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We analyze the extended quasidilaton massive gravity model around a Friedmann-Lemaître-Robertson-
Walker cosmological background. We present a careful stability analysis of asymptotic fixed points. We
find that the traditional fixed point cannot be approached dynamically, except from a perfectly fine-tuned
initial condition involving both the quasidilaton and the Hubble parameter. A less-well examined fixed-
point solution, where the time derivative of the zeroth Stückelberg field vanishes _ϕ0 ¼ 0, encounters no
such difficulty, and the fixed point is an attractor in some finite region of initial conditions. We examine the
question of the presence of a Boulware-Deser ghost in the theory. We show that the additional constraint
that generically allows for the elimination of the Boulware-Deser mode is only present under special initial
conditions. We find that the only possibility corresponds to the traditional fixed point and the initial
conditions are the same fine-tuned conditions that allow the fixed point to be approached dynamically.
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I. INTRODUCTION

In the standard cosmological model, the accelerated
expansion of the Universe is attributed to the cosmological
constant Λ. However, to match the observed expansion, Λ
must be of the order of 10−122 in Planck units, which raises
a fine-tuning problem. A possible alternative is to modify
general relativity (GR) at large distances or low momenta.
A massive spin-2 field theory, known as the dRGT theory
[1,2], is a theoretically well-motivated modification of
GR. However, the dRGT theory does not admit a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) solution
with an expanding scale factor [3]. A modification to
dRGT gravity, known as quasidilaton massive gravity
(QDMG), was proposed in [4] and provides homogeneous
and isotropic expanding solutions. It was later shown [5]
that the parameters of QDMG have to be finely tuned in
order to match the observed expansion history of the
Universe. More disastrously, the results in [6,7] indicate
that the scalar perturbations in QDMG acquire a wrong sign

kinetic term at short scales. A further modification,
extended QDMG (EQDMG), was proposed in [8] and
has scalar perturbations that are thought to be stable at all
momentum scales. The standard fixed-point cosmological
solution of EQDMG has a de Sitter metric, and thus appears
to be a good candidate for late-time cosmology.
EQDMG only differs from QDMG by the addition to the

action of one operator involving the quasidilaton (QD) field
and a new free parameter ασ. Naively, in the limit ασ → 0,
EQDMG reduces to QDMG, but actually the limit is very
subtle. Indeed, there are controversial results in the liter-
ature regarding whether EQDMG contains an unavoidable
additional degree of freedom, which would correspond to
the Boulware-Deser ghost (BD) [9–11].
In this paper, for the first time, we
(1) assess the stability of the standard fixed-point sol-

utions (referred to as Case 1 in this paper) and show
that this assessment requires a nonstandard approach;

(2) demonstrate that the Case 1 fixed points cannot be
approached dynamically, due to an unavoidable
singularity in the dynamical equations;

(3) perform a comprehensive study of a new branch of
solutions (referred to as Case 2), first proposed by
[12] but largely ignored in the literature, and show
that it provides stable and dynamically attainable
fixed-point solutions;

(4) show for a flat FLRW universe that the fact that
the background equations are satisfied does not
guarantee the presence of the additional constraint
necessary to eliminate the BD mode (in agreement
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with the results of [9], but in disagreement with the
computations in [11]);

(5) find that the only branch of solutions for which the
additional constraint exists corresponds to Case 1;

(6) argue that, in order to avoid a BD ghost, the initial
values of certain EQDMG dynamical variables must
be extremely fine-tuned;

(7) verify that the same fine-tuned initial conditions also
allow the fixed point to be approached dynamically.

The paper is organized as follows. In Secs. II and III, we
summarize the theory of EQDMG.
In Sec. IV, we define the dynamical variables and

provide the relevant background equations.
In Sec. V, we find the fixed-point and de Sitter solutions

of the dynamical equations and show that they are
equivalent to one another (provided the Hubble rate is
positive). We identify four independent fixed-point cases,
each of which is studied in greater detail in the sections that
follow.
In Sec. VI, we introduce the standard procedure for

analyzing the stability of the fixed-point solutions for the
background. We discuss the inadequacy of this procedure
for the Case 1 fixed points and provide an augmented
framework.
In Sec. VII, we present the results of our numerical

search for viable parameters for the EQDMG theory. We
find that except for a very specific, precisely fine-tuned
initial displacement away from the fixed-point values of
Case 1 (explained in Sec. VIII), the fixed points cannot be
reached in the asymptotic future.
In Sec. VIII, we further study the perturbative stability of

the scalar sector of the theory, both in the vacuum case and
with matter. We identify the conditions on the dynamical
variables required to avoid the BD ghost and show that the
fact the background equations are satisfied does not
guarantee the validity of the conditions. Case 1 turns out
to be the only case for which the additional constraint
necessary to eliminate the BD mode can be obtained by an
appropriate choice of initial conditions. However, those
conditions appear to represent a difficult fine-tuning of all
the degrees of freedom.
In Sec. IX we present our conclusions. We provide some

detailed calculations and consider the special case of
Minkowski solutions in the appendixes.

II. FORMALISM

We consider the action for the extended quasidilaton
theory [8],

S ¼ SEH þ Sm þ Sσ ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

ω

M2
Pl

∂μσ∂μσ

þ 2m2
gðL2 þ α3L3 þ α4L4Þ

�
þ Sm; ð1Þ

where MPl is the Planck mass and, in addition to the
Einstein-Hilbert action SEH, we have the contribution Sm of
the matter sector and a quasidilaton contribution Sσ. Here

L2 ≡ 1

2
ð½K�2 − ½K2�Þ; ð2Þ

L3 ≡ 1

6
ð½K�3 − 3½K�½K2� þ 2½K3�Þ; ð3Þ

L4 ≡ 1

24
ð½K�4 − 6½K�2½K2� þ 3½K2�2

þ 8½K�½K3� − 6½K4�Þ; ð4Þ

with square brackets denoting a trace, and

Kμ
ν ¼ δμν − eσ=MPl

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
μ

ν
; ð5Þ

fμν ≡ ηab∂μϕ
a∂νϕ

b −
ασ

M2
Plm

2
g
e−2σ=MPl∂μσ∂νσ: ð6Þ

Sσ includes five new fields: σ is the quasidilaton scalar field
and ϕa (a ¼ 0;…; 3) are the four Stückelberg fields. It also
depends on the coupling constants ασ , α2, and α3, and on
the graviton massmg. For ασ ¼ 0 one recovers the standard
quasidilaton theory.
In the space of Stückelberg fields, the theory enjoys the

Poincaré symmetry

ϕa → ϕa þ ca; ϕa → Λa
bϕ

b; ð7Þ

and a global symmetry given by

σ → σ þ σ0; ϕa → e−σ0=MPlϕa; ð8Þ

with σ0 an arbitrary constant.

III. BACKGROUND

We consider a spatially flat FLRW ansatz, for which

ds2 ¼ −N ðtÞ2dt2 þ aðtÞ2δijdxidxj; ð9Þ

ϕ0 ¼ ϕ0ðtÞ; ð10Þ

ϕi ¼ xi; ð11Þ

σ ¼ σ̄ðtÞ: ð12Þ

The fiducial metric fμν reduces to

f00 ¼ −nðtÞ2; fij ¼ δij; ð13Þ

where
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nðtÞ2 ≡ ð _ϕ0Þ2 þ ασ
M2

Plm
2
g
e−2σ̄=MPl _̄σ2: ð14Þ

The minisuperspace action for the background can be
written as

S=V ¼ M2
Pl

Z
dt

�
−3

a3

N

�
_a
a

�
2

þ a3
w
MPl

_σ2

2N

þN a3m2
gðL2 þ α3L3 þ α4L4Þ

�
; ð15Þ

where

L2 ¼ 3ðX − 1Þð−2þ Xð1þ rÞÞ; ð16Þ

L3 ¼ −ðX − 1Þ2ð−4þ Xð1þ 3rÞÞ; ð17Þ

L4 ¼ðX − 1Þ3ð−1þ rXÞ; ð18Þ

and we have defined

X ≡ eσ̄=MPl

a
; ð19Þ

r≡ n
N

a: ð20Þ

It is worth pointing out here that in (5),

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �μ
ν
¼

2
6664
�n=N 0 0 0

0 �1=a 0 0

0 0 �1=a 0

0 0 0 �1=a

3
7775;

and we make the ðþ;þ;þ;þÞ choice following [13]. This
gives us

r > 0: ð21Þ

r ¼ 0 represents a determinant singularity in either or both
fμν (if n ¼ 0) or gμν (if a ¼ 0)—a spacelike hypersurface
where the dimensionality of the metric changes. The
stability of the theory across that hypersurface is unclear
[14]. Indeed, we find that when r approaches too close to
zero, our numerical integrations of the dynamical equations
become unstable; the instability in the numerical noise may
be due to an underlying instability in the theory. We insist
here that r ≠ 0.

IV. DYNAMICAL EQUATIONS AND VARIABLES

We next set out the dynamical variables describing the
background and the dynamical equations describing their
time evolution.

Varying the action with respect to ϕ0ðtÞ leads to the
constraint equation

∂t

� _ϕ0

n
a4G2ðXÞ

�
¼ 0; ð22Þ

where G2ðXÞ ¼ Xð1 − XÞJðXÞ, with

JðXÞ≡ 3þ 3ð1 − XÞα3 þ ð1 − XÞ2α4: ð23Þ

This suggests that it will be useful to introduce as one of the
dynamical variables

yðtÞ≡
_ϕ0ðtÞ
n

G2ðXÞ: ð24Þ

The solution of (22) is immediately

y ¼ C
a4

: ð25Þ

We see that, in any reasonable cosmological context,
y → 0 in the asymptotic future, and that this can be
achieved by one (or more) of four quantities approaching

or equaling zero: JðXðtÞÞ, _ϕ0ðtÞ, XðtÞ, or XðtÞ − 1. These
four cases will drive our analysis.
Anticipating that it will be convenient to regard X as a

dynamical variable, we differentiate (19) with respect to
time to get

_X ¼ X
�

_σ

MPl
−H

�
: ð26Þ

HðtÞ≡ _a=a is the Hubble parameter.
Varying the action with respect to the lapse N ðtÞ and

using time reparametrization invariance to set N ðtÞ ¼ 1,
we obtain the Friedmann equation,

3H2 ¼ ω

2

�
_σ

MPl

�
2

þ 3m2
gG1ðXÞ þ

ρm
M2

Pl

þ ρr
M2

Pl

; ð27Þ

where

G1ðXÞ≡ 1

3
ðX − 1ÞðJðXÞ þ ðX − 1Þðα3ðX − 1Þ − 3ÞÞ:

ð28Þ

The form of the Friedman equation suggests regarding
the first two terms on the right-hand side (RHS) of (27) as
the dark energy density (divided by M2

Pl). For future
convenience, we represent them separately as

ΩΛ ≡ m2
g

H2
G1ðXÞ ð29Þ
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and

Ωσ ≡ ω

6H2

�
_σ

MPl

�
2

; ð30Þ

and define ΩDE ≡ΩΛ þ Ωσ.
From the conservation of the stress-energy tensor of

matter and of radiation we get

_ρm ¼ −3Hρm; ð31Þ

_ρr ¼ −4Hρr: ð32Þ

From the conservation of the stress-energy tensor1 obtained
from Sσ, we get

ðσ̈ þ 3H _σÞω _σ þ 3MPlm2
gð _σ − rHMPlÞXG0

1ðXÞ ¼ 0; ð33Þ

where a prime here stands for a derivative with respect to
the argument X of the function.
We select y; X; ~Ωi ¼ Ωi

~h2ði ¼ DE;m; rÞ as our dynami-
cal variables, where ~h≡H=mg is the dimensionless
Hubble parameter. We can now express the background
evolution equations in terms of N ≡ logðaÞ (giving us
dN ¼ Hdt assuming H ≠ 0)2:

(i) From (22), we have immediately

dy
dN

¼ −4y: ð34Þ

(ii) The equations for ~Ωm and ~Ωr are similarly easily
obtained from (31) and (32),

d ~Ωm

dN
¼ −3 ~Ωm; ð35Þ

d ~Ωr

dN
¼ −4 ~Ωr: ð36Þ

(iii) Equation (26) can be rewritten using (29), (30), and
the definition of ~ΩDE,

dX
dN

¼ X

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð ~ΩDE −G1ðXÞÞ

~h2ω

s
− 1

!
: ð37Þ

The � represents the possibility that _σ can be
positive or negative.3

(iv) Equation (33) can be rewritten using (29) and (30),

d ~ΩDE

dN
¼ −6ð ~ΩDE −G1ðXÞÞ þ XG0

1ðXÞðr − 1Þ:
ð38Þ

In the above set of equations one must replace
(i) ~h2 by the Friedmann equation, which now takes the

simple form

~h2 ¼ ~ΩDE þ ~Ωm þ ~Ωr; ð39Þ

(ii) and [combining (14), (20), and (25)] r with4

r ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð ~ΩDE −G1ðXÞÞασ
ωX2ð1 − ð y

G2ðXÞÞ2Þ

vuut : ð40Þ

The argument of the square root on the right-hand side
of (40) must be positive for r to be real. The reality of r is
a condition on the dynamical variables that must be
checked, in case (as we find below) it is not automatically
satisfied. In particular, we see that problems may arise
if ðy=G2ðXÞÞ2 → 1.

V. FIXED-POINT ANALYSIS

In this section, we evaluate the dynamical variables when
their N derivatives vanish in (34)–(38). We term the values
of the dynamical variables in this limit as fixed points.
In the fixed-point limit, the left-hand sides of Eqs. (34)–

(36) vanish, giving us yFP ¼ 0, and also ~Ωm;FP ¼
~Ωr;FP ¼ 0. From (39), we learn that ~ΩDE;FP ¼ ~h2FP.
The solutions to (34)–(36) are

y ¼ y0e−4N; ~Ωm ¼ ~Ωm0e−3N; ~Ωr ¼ ~Ωr0e−4N;

ð41Þ

where y0, ~Ωm0, and ~Ωr0 are the corresponding initial values.
Thus fixed points occur in the asymptotic future, i.e., as
N → ∞ and so a → ∞.
The left-hand side of (37) vanishes at the fixed point,

implying that XFP is a constant. If XFP ≠ 0, the right-hand
side of (37) [and if XFP ¼ 0, then the right-hand side of
(38)] provides us with

1Note that, using the constraint equation (22), one can show that
the equation obtained by taking the variation of Sσ with respect to σ
is not an independent equation.

2The special case H ¼ 0, i.e., Minkowski space, is discussed
in Appendix C.

3We will focus our attention below on the positive sign,
because the negative sign leads to only an X ¼ 0 fixed point.

4For ασ ¼ 0, r cannot be determined from (40), because (24)
gets reduced to y ¼ G2ðXÞ. Thus, we can no longer use (38), and
the above system of evolution equations is not well-equipped to
handle this case. In fact, this limit gives us the quasidilaton
theory, and the evolution of the dynamical variables have been
previously studied by the authors of [5,15].
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~ΩDE;FP ¼ ~h2FP ¼
(

G1ðXFPÞ
ð1−ω

6
Þ ; XFP ≠ 0;

G1ð0Þ; XFP ¼ 0;
ð42Þ

at the fixed point. In arriving at (42), we take the “þ” sign
in (37), since the “−” sign leads to X ¼ 0 as the only fixed-
point solution.
Notice that, as for getting background fixed-point

solutions, both 0 < ω < 6 and ω ≥ 6 are in principle
suitable regions in the parameter space, since G1ðXFPÞ
can be either positive or negative. A special value is ω ¼ 6,
in which cases (37) and (42) demand G1ðXFPÞ ¼ 0.
Observing that ~h2 is also a constant at the fixed point, we

conclude that the fixed points of the evolution equations are
de Sitter.
We find that the converse is also true: the de Sitter

solutions of the evolution equations are fixed points as we
approach the asymptotic future. To prove this, we require
that the dynamical variables attain the following de Sitter
values in the future:

ð ~ΩDE; ~Ωm; ~ΩrÞ ¼ ð ~h2FP; 0; 0Þ; ð43Þ

where ~h2FP is a constant different from zero. In this situation,
the left-hand sides of (38), (35), and (36) become zero,
meaning they are fixed points.
From (25), we learn that y ¼ 0 in the asymptotic future,

which means that the left-hand side of (34) is also zero. The
only point left to establish is that X approaches a constant in
the future.
From the definitions (14), (20), and (24), one can split

the fixed-point solution into four cases:
(i) Case 1 (the standard case):

JðXFPÞ ¼ 0; ð44Þ

and hence the fixed-point solutions are

XFP ¼ X� ¼ 1þ 3

2

α3
α4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23
4α24

−
3

α4

s
: ð45Þ

(ii) Case 2:

�
_ϕ0

n

�
FP
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ασ

6ð ~ΩDE;FP−G1ðXFPÞÞ
ωr2FPX

2
FP

s
¼ 0: ð46Þ

Since the left-hand side of (38) vanishes, (40)
provides us with the following equation in XFP:

6ð ~h2FP −G1ðXFPÞÞ þ XFPG0
1ðXFPÞ

¼ G0
1ðXFPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ω
ασð ~h2FP −G1ðXFPÞÞ

r
: ð47Þ

Squaring (47) gives us a polynomial equation for
XFP. XFP can be any of the roots of that polynomial.

(iii) Case 3:

XFP ¼ 0: ð48Þ
(iv) Case 4:

XFP ¼ 1: ð49Þ
For all cases, X approaches a constant, and thus the left-

hand side of (37) vanishes in the asymptotic future proving
it is a fixed point.
We analyze the fixed-point solutions in more

detail below.

A. Case 1: JðXFPÞ= 0
As will become clear below, this case is very subtle. Note

that these fixed points are the same as the ones analyzed in
[5,15] for the QD theory (i.e., the EQD with ασ ¼ 0).
Requiring that X� be real means5

α4 ≤
3α23
4

: ð51Þ

From (38) and (42), we get the same expression as in the
QD theory for the fixed-point limit of r (assuming ω ≠ 6),

rFP ¼ 1þ ωG1ðXFPÞ
XFPG0

1ðXFPÞð1 − ω=6Þ : ð52Þ

Note that this expression is valid for Cases 1, 2, and 4 (not
X ¼ 0), provided ω ≠ 6 and G0

1ðXÞ ≠ 0.
Unlike QD theory, since ασ ≠ 0we can use (24) to obtain

(40), which gives r in terms of the dynamical variables. If
the system is to evolve toward its expected fixed point, r
must approach rFP. Therefore, at the fixed point z2 ≡
ð y
G2ðXÞÞ2 should approach

z2FP ≡
�

yFP
G2ðXFPÞ

�
2

¼ 1 − ασ
G1ðXFPÞð1 − ω=6ÞðG0

1ðXFPÞÞ2
½XFPG0

1ðXFPÞð1 − ω=6Þ þ ωG1ðXFPÞ�2
: ð53Þ

5A special case occurs when α4 ¼ 2α2
3

3
, in which case

G1ðXÞ ¼ 0 ¼ JðXÞ. We are left with

ðXFP; r;FP ;ωÞ ¼
�
1þ 3

α3
; 1þ 6~h2

X2
FP
; 6

�
: ð50Þ

This solution for ω ¼ 6 and ~h2 is indeterminate because of

simplifications occurring in (37). Therefore, on the α4 ¼ 2α2
3

3
hypersurface in the parameter space, the dynamical equations
lose predictive power.
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For this approach to be smooth, one also needs

dz
dN

¼ −
�
4þG0

2ðXÞ
G2ðXÞ

dX
dN

�
z → 0: ð54Þ

One possibility is that z → 0, which requires a fine-tuned
relation among the parameters of the model. Since this is
subsumed in Case 2 anyway, we will not analyze this
particular case any further. A second possibility is that the
quantity in square brackets approaches zero in the fixed-
point limit. This implies a constraint equation for the
dynamical variables near the fixed point. We note that in
previous literature this constraint equation has been
assumed to hold for the full dynamics with no justification.6

In such a case, the evolution of the dynamical system near
the fixed point could be described in terms of 4 instead of 5
dynamical variables; i.e., near the fixed-point limit the
evolution would be driven by the same dynamical equa-
tions as in the QD theory. However, a priori there is no
reason to expect this condition to be valid for ασ ≠ 0.

B. Case 2: ½ _ϕ0

n �FP = 0
For Case 2, one has to solve (46) to get the fixed-point

value of X. We must take care that, after solving for XFP, the
sign of 6ð ~h2FP −G1ðXFPÞÞ þ XFPG0

1ðXFPÞ should be the
same as the sign of G0

1ðXFPÞ.7
It is worthwhile noting that for Case 2, ασ > 0. (We omit

the QD case, ασ ¼ 0.) This can be seen by inspection of
Eq. (46), recalling that

~ΩDE −G1ðXÞ ¼
ω

6

�
_σ

mgMPl

�
2

≥ 0:

C. Case 3: XFP = 0

From (42) and the definition of ~ΩDE, (29) and (30),
we get

_σFP ¼ 0: ð55Þ

We find that rFP is indeterminate from both (38) and (40).
Examining (19), we see that there are two ways to

get XFP ¼ 0. The first possibility is that σ → −∞, in
which case we can draw no conclusion from (14) about

the value of
_ϕ0

n at the fixed point. The second possibility is

that n2 ¼ ð _ϕ0Þ2 at the fixed point.

D. Case 4: XFP = 1

Since G1ð1Þ ¼ 0 and G0
1ð1Þ ¼ 1, and since Ωm¼Ωr ¼ 0

at the fixed point, from (37) and (39), we find that XFP ¼ 1
requires ω ¼ 6. Substituting X ¼ XFP ¼ 1 in (38), we get

rFP ¼ 1þ 6~h2FP; ð56Þ

where ~hFP is indeterminate. Therefore the theory loses its
predictive power. For this reason we will not consider this
case anymore in the following analysis.

VI. FIXED-POINT LINEAR STABILITY

We wish to check whether the fixed-point solutions are
attractors in the asymptotic future. This would be the case if
any small perturbation around the fixed-point decays to
zero asymptotically.
We start with the prescription given by [17] to evaluate

the fixed-point stability.
Let V ¼ ½y; X; ~ΩDE; ~Ωm; ~Ωr�T denote the dynamical

variables and fðVÞ be the RHS of the first order differential
equations. Thus we can express Eqs. (34)–(38) as

dV
dN

¼ fðVÞ: ð57Þ

Assuming small perturbations δV around any point, V0, a
Taylor expansion of the functions fðVÞ gives us

d
dN

δV ¼ MδV þ fðV0Þ; ð58Þ

where M is the stability matrix. Its elements are given by

Mij ¼
�∂fiðVÞ

∂Vj

�
V¼V0

; i; j ¼ 1;…; 5: ð59Þ

In Appendix A, we provide the analytical expressions for
the elements of M [Eqs. (A1)–(A7)].
If V0 is a fixed point, then the second term of RHS of

(58) would vanish. Using the eigenvectors of M, one can
then find matrix P such that

D ¼ P−1MP; ð60Þ

¼ Diagðλ1;…; λ5Þ; ð61Þ

where ðλ1;…; λ5Þ are the eigenvalues given by (A16). We
define δV̄ as

PδV̄ ≡ δV: ð62Þ

Thus the solution to (58) in the new basis would be

δV̄i ¼ eλiNCi; ð63Þ

6This constraint is Eq. (7) of [16].
7There is a special solution of (47) where G1ðXÞ¼

G0
1ðXÞ¼ 0. This is possible only when 3þ2α3þ3α23−4α4 ¼ 0

and the common root of G1ðXÞ and G0
1ðXÞ is XFP ¼

ð3þ 5α3 þ 2α4Þ=ð2α3 þ 2α4Þ, which corresponds to ~hFP ¼ 0.
Thus we return to the special case h ¼ 0 discussed in Appen-
dix C.
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where Ci’s are integration constants. Multiplying the above
equation by P and thereby returning to the original basis,
we get

δVi ¼
X5
j¼1

PijeλjNCj: ð64Þ

Then, for the fixed points to be stable, we require δV to
approach zero as N → ∞. It can be seen from (64) that if
the eigenvalues of M are either real and negative or
imaginary with a negative real part, the fixed points will
be stable or form a stable spiral, respectively. We find in
Appendix A that to obtain attractor solutions, λ4 and λ5
must be real and negative or complex with negative real
parts. This requires the elements of M to satisfy the
condition

0 ≤ ð3þ 2M22Þ2 þ 4M23M32 < 9 ð65Þ

for stable solutions or

ð3þ 2M22Þ2 þ 4M23M32 < 0 ð66Þ

for stable spiral solutions.

A. Case 1: JðXFPÞ= 0
The above-described standard method will not suffice to

evaluate fixed-point stability in all cases. In particular, for
JðXFPÞ ¼ 0 the stability matrix M has divergent terms at
the fixed point (see Appendix A for the exact expressions of
its elements). This makes the evaluation of the matrix P and
its inverse indeterminate. One can thus no longer diago-
nalize the system of equations as in (60) and come up with
solutions for (58) given by (64).
We devise the following scheme to assess stability: we

introduce small perturbations δV around an arbitrary point
V0; using (58) and diagonalizing M, we solve for δV. For
the fixed point to be an attractor we require the following
conditions to be satisfied. If V0 is infinitesimally close to
the fixed point VFP, then, as N → ∞:
(A) the perturbations δV are infinitesimally close to

zero, and therefore we require

lim
N→þ∞
V0→VFP

δV → 0; ð67Þ

(B) the derivatives of perturbations, dδV=dN, are
infinitesimally close to zero, and therefore we must
verify that

lim
N→þ∞
V0→VFP

d
dN

δV → 0; ð68Þ

(C) y=G2ðXÞ is infinitesimally close to its fixed-point
limit (53)— in compact form this translates to

lim
N→þ∞
V0→VFP

�
y

G2ðXÞ
�

2

→ 1 − ασ
G1ðXFPÞð1 − ω=6ÞðG0

1ðXFPÞÞ2
½XFPG0

1ðXFPÞð1 − ω=6Þ þ ωG1ðXFPÞ�2
:

ð69Þ

In more detail, after diagonalizing the matrix M, from
(58) we obtain

d
dN

δV̄ ¼ DδV̄ þ B; ð70Þ

where

B ¼ P−1fðV0Þ; ð71Þ

Solving (70), we are left with

δV̄ ¼ Diag

�
−
1

λ1
;…;−

1

λ5

�
B

þ Diagðeλ1N;…; eλ5NÞC; ð72Þ

where C is the integration constant vector.
Upon returning to the original basis, we find

δV ¼ PDiag

�
−
1

λ1
;…;−

1

λ5

�
P−1fðV0Þ

þ PDiagðeλ1N;…; eλ5NÞC: ð73Þ

In Appendix B we show that the requirement (A) could
be satisfied if the eigenvalues λi’s are either real and
negative or complex with a negative real part. It is also
shown that if X0 is a point infinitesimally close to its fixed-
point value XFP, it must satisfy the following relations8:
(1) ασ > 0

G0
1ðX0ÞG2ðX0ÞG0

2ðX0Þ > 0; 0 < ω < 6; ð74Þ

G0
1ðX0ÞG2ðX0ÞG0

2ðX0Þ < 0; ω > 6; ð75Þ
(ii) ασ < 0

G0
1ðX0ÞG2ðX0ÞG0

2ðX0Þ < 0; 0 < ω < 6; ð76Þ
G0

1ðX0ÞG2ðX0ÞG0
2ðX0Þ > 0; ω > 6: ð77Þ

8In special cases where G1ðXFPÞ ¼ 0, such as ω ¼ 6, or
2α23 ¼ α4, the eigenvalues involve ratios of zeros that we are
unable to resolve, so we cannot determine the stability.
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In the numerical investigation performed in Sec. VII, we
will take X0 as the initial condition for the dynamical
variable X. Therefore, relations (74)–(77) provide the
viable initial conditions needed to have linear stable
solutions for the dynamical variables. We note here that
(74)–(77) can only be satisfied for X0 either greater or less
than XFP and never both.9

ForVFP to be an attractor, we are required to verify under
which conditions (B) and (C) are satisfied. However, as
explained in more details in Appendix B, in linear
perturbation theory, (B) and (C) cannot be determined.
Therefore a numerical investigation on both (68) and (69)
should be performed. In practice the analysis of ð y

G2ðXÞÞ2 is
enough. Indeed, we find that, even though the dynamical
variables approach their fixed-point values in the asymp-
totic future, ð y

G2ðXÞÞ2 oscillates with maxima that grow in

time. Eventually, it reaches the critical value of 1, making r
in Eq. (40) singular. We discuss this phenomenon in greater
detail in Sec. VII.

B. Case 2: ½ _ϕ0

n �FP = 0
In this case, all elements of the stability matrix are well

defined and finite in the fixed-point limit. Hence we use the
standard approach of fixed-point analysis. The analytical
form of the elements ofM around the fixed-point solutions
are provided in Appendix A [Eqs. (A9)–(A15)]. For the
fixed points to be attractors, the elements ofMmust satisfy
the conditions (65) for stable solutions and (66) for stable
spiral solutions.

C. Case 3: XFP = 0

Recalling (55), we find that the presence of terms X
~Ωσ
and

y
G2ðXÞ in the stability matrix make the elements (A1), (A2),

(A5), (A6), and (A7) and consequently the eigenvalues
(A16) indeterminate. Hence the stability of XFP ¼ 0 is
unclear.

VII. NUMERICAL INVESTIGATION OF
FIXED-POINT STABILITY

As noted above, fixed-point linear stability conditions
are necessary but not sufficient to guarantee that a fixed
point can be reached by evolving from an initial configu-
ration that is displaced from that fixed point. Moreover, as
described above, for Case 1 and Case 3 some or all the
relevant quantities that appear in the background equations
cannot be analytically assessed in linear perturbation
theory. Therefore we need to perform numerical tests of
the fixed-points stability.
For suitable values of the parameters ðα3; α4;ω; ασÞ, we

check numerically that the five dynamical variables

approach their fixed-point values if initially perturbed from
them. Crucially, this includes verifying that z ¼ y=G2ðXÞ
approaches the value given by (53).
In our numerical investigations, we use the results of

Sec. VI to guarantee linear stability. We look further for
values of the parameters for which

(i) XFP ≥ 0;
(ii) ~h2FP given by (42) is positive;
(iii) the fixed-point linear stability conditions [given by

(74)–(77) for Case 1, and (65) or (66) for Case 2] are
satisfied.

Note that we could further constrain the parameter space
by selecting regions where the scalar, vector, and tensor
perturbations are stable [8,11,12]. Although it is not
necessary for the present analysis, to simplify our search,
we use some of the necessary restrictions imposed by the
stability of the perturbations, which we summarize in
Appendix E.
As discussed below, we find that the traditional (Case 1)

fixed points cannot be reached from any neighboring
configuration because z does not approach the correspond-
ing fixed-point value. The Case 2 fixed points behaved as
expected from the linear stability analysis. The Case 3 fixed
points always encounter a singularity before reaching the
fixed-point values.

A. Case 1: JðXFPÞ= 0
Our goal in this section is nominally to identify values of

the parameters ðα3; α4;ω; ασÞ such that (i)–(iii) hold true
and verify that the dynamical variables approach their
fixed-point values in the asymptotic future. One of the
central results of this paper is that we fail to do so. We
show that, for all the choices of parameters and initial
conditions we consider, the dynamical variables never
approach their fixed-point values if they do not start there
to begin with.
We begin the discussion with an example by setting

ðα3;α4;ω; ασÞ ¼ ð3.1; 3.1; 5.5; 10.0Þ. Solving (45), we find
that Xþ satisfies the conditions (i) and (ii). This set of
parameter values also satisfies the tensor, vector, and scalar
stability at the Xþ fixed point (see Appendix E).
We remind the reader that since G2ðXÞ vanishes at the

fixed point, the stability conditions (74)–(77) only hold true
in the vicinity of the fixed point. In this example, since
0 < ω < 6 and ασ > 0, the initial value of X must be of the
form X0 ¼ Xþ þ ϵ, where 0 < ϵ ≪ 1 so that (74) is
satisfied. To study the behavior of the dynamical variables
close to the fixed point, we set ϵ ¼ 10−6 and the initial
conditions to be ~ΩDE;0 ¼ ~ΩDE;FP þ ϵ, ~Ωm;0 ¼ ϵ, ~Ωr;0 ¼ ϵ.
We recall that for Case 1, we cannot freely perturb y,
because the initial value of r from (40) would not then be
close to its fixed-point value (52). Instead, we perturb r by ϵ
and initialize y using (B49). For a detailed discussion, we
refer the reader to Appendix B. Notice that ~ΩDE;0, r0, y0

9We exclude particular cases for which in a neighborhood of
XFP not only G2ðXÞ changes sign but also eitherG0

2ðXÞ or G0
1ðXÞ.
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could be either greater or less than the fixed-point values. In
this example we chose the former.
After setting the initial conditions as described above, we

study the behavior of the dynamical variables with time.
Equations (34), (35), and (36) have simple solutions,

y ¼ y0e−4N; ~Ωm ¼ ~Ωm;0e−3N; ~Ωr ¼ ~Ωr;0e−4N:

ð78Þ

The evolution equations for X and ~ΩDE have no analytical
solutions. Therefore, we use (78) in (39) and (40), and we

solve Eqs. (37) and (38) numerically. We find that (37) and
(38) evolve until they reach a singularity. As shown in
Fig. 1, the evolution of X and ~ΩDE before the singularity
turns out to be exactly what we expect from perturbation
theory: they oscillate around their fixed-point values with
decaying amplitude and increasing frequency.
By inspecting the RHSs of (37) and (38) we can identify

the possible sources of the singular behavior. The only
possibilities are that, as the fixed point is approached, the
square-root term ð ~ΩDE −G1ðXÞÞ in (37) or ð1 − ð y

G2ðXÞÞ2Þ in
(38) approaches zero. From the top panel of Fig. 3 we see
that ð ~ΩDE −G1ðXÞÞ does not vanish as the fixed point is
approached. On the other hand in Fig. 2 we show that z2 ¼
ð y
G2ðXÞÞ2 exhibits an oscillating behavior where the peaks

grow in time monotonically. Thus z does not approach its
expected fixed-point value. Moreover, as shown in the
bottom panel of Fig. 3, it eventually approaches unity,
causing a breakdown in the coupled dynamical equations
for X and ~ΩDE.
To ensure that the phenomenon described above is not a

numerical artifact, we performed numerous numerical and
analytic tests. Numerically, we confirmed that the z2 → 1
behavior was robust to increase in the numerical precision
demanded from the integrator, increase in the order of the
integrator, change in the integration scheme, and change in
the initial conditions. Therefore, we have conclusive
evidence that the evolution of the dynamical variables
drives z2 toward unity. We therefore conclude that for this
value of the EQDMG parameters, in the neighborhood of a
Case 1 fixed point the evolution equations (37) and (38)
reach a singularity in the asymptotic future.

FIG. 1. XðNÞ (top panel) and ~ΩDEðNÞ (bottom panel) starting
from initial values of dynamical variables ϵ ¼ 10−6 away from
their fixed-point values. The parameters are set to
ðα3; α4;ω; ασÞ ¼ ð3.1; 3.1; 5.5; 10.0Þ. X and ~ΩDE approach their
fixed-point values until they hit singularities.

FIG. 2. z2ðNÞ evaluated from solving the full equations (non-
perturbative) and linear perturbation theory. Parameter values and
initial conditions are the same as for Fig. 1.
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To confirm that this conclusion holds true for all regions
of the parameter space we would need to evolve the
differential equations for a high number of different values
of ðα3; α4;ω; ασÞ and initial conditions close to the fixed-
point solutions. This is numerically too costly; therefore we
solve the exact equations for a limited number of points in
the parameter space (few thousands). For a more extensive
scan (millions of points) we rely on a sensible approxi-
mation based on perturbation theory and on the following
argument.
If the fixed point is an attractor, perturbation theory

should be increasingly accurate the closer the initial

conditions are to the fixed-point value; if the fixed point
is not an attractor, then perturbation theory may or may not
work. If in perturbation theory we were to find that z
approached its fixed-point value, then we would want to
verify that conclusion with the full nonperturbative sol-
ution. If z does not approach its fixed-point value in
perturbation theory, then that may be because the initial
perturbation away from the fixed point was too large—
outside the basin of attraction—so one should decrease the
magnitude of the perturbation as much as possible. The
smaller the perturbation, the more one would expect to trust
perturbation theory. If this still fails, it is always possible
that the basin of attraction is extremely small and difficult
to find numerically; but in any case, while we will not have
arrived at a mathematical proof that this fixed point is not
an attractor, we will certainly have shown that it is not a
suitable candidate for a cosmological model.
We start by testing the prediction of z2 from perturba-

tion theory in the previously considered example. We
rely on Eqs. (B25), (B26), (B27), (B28), and (B29) where
the Ci coefficients are determined by requiring that
δVðNin ≡ 0Þ ¼ 0. In Fig. 2 we plot the behavior of z2

for the first ∼20 periods comparing the full and perturba-
tion theory solutions. We verify a consistent growth in the
peaks of z2. Hence, in the subsequent analysis, we employ
the following supporting argument: if in perturbation
theory the first 20 peaks of z2 grow monotonically with
time, we conclude that z2 does not approach its fixed-point
value. We randomly selected ∼107 values of the parameters
in the following ranges:

10−5 < jα3j; jα4j; ασ < 105;

0 < ω < 6 or 6 < ω < 105; ð79Þ

and evaluate X�. We evaluate the first ∼20 peaks of z2 for
all points that satisfied the conditions (i)–(iii) together with
the pertinent ones in Appendix E using linear perturbation
theory. We set the initial conditions of the dynamical
variables to be from ϵ ¼ 10−8 to ϵ ¼ 10−12 away from
their fixed-point values.10 We repeated the same procedure
using the numerical solutions to the full (nonperturbative)
equations with a few thousand randomly selected points.
We find that the peaks of z2 always grow monotonically
both in linear perturbation theory and by using the exact
equations.
Notice that for ασ < 0, Eqs. (14) and (24) imply z2 > 1.

However, even for negative values of ασ, r from (40) still
becomes singular because the troughs of z2 monotonically
decrease and approach unity.

FIG. 3. ð ~ΩDE − G1ðXÞÞ (top panel) and z2 (bottom panel) in
function of N. ð ~ΩDE − G1ðXÞÞ is well behaved. z2 shows
oscillations with peaks that grow in time and eventually reach
unity making the equations singular.

10For simplicity we only consider ~ΩDE;0, r0, y0 larger than their
fixed-point values. We numerically inspect a few examples with
initial conditions smaller than the fixed-point values, and we find
the same singular behavior.
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Hence we come to the following conclusion: the stan-
dard (Case 1) fixed-point solutions of extended quasidila-
ton massive gravity are dynamically unattainable due to an
unavoidable singularity while approaching them. Hence,
we rule out the suitability of this fixed point as a
cosmological model.

B. Case 2: ½ _ϕ0

n �FP = 0
Recalling that ασ is positive, we randomly select points

in the ranges (79).
To obtain the fixed-point values of X, we use (47) and

(42) to arrive at a seventh order polynomial in X with no
analytical solutions. After numerically evaluating the roots
of the polynomial, we demand that the fixed-point values
satisfy (i)–(iii) and that the vector and tensor perturbations
are stable11 (see Appendix E for details). We find parameter
values for which both stable and spiral solutions are
allowed. We selected a few points in the allowed parameter
space to verify the attractor behavior of the fixed points.
Starting from small perturbations (ϵ ¼ 10−6) around the
fixed-point values of the dynamical variables, we study the
evolution of the differential equations with time by solving
(34), (35), and (36) analytically and (37) and (38) numeri-
cally. As predicted from linear stability analysis (Sec. VI),
we find that the dynamical variables reach their fixed-point
values in the asymptotic future.

C. Case 3: XFP = 0

For the Case 3 fixed points we do not have indications
from the linear stability analysis. We perform a random
search selecting 64 × 104 points in the parameter space.
Starting from small perturbations (ϵ ¼ 10−6) around the
fixed-point values we find that the dynamical variables are
approaching the fixed-point limit. However, we find that
the quantity ð ~ΩDE − G1ðXÞÞ always approaches zero at
finite time. We find numerically that this makes r vanish,
which is not allowed in the theory.

VIII. PERTURBATIONS: AVOIDING THE
BOULWARE-DESER GHOST

One of the outstanding concerns in any theory that adds a
scalar degree of freedom to Einstein-Hilbert gravity is the
possibility that the theory includes a Boulware-Deser ghost
—a dynamical degree of freedom with a wrong-sign
kinetic term.
Because of disagreements in the literature mentioned

above (see [9–11]), in this section we reconsider the
analysis of the scalar perturbations and determine under
what conditions there is or not a necessary additional

constraint equation that generically allows one to eliminate
the Boulware-Deser mode.
We will show that such a constraint exists when JðXÞ ¼

0 (Case 1) or _σ ¼ 0, giving the possibility of being ghost-
free at the corresponding fixed points. In both cases, there is
also a well-defined set of initial conditions of the dynamical
variables for which this virtue extends beyond the fixed
point. The first case is the only one potentially relevant for
cosmology, and we explore the consequences of the initial
conditions below. The second case _σ ¼ 0 corresponds to a
Minkowski background metric (provided X ≠ 0), which we
consider only in Appendix C.
Given that in the previous section, for Case 3 we have

shown X ¼ 0 cannot be approached dynamically from any
neighborhood, one might consider the possibility when
XðNÞ ¼ 0∀ N > 0. This possibility can also be ruled out
because X ¼ 0 only makes sense as a fixed-point limit.
Hence from now on, we will not consider Case 3 any
further.
Following the standard treatment in this section only, we

take the action of the matter sector to be12

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PðY; χÞ; ð80Þ

which corresponds to the addition of a scalar field χ with a
noncanonical kinetic term, given by the function PðY; χÞ,
where

Y ≡ −
1

2
∂μχ∂μχ: ð81Þ

The fluid variables (pressure p, energy density ρ, and sound
speed cs) associated with χ can be written as [18]

p ¼ PðY; χÞ; ρ≡ 2P;YY − P; c2s ≡ P;Y

ρ;Y
: ð82Þ

To study the perturbations in χ, we replace χ by χ þMPlδχ.
To facilitate comparisons, we adopt notations as close as

possible to those most used in the literature. We decompose
the metric into tensor, vector, and scalar as

δg00 ¼ −2Φ;

δg0i ¼ að∂iBþ BiÞ;

δgij ¼ a2
�
2δijψ þ

�
∂i∂j −

δij
3
∂k∂k

�
Eþ ∂ðiEjÞ þ hij

�
;

ð83Þ
where δijhij ¼ ∂ihij ¼ ∂iEi ¼ ∂iBi ¼ 0 and Latin indices
are raised with δij. For the quasidilaton field we write the
background plus perturbation by replacing σ by σ þMPlδσ.

11We keep this analysis agnostic to the stability conditions for
scalar perturbations since, as we show below, the fact that _ϕ0 ¼ 0
does not guarantee the absence of the BD ghost.

12Clearly, the action (80) does not describe dustlike matter.
However, we consider it only for simplicity because it will be
enough for the purposes of this section.
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For the sake of clarity, in this section we present only
those results that are either more generic or different from
those in previous literature, and we relegate the remaining
details to Appendix D.
We focus first on the case _ϕ0 ≠ 0 and, following

literature, we adopt the unitary gauge ϕa¼ϕ0ðtÞδa0þδai x
i.

The case _ϕ0ðtÞ ¼ 0, for which we cannot work in this
gauge, is analyzed later.

A. _ϕ0 ≠ 0

The part of the action (2) that is quadratic in the
perturbations can be split into tensor, vector, and scalar
contributions. We focus here on the scalar part.
From the variation of the quadratic action for the scalar

sector with respect to Φ and B, we obtain constraint
equations that allow us to eliminate these two variables.
The solution for Φ and B can be found for a generic
background and without making use of the background
equations.13 Introducing the solutions forΦ and B back into
the action, we can write the kinetic part as

Sð2Þscalar ⊃
M2

Pl

2

Z
d3kdta3 _Z†Q _Z; ð84Þ

with Z ¼ fψ ; δσ; E; δχg. One combination corresponds to
the Boulware-Deser mode. For this mode to be non-
dynamical, the determinant of the matrix Q must vanish.
We first consider the vacuum case, and then we see how

the inclusion of matter changes the results:
(i) Vacuum case: In the absence of the additional field

χ, Q is a 3 × 3 matrix and Z ¼ fψ ; δσ; Eg. The
determinant DetðQÞ can be computed analytically in
Fourier space. After expanding in powers of comov-
ing wave number k, keeping only the leading order
terms (the infrared part), and using the background
equations to express H and _H in terms of the other
dynamical variables,

DetðQÞ ¼ 4ωασM4
Pla

2JðXÞ _ϕ02 _σ2k4

r3Xm2
gðJðXÞ þ α3ðX − 1Þ2 − 3X þ 3Þ

þOðk6Þ: ð85Þ

The fact that the background equations are satisfied
does not guarantee that the determinant vanishes, as
previous computations suggested [11]. However, it
is clear that DetðQÞ vanishes when JðXÞ ¼ 0 or
_σ ¼ 0. Moreover, in that case it can be shown that
the determinant vanishes at all orders in k. As we

show next, these results are robust to the addition of
matter.

(ii) With matter: Proceeding as above, at leading order
in the wave number k, after using the background
equations to replace _H and H in terms of the other
dynamical variables, the determinant of the now
4 × 4 matrix Q can be written as

DetðQÞ¼32ω

r3X
ασM6

Pla
2JðXÞ _ϕ02ðX−1ÞP;YðY;χÞ _σ2k4

×fpþρð1−2c2sÞ−2c2sðX−1Þm2
gM2

Pl

×ðJðXÞþα3ðX−1Þ2−3Xþ3Þg−1
þOðk6Þ: ð86Þ

Therefore, ignoring the particular cases for which
X ¼ 1, we see that the determinant vanishes in the
infrared under the same conditions as in the vacuum
case. Under those conditions, we also check that the
determinant vanishes at all orders in k.

Of course, the determinant also vanishes in the
case where the matter is just a cosmological con-
stant, P;Y ¼ 0.

Therefore, DetðQÞ ¼ 0 at the Case 1 fixed points. If we
perturb X away from that fixed-point value, then JðXÞ ≠ 0,
and DetðQÞ ≠ 0 either. However, from (22), we can
conclude that if J ≡ JðXÞ ¼ 0 at some initial time t0, then
also _J ¼ 0 at that time, and also J̈. Thus JðXÞ remains zero
at all times once X ¼ XFP. Consequently DetðQÞ also
remains equal to zero. Therefore, to eliminate the BD ghost
in both the vacuum and the matter contexts, we must
impose special initial conditions on the dynamical varia-
bles, namely, that X ¼ X� is exactly satisfied. Setting X to
this fixed-point value, and thus setting JðXÞ ¼ 0, y ¼ 0,
and _X ¼ 0, we can solve (35) through (40) to obtain

~ΩDE ¼
ω
6
ð ~Ωm0e−3N þ ~Ωr0e−4NÞ þ G1ðX�Þ

1 − ω
6

;

~h2 ¼ 6

ω
ð ~ΩDE − G1ðX�ÞÞ: ð87Þ

This appears to be just a fine-tuning of the dynamical
variable X to some parameter-dependent value; however, X
is a function of both the quasidilaton and the scale factor
given by (19). This thus appears to be an awkward fine-
tuning, relating the initial values of many of the dynamical
variables to one another. It also allows the fixed points to
become stable attractors that can be approached dynami-
cally. Furthermore, notice that in the asymptotic past,
N → −∞, the matter and radiation terms will dominate
overG1ðX�Þ. This restricts the values of ω to 0 < ω < 6 or
it means that the theory is not valid arbitrarily far into
the past.

13There are some disagreements in the literature regarding
these results. In the appropriate limit, our results reduce to
those of [12] rather than those of [11]. For more details see
Appendix D.
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B. _ϕ0 = 0

As mentioned earlier, in the special case _ϕ0 ¼ 0 (Case 2)
we cannot use the unitary gauge. Assuming H ≠ 0 we
choose the gauge with ψ ¼ 0 instead, while we keep
ϕi ¼ xi. In principle, as first noticed by [12], this case
could also be interesting beyond the fixed-point limit. This

corresponds to setting _ϕ0ðt0Þ ¼ 0 at some initial time t0,

yielding ϕ̈0ðt0Þ ¼ 0 and _ϕ0ðtÞ ¼ 0 for all time. This
enforces y ¼ 0, but the other dynamical variables remain
free to evolve.
The perturbations of the Stückelberg scalar degree of

freedom δϕ0 (since _ϕ0 ¼ 0 at the background level) only
enter as a contribution to fμν that is quadratic in δϕ0.
Therefore, the quadratic action for this scalar decouples
from the other parts, and the kinetic part can be immedi-
ately computed,

Sð2Þscalar ⊃ −
M2

Pl

2

Z
d3kdta3

m2
g

r
G2ðXÞa2jδ _ϕ0j2: ð88Þ

Now, to compute the determinant of the kinetic matrix
corresponding to the other degrees of freedom we proceed
as above. We integrate out Φ and B, we write the relevant
part of the action as in (84), and we consider the vacuum
case and the case with matter separately:

(i) Vacuum case: In this case Z ¼ fδσ; Eg, and

DetðQÞ ¼ G0
1ðXÞk4m2

gXωa2ð6ασG1ðXÞ þ r2X2ωÞ
× f4ð9ασG1ðXÞG0

1ðXÞm2
gXa2

þ k2ðrþ 1Þð6ασG1ðXÞ
þ r2X2ωÞÞg−1; ð89Þ

(ii) With matter: Z ¼ fδσ; E; δχg, and

DetðQÞ ¼−H2k4Xωm2
gG0

1ðXÞM2
Pl

× ½Xm2
gðr2Xω− ðr−1ÞασG0

1ðXÞÞþ 2 _Hασ�
× f_χ2½a2Xm2

gG0
1ðXÞð2ασð3H2c2s þ _HÞ

− r2X2ωðc2s − 1Þm2
gÞ

−a2ðr− 1ÞX2ασm4
gðG0

1ðXÞÞ2
þ 4H2k2ðrþ 1Þασc2s �g−1: ð90Þ

Hence, we conclude that the condition _ϕ0 ¼ 0 is not
sufficient to obtain the required additional constraint.

IX. CONCLUSIONS

In this paper we studied the fixed-point solutions of
EQDMG in great detail after splitting them into four
cases.
We performed a linear stability analysis of the back-

ground (homogeneous) fixed-point solutions. This stability

analysis for the standard case (Case 1) required an uncon-
ventional approach. We derived necessary stability con-
ditions for the dynamical variables. However, we verify
numerically that the dynamical variables inevitably
encounter a singularity while approaching their fixed-point
values. This is because a function of two of the dynamical
variables fails to approach its fixed-point limit, and instead
oscillates, finally reaching a critical value at which the
dynamical equations are no longer valid.
On the other hand, in Case 2, the dynamical variables

smoothly asymptote toward their fixed-point values.
However, in this case, the presence of the additional
constraint that would allow one to eliminate the BD mode
is not guaranteed. A numerical search of the Case 2
parameter space revealed many values of the parameters
that have stable evolutions toward the fixed point.
We analyzed the conditions under which the constraint

equation that generically allows for the elimination of the
Boulware-Deser ghost can be obtained. We found that the
constraint equation exists in Case 1 type of solutions, but
not around a generic background. Moreover, in these
solutions the fixed points are attractors. However, such
solutions require the time derivative of the quasidilaton
field must be exactly tuned against the Hubble parameter.
The conclusive result of our study indicates that the

EQDMG theory shows pathological behaviors when a
generic FLRW solution is assumed. Only an “awkward”
fine-tuned solution is healthy. From our point of view this
finding makes the EQDMG less appealing as a viable
model to explain the evolution of our Universe.
The extensive analytical and numerical analysis pre-

sented for the EQDMG theory must be carried out for all
the proposed massive gravity theories that provide flat
Friedmann-Lemaître-Robertson-Walker solutions (a non-
exhaustive list includes [9,19–22]).
As mentioned below (87), the condition ω < 6 arises in

EQDMG when the JðXÞ ¼ 0 solution is taken to describe
the past cosmological evolution, when matter and radiation
dominated. In EQDMG this solution is imposed to avoid
the presence of the BD ghost. However, since in QDMG the
BD mode can be eliminated without setting JðXÞ ¼ 0, the
restriction ω < 6 is in principle unnecessary. It would be
worth exploring the parameter region ω > 6 to see whether
the simpler QDMG theory allows a proper description of
the expansion history of the Universe. We propose to
contribute to the understanding of this issue in the future.
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APPENDIX A: STABILITY MATRIX

This appendix complements the results presented in
Sec. VI. In particular, we provide, in linear perturbation
theory, the full expressions for the stability matrix and its
eigenvalues. We then present the Case 2 fixed-point limit of
the matrix elements and the conditions of stability.

1. General expression

The derivative/stability matrix M defined in (59) takes
the form

M ¼

2
6666664

−4 0 0 0 0

0 M22 M23 M24 M25

M31 M32 M33 0 0

0 0 0 −3 0

0 0 0 0 −4

3
7777775
;

where

M22 ¼ −1�
ffiffiffiffiffiffiffiffi
6 ~Ωσ

~h2ω

s �
1 −

XG0
1ðXÞ

2 ~Ωσ

�
; ðA1Þ

M23 ¼ �
ffiffi
3
2

q
Xð ~h2 − ~ΩσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ωσ

~h6ω
q ; ðA2Þ

M24 ¼∓ X

ffiffiffiffiffiffiffiffiffiffiffi
3 ~Ωσ

2~h6ω

s
; ðA3Þ

M25 ¼ M24; ðA4Þ

M31 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ασ ~Ωσ

ωð1−ð y
G2ðXÞÞ

2Þ

r
G0

1ðXÞ
yð1 − ð y

G2ðXÞÞ2Þ
�

y
G2ðXÞ

�
2

; ðA5Þ

M32 ¼ −
ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ασ

ωð1 − ð y
G2ðXÞÞ2Þ ~Ωσ

s
ðG0

1ðXÞÞ2

þ
�
5G0

1ðXÞ −M31G0
2ðXÞ

�
y

G2ðXÞ
��

þ XG00
1ðXÞ

0
B@−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ασ ~Ωσ

X2ωð1 − ð y
G2ðXÞÞ2Þ

vuut
1
CA; ðA6Þ

M33 ¼ −6þ
ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ασ

ωð1 − ð y
G2ðXÞÞ2Þ ~Ωσ

s
G0

1ðXÞ: ðA7Þ

In the above equations, one must replace ~h2 by (39) and ~Ωσ

by ~ΩDE −G1ðXÞ.

2. Case 2

We evaluate M for the Case 2 fixed point.
Notice that ~Ωσ, when X ≠ 0 [using (26)], is given by

~Ωσ ¼
ω ~h2

6
: ðA8Þ

As explained in Sec. V, in Case 2 we must take the upper
sign in (37); this implies that in (A1)–(A4) the sign is also
positive. The elements of the M matrix are given by

M22 ¼ −
3XG0

1ðXÞ
~h2ω

; ðA9Þ

M23 ¼
3X
~h2ω

ð1 − ω=6Þ; ðA10Þ

M24 ¼ −
X

2~h2
; ðA11Þ

M25 ¼ M24; ðA12Þ

M31 ¼ 0; ðA13Þ

M32 ¼ −3
ffiffiffiffiffiffiffiffiffiffi
ασ

ω2 ~h2

r
ðG0

1ðXÞÞ2 þ 5G0
1ðXÞ

þ XG00
1ðXÞ

 
−1þ

ffiffiffiffiffiffiffiffiffiffi
ασ ~h

2

X2

s !
; ðA14Þ

M33 ¼ −6þ 3

ffiffiffiffiffiffiffiffiffiffi
ασ

ω2 ~h2

r
G0

1ðXÞ; ðA15Þ

at the fixed point. In the above equations, one must14 use

(42) to replace ~h2 by G1ðXÞ
ð1−ω=6Þ.

The eigenvalues (λi’s) of the matrix are

λi ¼ −4;−4;−3;

× 1=2
�
ðM22 þM33Þ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM22 −M33Þ2 þ 4M23M32

q �
;

i¼ 1;…;5; ðA16Þ

14Except in the particular case where ω ¼ 6, in which case one
must instead use a root of

ð6~h2 þ XG0
1ðXÞÞ2 ¼ ðG0

1ðXÞÞ2ασ ~h2:
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respectively. Using (47) we find that

M22 þM33 ¼ −3: ðA17Þ

We can thus impose the following conditions on elements
(A9)–(A15) so that the fixed points become stable or stable
spirals:

(i) Stable solutions

0 ≤ ð3þ 2M22Þ2 þ 4M23M32 < 9; ðA18Þ

(ii) Stable spiral solutions

ð3þ 2M22Þ2 þ 4M23M32 < 0: ðA19Þ

These are Eqs. (65) and (66) in Sec. VI.

APPENDIX B: NONSTANDARD STABILITY
ANALYSIS FOR CASE 1

In this appendix we provide the detailed compu-
tations supporting the linear stability analysis presented
in Sec. VI A and the numerical analysis explained in
Sec. VII A for the Case 1 fixed points.
To compute δV from (73) and the limits (68) and (69),

we split the analysis into two steps:
(1) we provide the analytical expression for the matrix P

and its inverse and analyze the fixed-point limit of
their elements;

(2) we expand (73) and show that, under certain con-
ditions, perturbations are infinitesimally close to
zero in the limit N → þ∞ and V0 → VFP. We then
show that in linear perturbation theory the limits (68)
and (69) cannot be assessed.

The third subsection of this appendix deals with the
initial conditions needed in numerical analysis presented in
Sec. VII.

1. Matrix P and its inverse in the fixed-point limit

To analyze the fixed-point limit of δV we previously
need to study the matrix P and its inverse.
The column vectors in the matrix P are composed of

eigenvectors of M. The matrix P reads

P ¼

2
6666664

P11 P12 0 0 0

P21 P22 P23 P24 P25

0 1 P33 1 1

0 0 1 0 0

1 0 0 0 0

3
7777775
;

where

P11 ¼
M25M32

ðM22 þ 4ÞM31

; ðB1Þ

P12 ¼
M23M32

ðM22 þ 4ÞM31

−
4þM33

M31

; ðB2Þ

P21 ¼ −
M25

ðM22 þ 4Þ ; ðB3Þ

P22 ¼ −
M23

ðM22 þ 4Þ ; ðB4Þ

P23 ¼ −M24ðM33 þ 3Þ
× ðM22M33 þ 3M22 −M23M32 þ 3M33 þ 9Þ−1;

ðB5Þ

P24 ¼ −2M23

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM22 −M33Þ2 þ 4M23M32

q
þM22 −M33

�−1
;

ðB6Þ

P25 ¼ 2M23

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM22 −M33Þ2 þ 4M23M32

q
−M22 þM33

�−1
;

ðB7Þ

P33 ¼ M24

× ððM22M33 þ 3M22 þ 3M33 þ 9ÞM−1
32 −M23Þ−1:

ðB8Þ

We first need to address the fixed-point limit of the
matrixM elements. We recall that in Case 1, although both
y andG2ðXÞ vanish, the ratio y=G2ðXÞ is finite and is given
by (53). Therefore, one can see that the elements of the
matrix, M31 and M32 [(A5) and (A6), respectively] are
divergent in the fixed-point limit,15 since both of them scale
as ð∼1=yÞ. All the other elements of M are finite.
The nonzero elements of P that have the terms M31 and

M32 either depend on M−1
31 , M

−1
32 (both approaching 0) or

contain the ratio M32=M31 that tends to

M32

M31

→ −G0
2ðXÞ

�
y

G2ðXÞ
�

ðB9Þ

at the fixed point. Therefore the elements of P are
convergent at the fixed point.
We now show that some of the elements of P−1 are

divergent. The matrix P−1 reads

15We use the phrase “fixed-point limit” loosely in this
appendix, since, as we discuss in Sec. VII, the Case 1 fixed
point cannot be approached dynamically.
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P−1 ¼

2
6666664

0 0 0 0 1

R21 0 0 0 R25

0 0 0 1 0

R41 R42 R43 R44 R45

R51 −R42 R53 R54 R55

3
7777775
;

where

R21 ¼
−ðM22 þ 4Þ

D1

; ðB10Þ

R25 ¼
M25M32

D1

; ðB11Þ

R41 ¼
M31ðN−Þð8þ NþÞ

4D1D2

; ðB12Þ

R42 ¼
−M32

D2

; ðB13Þ

R43 ¼
N−

2D2

; ðB14Þ

R44 ¼
−M24M32ð6þ NþÞ

2D2D3

; ðB15Þ

R51 ¼
−M31ð−8þ N− − 2M22Þ

4D2D1

× ðNþ − 2M22Þ; ðB16Þ

R53 ¼
Nþ − 2M22

2D2

; ðB17Þ

R54 ¼
M24M32ð6 − N− þ 2M22Þ

2D2D3

; ðB18Þ

R55 ¼
M25M32ð8 − N− þ 2M22Þ

2D1D2

; ðB19Þ

where

D1 ¼ M31M22ðM33 þ 4Þ
−M23M32 þ 4ðM33 þ 4Þ; ðB20Þ

D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM22 −M33Þ2 þ 4M23M32

q
; ðB21Þ

D3 ¼ M22ðM33 þ 3Þ −M23M32 þ 3M33 þ 9; ðB22Þ

N− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM22 −M33Þ2 þ 4M23M32

q
þM22 −M33; ðB23Þ

Nþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM22 −M33Þ2 þ 4M23M32

q
þM22 þM33: ðB24Þ

It is easy to see thatD1,D3 ∼ 1=y andD2, N−,Nþ ∼ 1=
ffiffiffi
y

p
,

which makes R41, R42, R51, and R52 divergent at the
fixed point.

2. Analysis of perturbations in the fixed-point limit

The perturbations δV given by (73) are expanded to

δy ¼ f1ðV0Þ
4

þ
�

e−4N

4þM22

�
×
�
M25

M32

M31

C1

−
�

16

M31

−M23

M32

M31

þ 4
M33

M31

þM22

M31

ð4þM33Þ
�
C2

�
;

ðB25Þ

δX ¼ 1

12ðM23−M22
M33

M32
Þ

×

�
−3M23

�
M31

M32

f1ðV0Þ þ
4

M32

f3ðV0Þ
�

þM33

M32

ð12f2ðV0Þ þ 4M24f4ðV0Þ þ 3M25f5ðV0ÞÞ
�

−
�

e−4N

4þM22

�
ðM25C1 þM23C2Þ

−M24

�
3þM33

D3

�
C3e−3N

−
�
2M23C4eλ4N

N−
−
2M23C5eλ5N

Nþ − 2M22

�
; ðB26Þ

δ ~ΩDE ¼ 1

12ðM22
M33

M32
−M23Þ

×

�
−3M22

�
M31

M32

f1ðV0Þ þ
4

M32

f3ðV0Þ
�

þ ð12f2ðV0Þ þ 4M24f4ðV0Þ þ 3M25f5ðV0ÞÞ
�

þ C2e−4N þM24C3e−3N

D3M−1
32

þ ðC4eλ4N þ C5eλ5NÞ; ðB27Þ

δ ~Ωm ¼ f4ðV0Þ
3

þ C3e−3N; ðB28Þ

δ ~Ωr ¼
f5ðV0Þ

4
þ C1e−4N: ðB29Þ

Since δX0 and δ ~ΩDE0
are real quantities, we must set the

imaginary terms in (B26) and (B27) occurring in the last
two terms to zero. From (B27), this amounts to C4 ¼ C�

5.
Additionally, it can be shown that this requirement also
makes δX real automatically.
We now study the limit of δV for N → þ∞ and

V0 → VFP. We identify two different possibilities.
(a) If and only if the eigenvalues λ4 and λ5 are either real

and negative or complex with a negative real part,
none of the two limits give rise to divergent terms.
Thus the two limits commute and the final limit is well
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defined. Recalling that fiðV0Þ vanish for V0 → VFP,
we have

lim
N→þ∞
V0→VFP

δV → 0: ðB30Þ

We conclude that, under the above specified condi-
tions for the eigenvalues, the perturbations approach
zero near the fixed point.

(b) If the eigenvalues λ4 and λ5 are real and positive (or
complex with a positive real part), the last term of
(B27) diverges (or is indeterminate) for N → ∞ while
the other terms remain finite. We conclude that δ ~ΩDE
is divergent (or indeterminate).

From a close inspection to λ4, λ5 given by (A16) we find
that, using (53), M22 þM33 ¼ −3 [as in (A17)]. Thus,
being M32 divergent, condition (a) is realized only if
M23M32 < 0. We notice that

M23 ¼
3Xð1 − ω=6Þ

ω ~h2
; ðB31Þ

at the fixed point that is positive if 0 < ω < 6 and negative
when ω > 6. This means one must satisfy the following
condition for stable attractors:

M32 →

	−∞; 0 < ω < 6

þ∞; ω > 6
: ðB32Þ

To satisfy the above conditions at the fixed point, we first
evaluate M32 in (A6) at a point X0 that is infinitesimally
close to the fixed-point value of X. Demanding that

M32

	
< 0; 0 < ω < 6

> 0; ω > 6
ðB33Þ

at the fixed-point limit, (B32) will automatically be
satisfied. Evaluating (A6) at X0, we find that the divergent,
hence dominating term, is MDiv

32 ≡ −M31G20 ðX0Þð y
G2ðX0ÞÞ.

As an illustration, consider the region 0 < ω < 6 and
ασ > 0. From (24) and (14), we see that

1 −
�

y
G2ðXÞ

�
2

> 0: ðB34Þ

We can therefore write

SignðM31Þ ¼ Sign
�
G0

1ðX0Þ
y

�
: ðB35Þ

Plugging this expression in the divergent term ofM32 gives

SignðMDiv
32 Þ ¼ Sign

�
−
G0

1ðX0ÞG0
2ðX0Þ

G2ðX0Þ
�
; ðB36Þ

which must be negative. We arrive at the relation (74) in
Sec. VI A

G0
1ðX0ÞG2ðX0ÞG0

2ðX0Þ > 0: ðB37Þ

Similarly, we find that
(i) ασ > 0

G0
1ðX0ÞG2ðX0ÞG0

2ðX0Þ < 0; ω > 6; ðB38Þ

(ii) and ασ < 0

G0
1ðX0ÞG2ðX0ÞG0

2ðX0Þ < 0; 0 < ω < 6; ðB39Þ

G0
1ðX0ÞG2ðX0ÞG0

2ðX0Þ > 0; ω > 6; ðB40Þ

which are (75), (76), and (77) in Sec. VI A. Therefore, since
G2ðXÞ changes sign at XFP, in a neighborhood of a fixed
point VFP, there are regions that satisfy (a) and regions that
satisfy (b).
As emphasized in Sec. VI A, for VFP to be an attractor we

require that

lim
N→þ∞
V0→VFP

d
dN

δV → 0: ðB41Þ

When condition (a) is satisfied, the last term of the
dδ ~ΩDE=dN [see (B27)] is indeterminate in the limit.
The last requirement for VFP to be an attractor is that, in

linear perturbation theory, the following limit

lim
N→þ∞
V0→VFP

�
y

G2ðXÞ
�

2

ðB42Þ

approaches dynamically its fixed-point limit given by (53).
When condition (a) holds true, we can expand (B42) to

lim
N→þ∞
V0→VFP

�
y0 þ δy

G2ðX0Þ þ G0
2ðX0ÞδX

�
2

; ðB43Þ

and substituting (B25) and (B26) we find that the limit is
indeterminate.

3. Initial conditions for the numerical analysis

To numerically investigate whether a solution of the
dynamical equations is approaching the fixed point, we
need to set the initial conditions for the dynamical variables
in a neighborhood close to the fixed-point value. In this
regard we perturb the dynamical variables around their
fixed-point values instead of around their values close to
the fixed point,V0. This is possible because any point in the
neighborhood of a solution infinitesimally close to the fixed
point can be treated as a perturbation around the fixed-point
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value. We set the initial values ðXi; ~ΩDEi
; ~Ωmi

; ~Ωmi
Þ as

follows:

Xi ¼ X� þ ΔX; ðB44Þ

~ΩDEi
¼ G1ðX�Þ

ð1 − ω=6Þ þ Δ ~ΩDE; ðB45Þ

~Ωmi
¼ Δ ~Ωm; ðB46Þ

~Ωri ¼ Δ ~Ωr: ðB47Þ

We observe that, if we set yi ¼ Δy, then the term y
G2ðXÞ ≡

zðy; XÞ in (40) would not be close to its fixed-point value
given by (53). This happens because, on expanding zðy; XÞ
around the fixed point, we obtain

zðΔy; X� þ ΔXÞ ¼ zð0; X�Þ þ
Δy

G2ðX�Þ

− zð0; X�Þ
G0

2ðX�Þ
G2ðX�Þ

ΔX: ðB48Þ

The second and third terms in the above expansion have a
divergent factor of 1

G2ðX�Þ. Hence the initial value of r

obtained from (40) is not close to its fixed-point value (52).
We instead add a small perturbation to the fixed-point value
of r, ri ¼ ð1þ ωG1ðXÞ

XG0
1
ðXÞð1−ω=6ÞÞ þ Δr and use this value in

(24) to set the initial value of y as

yi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ασ

6ð ~ΩDEi
− G1ðXiÞÞ

ωr2i X
2
i

s
G2ðXiÞ: ðB49Þ

APPENDIX C: MINKOWSKI LIMIT

During evolution of the dynamical variables, if we
encounterH ¼ 0, then the infinitesimal dN is zero, making
the standard evolution equations indeterminate. In such a
case, we revert to equations written in cosmic time. For
notational convenience, we define T ¼ tmg and the follow-
ing dimensionless quantities: τ ¼ ð σ0

MPl
Þ2, ρ̄m ¼ ρm

M2
Plm

2
g
, ρ̄r ¼

ρr
M2

Plm
2
g
and ~h ¼ a0

a , where the primes ( 0) represent derivative

with respect to T . The resulting background evolution
equations are

y0 ¼ −4y ~h; ðC1Þ

X0 ¼ Xð� ffiffiffi
τ

p
− ~hÞ; ðC2Þ

τ0 ¼ −6
�
~hτ þ XG0

1ðXÞ
ω

ð� ffiffiffi
τ

p
− r ~hÞ

�
; ðC3Þ

ρ̄0m ¼ −3~hρ̄m; ðC4Þ

ρ̄0r ¼ −4~hρ̄r; ðC5Þ

where one must substitute

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τασ
X2ð1 − ð y

G2ðXÞÞ2Þ

s
; ðC6Þ

and

~h2 ¼ ωτ

6
þ G1ðXÞ þ

ρ̄m
3

þ ρ̄r
3
: ðC7Þ

Notice that using T as the independent variable rather than
N provides us with a system of equations with no
divergences as ~h approaches zero, making it suitable to
study the special fixed-point case ~h ¼ 0. However, these
equations are inconvenient for the general stability analysis,
since the stability matrix has fewer diagonal terms.

1. Fixed-point solutions

We now focus on the ~h ¼ 0 fixed-point analysis. One can
easily verify from (C1), (C4), and (C5) that the derivatives
of y, ρ̄m, and ρ̄r approach zero. These variables therefore
approach constant values (and not necessarily 0) at the
fixed point.
From (C2), at least one of X and τ must vanish. There are

three cases:
(i) If τ ¼ 0 and X ≠ 0, then (C3) is automatically

satisfied and from the Friedmann equation (C7)

G1ðXÞ þ
ρ̄m
3

þ ρ̄r
3
¼ 0: ðC8Þ

From (14), we get nðtÞ2 ¼ ð _ϕ0Þ2. From (24), we
get ð y

G2ðXÞÞ2 ¼ 1, which makes r from (C6) indeter-

minate at the fixed point. r is also indeterminate
from (C3).

A special case occurs when G1ðXÞ ¼ 0. From
(C8), we get ρm ¼ ρr ¼ 0. Since the initial values of
matter and radiation density are not zero, we find
that a → ∞.

(ii) If X ¼ 0 but τ ≠ 0, then (C3) is automatically
satisfied (meaning τ is indeterminate) and (C7)
gives us

ωτ

6
þ G1ð0Þ þ

ρ̄m
3

þ ρ̄r
3
¼ 0: ðC9Þ

From (19), either σ → −∞ [in which case, from (14)
and (20), n and r become divergent, respectively], or
a → ∞ [in which case, from (20), r becomes
divergent].
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(iii) If τ ¼ X ¼ 0, then (C7) gives us

G1ð0Þ þ
ρ̄m
3

þ ρ̄r
3
¼ 0: ðC10Þ

From (19), either σ → −∞ [in which case, from

(14),
_ϕ0

n is indeterminate], or a → ∞ [in which

case n2 ¼ ð _ϕ0Þ2].
We then conclude that ΩDE balances the sum of matter

and radiation energy densities.

2. Fixed-point linear stability

To study the linear stability of the fixed points we follow
(C1)–(C5) defining V ¼ ½y; X; τ; ρ̄m; ρ̄r�T as the dynamical
variables and fðVÞ as the RHS of these evolution equations.
The stability matrix M at any time T takes the form

M ¼

2
6666664

M11 M12 M13 M14 M15

0 M22 M23 M24 M25

M31 M32 M33 M34 M35

0 M42 M43 M44 M45

0 M52 M53 M54 M55

3
7777775
;

where

M11 ¼ −4~h; ðC11Þ

M12 ¼
−2yG0

1ðXÞ
~h

; ðC12Þ

M13 ¼
−yω
3~h

; ðC13Þ

M14 ¼
−2y
3~h

; ðC14Þ

M15 ¼ M14; ðC15Þ

M22 ¼ � ffiffiffi
τ

p
− ~h −

XG0
1ðXÞ
2~h

; ðC16Þ

M23 ¼
X
2

�
� 1ffiffiffi

τ
p −

ω

6~h

�
; ðC17Þ

M24 ¼
−X
6~h

; ðC18Þ

M25 ¼ M24; ðC19Þ

M31 ¼
6y ~h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αστ

ð1−ðy=G2ðXÞÞ2Þ3
q

G0
1ðXÞ

ωðG2ðXÞÞ2
; ðC20Þ

M32 ¼ 6

ffiffiffi
τ

p
ω

�ðG0
1ðXÞÞ2
2~h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ασ

ð1− ðy=G2ðXÞÞ2Þ
r

−G0
1ðXÞ

�
�1þ

ffiffiffi
τ

p
ω

2~h
þ
y2 ~hG0

2ðXÞð ασ
ð1−ðy=G2ðXÞÞ2ÞÞ

3=2

ασðG2ðXÞÞ3
�

−
�
�X − ~h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ασ

ð1− ðy=G2ðXÞÞ2Þ
r �

G00
1ðXÞ

�
; ðC21Þ

M33 ¼ −6

 
~hþ

ð�X − ~h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ασ
ð1−ðy=G2ðXÞÞ2Þ

q
ÞG0

1ðXÞ
2
ffiffiffi
τ

p
ω

!

−
τω

2~h
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αστ

ð1 − ðy=G2ðXÞÞ2Þ
r

G0
1ðXÞ
2~h

; ðC22Þ

M34 ¼
−τ
~h
þ G0

1ðXÞ
ω ~h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τασ

ð1 − ðy=G2ðXÞÞ2Þ
r

; ðC23Þ

M35 ¼ M34; ðC24Þ

M42 ¼
−3ρ̄mG0

1ðXÞ
2~h

; ðC25Þ

M43 ¼
−ωρ̄m
4~h

; ðC26Þ

M44 ¼
−3
~h

�
~h2 þ ρ̄m

6

�
; ðC27Þ

M45 ¼
−ρ̄m
2~h

; ðC28Þ

M52 ¼
−2ρ̄rG0

1ðXÞ
~h

; ðC29Þ

M53 ¼
−ωρ̄r
3~h

; ðC30Þ

M54 ¼
−2ρ̄r
3~h

; ðC31Þ

M55 ¼
−4
~h

�
~h2 þ ρ̄r

6

�
: ðC32Þ

We cannot find the eigenvalues of M analytically, because
the characteristic polynomial is fifth order. Therefore we
cannot apply the method described in Sec. VI A. We
instead study the characteristic polynomial in the fixed-
point limit. We find that in both fixed-point cases, τ ¼ 0
and X ¼ 0, the polynomial has indeterminate coefficients
[due to the presence of ratios of powers of ~h, τ, or
1 − ð y

G2ðXÞÞ2] or divergent coefficients [due to inverses of

powers of ~h, τ, or 1 − ð y
G2ðXÞÞ2]. This makes the eigenvalues
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and thus the stability of this special case indeterminate.
Therefore, the stability of this fixed point can only be
assessed by a numerical analysis. However, we consider
such an analysis as out of the scope of our present work.

APPENDIX D: SCALAR PERTURBATIONS

Since there are certain disagreements between our
equations for the perturbations and those in the literature,
for the sake of completeness, here we present the pertinent
equations.
Regarding scalar sector, the discrepancy we find can

be noted by comparing the constraint equations obtained
from the variation of the action quadratic in the perturba-
tions, with respect to Φ and B, and we obtain (in Fourier
space)

0 ¼ 6H _ψ þ 2k2

a2

�
ψ þ k2E

6
þ aBH

�
−
ω _σ _δσ

MPl

−
δχρ;χ
MPl

−
_δχðpþ ρÞ
_χc2sMPl

þ 3ψ

M2
Pl

�
3H2M2

Pl − ρ −
ω

2
_σ2
�

þ 3ψm2
gðJ þ α3ðX − 1Þð2X − 1Þ þ ðX − 6ÞX þ 3Þ

þ 3Φ
M2

Pl

�
pþ ρð1þ c2sÞ

3c2s
− 3H2M2

Pl þ
ω

2
_σ2
�

þΦðX − 1Þm2
gðJ þ α3ðX − 1Þ2 − 3X þ 3Þ

− 3Xm2
gðJðXÞ þ α3ðX − 1ÞX − 2XÞδσ; ðD1Þ

0¼ 3δχðr2 − 1Þðpþ ρÞ
a_χωMPl

−
6ðr2 − 1Þ

aω
×

�
HΦ− _ψ −

k2

6
_E

�

þ 3

ω
Bðr− 1Þm2

g × ½α3ðX − 1ÞðrðX − 1Þ2 − 2Xþ 1Þ

− 3rðX − 1Þ2 −X2 þ 6X − 3� þ 3Bðr2 − 1Þ
ωM2

Pl

×

�
−3H2M2

Pl þ ρþω

2
_σ2
�
þ 3

ω
BJðr− 1Þ

×m2
gðrðX− 1Þ− 1Þ þ 3δσ _σ

aXωMPl
½ðr2 − 1ÞXω− ðr− 1Þασ

× ðJþ α3ðX − 1ÞX− 2XÞ�: ðD2Þ
In deriving these equations we have not made use of the
background equations. One can show that using the
assumed background evolution given in (28) and (29) of
[12], these equations are equivalent to (48) of [12]. Even
after using the background equations, one can show that
our Eq. (D2) differs from Eq. (4.22) of [11] (we have an
additional contribution proportional to ασδσ), and (48) of
[12] also differs from those in [11] in their regime of
applicability. For this reason we believe our equations are
correct.

APPENDIX E: STABILITY OF PERTURBATIONS

In this appendix we provide the conditions obtained from
requiring the stability of the perturbations, which we used
to restrict the values of the parameters of the theory in the
numerical study of Sec. VII.
The mass of tensor perturbations is given by

m2
GW ¼ m2

gXð3þ 3α3 þ α4 þ rX2ðα3 þ α4Þ
− ð1þ rÞXð1þ 2α3 þ α4ÞÞ: ðE1Þ

To avoid tachyonic instabilities, we requirem2
GW >−H2.

For tensor perturbations, we do not reproduce Eq. (4.7) of
[11], nor the underlying equation of motion for the σ field,
Eq. (3.13). Equation (E1) agrees with [8,11] at the Case 1
fixed point, but not elsewhere.
For vector perturbations, we confirm the expression

[Eq. (4.17)] in [11], for the coefficient of the vector kinetic
term, and rewrite it as

κ2V ¼ 2m2
ga2XG0

1ðXÞ
ðk2ð1þ rÞ þ 2m2

ga2XG0
1ðXÞÞ

: ðE2Þ

For the perturbations to be stable, we must have k2V > 0 and
a vector mass squared that limits any tachyonic instability

m2
V ¼ m2

GW
κ2V

> −H2. We see from (E2) that if we impose

G0
1ðXÞ > 0; ðE3Þ

the kinetic coefficient obeys 0 < κ2V < 1. If m2
GW > −H2,

as imposed above, then this also ensures tachyonic stability
for vector perturbations.
For Case 1, after integrating out the BD mode, we obtain

the conditions for stability of the scalar perturbations. Our
results for this case reproduce the ones in [12]. At this fixed
point, (E1) reduces to

m2
GW ¼ m2

gðr − 1Þ2X3 þ ωH2ðrðX þ 1Þ − 2Þ
ðr − 1ÞðX − 1Þ : ðE4Þ

Following [12], we arrive at the stability conditions for
scalar perturbations,

X2 < ασ ~h
2 < r2X2: ðE5Þ

It follows that

r > 1 ðE6Þ

and

ασ > 0: ðE7Þ

For simplicity, we will not evaluate the stability con-
ditions for scalar perturbations in the region ω ≥ 6 for
either ασ > 0 or ασ < 0.
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