jamal by Reshak and Jamal (2012), which is integrated in the calculations of the program WIEN2k package, were 
calculated from these data. The potential GGA was also used to obtain the optimum lattice parameters that minimize 
the energy of the cell. 

 

 
Fig. 5. Energy variation with the CdTe lattice parameter. 
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Fig. 6. Energy variation with ZnTe lattice parameter. 

 

 
Fig. 7. Energy variation with the lattice parameter of CdTe alloyed with 2 and 5 % atomic Zn. 

 
 

In Table 1 the results for the calculation of mechanical properties and lattice optimum parameters are presented 
for pure CdTe, ZnTe and CdTe alloyed with 2% and 5% at. Zn. Calculated mechanical properties were: the elastic 
constants, shear modulus, bulk modulus, Young's modulus and Poisson coefficient, while in Table 2 bibliographic 
citations of experimental works were collected and in Table 3 are other values reported in the literature. 
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     Table 2. Wien2k calculations in this work. 

 CdTe Cd0,96Zn0,04Te Cd0,90Zn0,10Te ZnTe 
Lattice Parameter (Ǻ) (supercell) - 13.192 13.166 - 

Lattice Parameter (Ǻ) (crystallographic) 6.615 6.596 6.583 6.193 
Elastic Constant C11 (GPa) 44.38 45.48 45.88 59.41 
Elastic Constant C12 (GPa) 29.32 30.47 30.02 32.20 
Elastic Constant C44 (GPa) 17.67 19.61 19.64 28.68 

Bulk Modulus, B (GPa) 34.34 35.47 35.31 41.27 
Shear Modulus μ (GPa) 7.53 7.51 7.93 13.60 

Young Modulus Y (GPa) 21.05 21.04 22.14 36.77 
Poisson Coeficient ν 0.40 0.40 0.40 0.35 

 

     Table 3. Experimental data. 

 CdTe Cd0,96Zn0,04Te Cd0,90Zn0,10Te ZnTe 

C11 (GPa) 53.5 a,b - - 71.7c 

C12 (GPa) 36.5a ; 36.81b - - 40.7c 

C44 (GPa) 19.9a,b - - 31.2c 

Bulk modulus B 
(GPa) 39d ; 44.5d,e - - 52.8; 50.9c,e,f 

Experimental 
lattice cell 

parameter (Å) 
6.48g; 6.4827d 

a = 6.4819-0,401.x, with 0 ≤ x ≤ 1 h, 
for x = 0.04: a = 6.46586 and 

for x = 0.10: a = 6.4418 

6.06f ; 
6.1e 

aAgrawal and Agrawal (1992), bMcSkimm and Thomas (1962), 
cLee (1970), dHellwege and Madelung, Vol. 17ª (1982), 
eHellwege and Madelung Vol 22a (1982), fBecerril et al. (2004), 
gKorozlu et al. (2009), hCapper (1997). 

 
 

Table 2 shows that Cd replacement by Zn in CdTe results in a contraction of the lattice parameters, Zn-Te bonds 
are shorter compared to Cd-Te bonds and this lattice has greater hardness. 

The Zn increment in CdTe alloys (Table 2) determines mechanical properties increment simultaneously to lattice 
parameter contraction of the same compounds, with a few exceptions, such as C12 that is constant for Cd0.90Zn0.10Te 
and shear and bulk module are constant for CdTe, meanwhile Poisson coefficient is virtually constant for all of 
them. 

Ternary compounds are in the range between CdTe and ZnTe closer to CdTe values because the percentage of Zn 
is low. 

Mechanical properties comparison between calculated (WIEN2k) and experimental data in Table 3 (no data for 
the cut-off module, the module of deformation and coefficient of Poisson were found) differences within the range 
8% to 21% can be seen. Comparison with values calculated by other authors (Table 4), there are differences within 
2% - 21%. The comparison of the optimum lattice parameter calculated with correlation and GGA exchange 
potential, with the experimental values in Table 3, there are good fitting, 102.08% for CdTe, 101.52% for ZnTe, 
102.01% for Cd0.96Zn0.04Te and 102.19% for Cd0.90Zn0,.10Te. 

As there are no experimental data for CdTe alloyed with 2% and 5% at. Zn, mechanical properties were then 
calculated with the WIEN2k and compared with some data calculated by other authors (Table 4). There are 
appreciable differences of approximately up to 64% for the values of shear modules. The smallest difference (7.1%) 
is for the C12 constant for CdTe alloyed 5% at. Zn. Other mechanical properties differences are within the range 
from 22.8% to 39.3%. 
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     Table 4. Theoretical bibliography values. 

 CdTe Cd1−yZnyTe (0 ≤ y ≤ 1) ZnTe 

C11 (GPa) 57.3g 
7.34+2.14x+0.49x2 (1010 Nm−2) 0 ≤ x ≤ 1 l, 

for x = 0.04: C11 = 74.26384 GPa and, 
for x = 0.10: C11 = 75.589 GPa 

75.17 g 

C12 (GPa) 39.63 g 
3.14+0.9x+0.22x2 (1010 Nm−2) 0 ≤ x ≤ 1 l , 

for x = 0.04: C12 = 31.76352 GPa and, 
for x = 0.10: C12 = 32.322 GPa 

42.94 g 

C44 (GPa) 19.04 g 
2.97+0.86x+0.20x2 (1010 Nm−2) 0 ≤ x ≤ 1 l , 

for = 0.04: C44 = 30.0472 GPa and, 
for x = 0.10: C44 = 30.58 GPa 

38.86 g 

Bulk Modulus 

B (GPa) 

33.79 and 46.68i; 

46.179lj 

4.54+1.30x+0.32x2 (1010 Nm−2) 0 ≤ x ≤ 1 l 
for x = 0.04: B = 45.92512 GPa and, 

for x = 0.10: B = 46.732 GPa 
55.672 i 

Shear Modulus 

μ (GPa) 
13.68 g 

2.09+0.6x+0.14x2 (1010 Nm−2) 0 ≤ x ≤ 1 l , 
for x = 0.04: μ = 21.14224 GPa and, 

for x = 0.10: μ = 21.514 GPa 
27.29 g 

Young Modulus 

Y (GPa) 

24.88 g; 

49.55k 
- 43.94 g 

Poisson Coefficient ν 
0.40 g; 

0.33 j 
- 0.36d 

iMerad et al. (2005),  
jLalitha et al. (2007), 
kDeligoz et al. (2006), 
lMnasri et al. (2009).  

4. Conclusions 

The lattice parameters are well described by the computational code WIEN2k, through the correlation and 
exchange potentials based on PBE-GGA parameterization, developed by Perdew, Burke and Ernzerhof - giving 
close to the experimental values. 

Mechanical properties calculation for semiconductor CdTe and ZnTe, such as: the elastic constants: C11, C12 and 
C44, compression modulus, shear modulus, Young's modulus and Poisson coefficient, give acceptable results, close 
to the experimental values. Mechanical properties of CdTe alloyed with 2% and 5% at. Zn, have values between 
CdTe and ZnTe, closest to the CdTe, and they present significant differences compared to other authors. The general 
trend is that the Zn amount increase in CdTe alloys determines the increased values of mechanical properties 
meanwhile there is a contraction of the lattice parameter. The Zn addition gives greater hardness to the CdTe lattice, 
since Cd replacement by Zn in CdTe establishes shorter Zn-Te bonds compared to the Cd-Te ones. 

It is possible to simulate the properties of II-VI semiconductor materials: CdTe, Cd0.96Zn0.04Te, Cd0.90Zn0.10Te and 
ZnTe, using ab-initio methods, without need to adjust to any experimental data. 
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