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Spectral evolution of the SU(4) Kondo effect from the single impurity to the two-dimensional limit
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We describe the evolution of the SU(4) Kondo effect as the number of magnetic centers increases from
one impurity to the two-dimensional (2D) lattice. We derive a Hubbard-Anderson model which describes a
2D array of atoms or molecules with twofold orbital degeneracy, acting as magnetic impurities and interacting
with a metallic host. We calculate the differential conductance, observed typically in experiments of scanning
tunneling spectroscopy, for different arrangements of impurities on a metallic surface: a single impurity, a
periodic square lattice, and several sites of a rectangular cluster. Our results point towards the crucial importance
of the orbital degeneracy and agree well with recent experiments in different systems of iron(II) phtalocyanine
molecules deposited on top of Au(111) [N. Tsukahara et al., Phys. Rev. Lett. 106, 187201 (2011)], indicating an
experimental realization of an artificial 2D SU(4) Kondo-lattice system.
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The Kondo effect is one of the most paradigmatic phe-
nomena in strongly correlated condensed matter systems [1].
It is characterized by the emergence of a many-body singlet
ground state formed by the impurity spin and the conduction
electrons in the Fermi sea, which form a screening “cloud”
around the impurity. Originally observed in dilute magnetic
alloys [1], the Kondo effect has reappeared more recently in
the context of semiconductor quantum-dot systems [2,3], and
in systems of magnetic adatoms (e.g., Co or Mn) deposited on
clean metallic surfaces, where the effect has been clearly ob-
served experimentally as a narrow Fano-Kondo antiresonance
(FKA) in the differential conductance in scanning tunneling
spectroscopy (STS) [4–6].

While most of the experimental realizations of the Kondo
effect correspond to spin 1/2 and SU(2) symmetry, more
exotic Kondo effects are possible in nanoscopic systems [7]. In
particular, an SU(4) Kondo effect can occur when an additional
pseudospin 1/2 orbital degree of freedom appears due to
robust orbital degeneracy. In practice, however, the stringent
conditions to preserve orbital degeneracy limit the observation
of the SU(4) Kondo effect to few cases, such as C nanotubes
[8–10], and Si fin-type field effect transistors [11] where there
is a valley degeneracy [12]. Recently, Minamitani et al. [13]
have shown that the Kondo effect observed in isolated iron(II)
phtalocyanine (FePc) molecules deposited on top of clean
Au(111) (in the most usual on-top configuration) [14] is a new
realization of the SU(4) case. In the on-top configuration, the
degeneracy between partially filled 3dxz and 3dyz orbitals of
Fe is preserved by the Au(111) substrate, leading to a strong
FKA in the STS signal. Interestingly, Tsukahara et al. [15]
showed that at sufficiently high densities, the FePc molecules
on Au(111) self-organize into a two-dimensional (2D) square
lattice, paving the way to study artificially engineered Kondo
lattices by scanning tunneling microscopy (STM). At present,
a large class of organic-Kondo adsorbates are being studied
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by STM techniques due to their potential applications as elec-
tronic [16,17] and/or molecular spintronics [18–20] devices,
and therefore it is important to understand their electronic
properties. Recent ab initio calculations have demonstrated
the crucial role of the interaction between the organometallic
molecule and the substrate for designing spintronic devices
[21]. In this context, the effect of the orbital degrees of freedom
in artificially engineered Kondo lattice systems remains to be
explored, and to the best of our knowledge the extension of
the SU(4) impurity model to the lattice has not been studied
so far.

Motivated by these recent developments, in this Rapid
Communication, we theoretically study the evolution of the
SU(4) Kondo effect, from the single impurity to the 2D Kondo-
lattice limit. Guided by general symmetry principles, we
derive an effective SU(4) Hubbard-Anderson model describing
coupled magnetic impurities with an additional orbital degree
of freedom, forming clusters on the metallic substrate. While
our results are generic, and in principle applicable to other
organometallic Kondo systems, in what follows we specify our
results for the case of Ref. [15], as we believe this to be
the first realization of an artificial 2D SU(4) Kondo lattice.
We calculate the STS differential conductance dI/dV (as
observed experimentally), and analyze the line shapes upon
variation of the size and connectivity of the cluster. Our results
show good agreement with experiment and are important for
the correct physical interpretation of the data. In particular,
we show that the most prominent feature of the experiment
(i.e., the splitting of the FKA in the case of high coordination
number [15]) is a consequence of the orbital degeneracy
[22]. As explained below, this opens up new and exciting
possibilities, such as the existence of new phases with orbitally
ordered ground states [23,24].

Model. We derive an effective minimal Hubbard-Anderson
model for the 2D lattice of FePc molecules. For the case of an
isolated molecule [see Fig. 1(a)], the effective SU(4) Anderson
model has been derived previously [13]. The low-energy
physics is described by two degenerate molecular orbitals of
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FIG. 1. (Color online) (a) Representation of aFePc molecule. The
region shaded in green is the FeN4 substructure which is kept in the
theoretical model. (b) System of FeN4 molecules forming a cluster.

xz and yz symmetry, which have most of their weight on
the corresponding 3d orbitals of the Fe atom. To extend this
impurity model to the lattice, we add the hopping between
nearest-neighbor (NN) molecules, leading to a model similar to
the one used to describe a trimer of Co atoms on Au(111) [25].
However, in the present case, the orbital degeneracy and the
symmetry of the molecular orbitals introduce peculiar features.
On general symmetry grounds, one expects that the effective
hopping between any two NN molecular orbitals will depend
on the direction of the hopping. In particular, we assume that
the effective hopping between NN 3d Fe orbitals can occur
either by direct overlap of the organic ligands, or via the
Au substrate. In the first case, the coupling can be thought
as occurring via the pz orbitals of the neighboring N atoms.
Defining the x and y directions as those pointing from the Fe
atom to the organic ligands in the molecule, as in Fig. 1, the Fe
3dνz hybridizes only with the pz orbitals of the N atoms in the
ν direction (ν = x or y), and the hopping with other orbitals
vanishes by symmetry. The presence of the substrate modifies
these arguments [26], but the crucial directional dependence
of the effective hopping is a robust feature that remains.

The effective model is H = Hmol + Hc + Hmix, where Hmol

describes the molecular states and the hopping between them,
Hc the conduction states, and Hmix the coupling between them.
To illustrate the derivation of Hmol, we have calculated the
effective hopping between molecular orbitals in a lattice of
hypothetical FeN4 molecules (i.e., the central part of FePc)
as shown in Fig. 1. For each molecule, the relevant molecular
states are

|x̃rij ,σ 〉 = [
αd̃x

rij ,σ
+ β

(
p̃

(r)
rij ,σ − p̃

(l)
rij ,σ

)]†|0〉,
|ỹrij ,σ 〉 = [

αd̃
y
rij ,σ + β

(
p̃

(t)
rij ,σ − p̃

(b)
rij ,σ

)]†|0〉. (1)

Here, d̃ν
rij ,σ

is the destruction operator for electrons with spin σ

in the 3dνz orbital of Fe at cluster with position rij = ia1 + ja2

[with a1,a2 the Bravais lattice vectors defined in Fig. 1(b)],
and p̃

(η)
rij ,σ is the destruction operator in the 2pz orbital of the

N atom located at position η = {r,l,t,b} within the molecule
(respectively, right, left, top, and bottom, with respect to the
central Fe atom in the molecule).

It is easy to calculate the effective hopping between
molecular states, in a tight-binding description, assuming a
hopping t ′ between NN N atoms [see dotted lines in Fig. 1(b)]
[26]. The magnitude of this hopping is either t = |β|2 t ′ or

zero. To simplify the model, one can “rotate” the molecular
orbitals defining a new basis set {|xrij ,σ 〉,|yrij ,σ 〉} such that
〈xrij ,σ |H |yrlm,σ 〉 = 0, for all rij ,rlm, therefore conserving the
orbital index ν = (x,y) in the hopping process. It is more
convenient for us to work in the hole representation. Calling
hν

rij ,σ
the operators which destroy a hole (create an electron)

in the molecular state |νrij ,σ 〉 in the new basis [26], we arrive
at the effective 2D Hubbard model:

Hmol =
N∑
ij

[
−
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+ t1h
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hν̄
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)

+Ehnrij
+ U

2
nrij

(nrij
− 1)

]
, (2)

where the effective hopping amplitudes t1 and t2 connect
NN hν orbitals located at rij and rij ± aν , with the compact
notation (ax = a1, ay = a2), and (x̄ = y, ȳ = x). Eh and
nrij

= ∑
σν nν

rij ,σ
, with nν

rij ,σ
= h

ν†
rij ,σ hν

rij ,σ
are, respectively,

the energy and number of holes. The last term in Eq. (2)
accounts for the local Hubbard repulsion between holes at site
rij . Note that Hamiltonian (2) is explicitly SU(4) invariant. For
the simplified system of FeN4 molecules we obtain t1 = 0.618t

and t2 = −1.618t . In the case of an effective hopping mediated
by conduction states in the substrate we obtain the same
qualitative features: It is highly anisotropic and conserves the
orbital index [26].

To consider the coupling to the metallic substrate, we
assume that the distance between the Hubbard sites is R �
1/kF , with kF the Fermi momentum of the metallic substrate
[26]. This approximation is not generic, but this limit is
well verified in experimental molecular Kondo systems, and
permits one to neglect indirect correlations among Hubbard
sites mediated by the metal [such as Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions or coherent Kondo correlations
arising from the overlap of Kondo screening clouds] [25,27–
32]. In such a limit, the 2D metal can be effectively described
by a collection of uncorrelated “fermionic baths”, each one
coupled to each Hubbard site rij [31,32]. Therefore, we de-
scribe the metallic substrate as Hc = ∑

ijξσν εξ c
ν†
rij ,ξ,σ cν

rij ,ξ,σ ,
where crij ,ξ,σ is the annihilation operator of a conduction
hole with spin σ and quantum number ξ at position rij .
The coupling to the molecules is described by Hmix =
V

∑
ijξσν(hν†

rij ,σ cν
rij ,ξ,σ + H.c.) [26].

We note that H is an SU(4) invariant [26] many-body
Hamiltonian which cannot be solved exactly. Assuming the
limit of strong repulsion U → ∞, we can neglect configu-
rations with two or more holes in a molecular orbital, and
consider only local charge fluctuations between the subspaces
with n = 0,1 holes. This limit can be implemented in the
slave-boson representation [33] hν

rij ,σ
= b

†
rij

f ν
rij ,σ

, where brij
is

a bosonic variable describing the nh = 0 state (both molecular
levels occupied with both spins) and f ν

rij ,σ
is a renormalized

hole operator. These operators must be constrained by the
relation b

†
rij

brij
+ ∑

σ,ν f
ν†
rij ,σ f ν

rij ,σ
= 1. This representation of

SU(N )-invariant Kondo impurities is particularly useful for
N → ∞, where the saddle-point slave-boson mean field
approximation (SBMFA) for the bosonic degrees of freedom
brij

= b
†
rij

= 〈brij
〉 = z becomes exact [33]. After the SBMFA
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(obtained by replacing hν
rij ,σ

→ zf ν
rij ,σ

) H becomes exactly
solvable, and we set N = 4 [26]. Physically, the SBMFA
describes noninteracting Fermi quasiparticles with renormal-
ized mass m∗

e/me ≈ 1/z2 and quasiparticle weight z2 near the
Fermi level [33], providing a correct description of the Kondo
lattice near the Fermi-liquid fixed point.

In STM experiments, the relevant observable is the differen-
tial conductance dI/dV , which in the limit of weak tunneling
coupling between the STM tip and the system becomes
proportional to the spectral density dI/dV ∼ ρt (−eV ), where
the minus sign is needed to pass from hole to electron
representation, and t represents a mixed operator tνrij ,σ

=∑
ξ cν

rij ,ξ,σ + qhν
rij ,σ

(with q the Fano parameter), reflecting
the interference between molecule and substrate states as
sensed by the STM tip [27,34,35]. We calculate the density
of t states as ρt (ω) = − 1

π

∑
σ,ν Im[Gtt

rij ,ν,σ (ω + i0+)], with
Gtt

rij ,ν,σ (ω + i0+) the retarded local Green’s function of the
operator tνrij ,σ

.
Results. We assume a constant density of conduction states

ρ = 0.137/eV per spin, extending from −W to W = 3.65 eV.
These values are similar to those that provide a good fit of the
observed line shape for a Co impurity on Cu(111) [34]. The
energy of the molecular states (in the hole representation) Eh

was taken near to −0.1 eV, according to ab initio calculations
which find spectral density of Fe 3dxz and 3dyz states 0.1
eV above the Fermi energy [13]. We also keep the ratio of
hoppings t2/t1 = −3, similar to the values obtained above for
the simplified system (good fits are also obtained for other
values). t1, V , and q are taken as fitting parameters. We define
� = πρV 2.

In Fig. 2 we display our fits of the observed dI/dV . From
the ab initio calculations [13] one can estimate U = 1.6 eV,
which turns out to be much larger than the value � ≈ 0.01 eV
that results from the fit of the isolated molecule. It is also much
larger than ti . Therefore, the limit U → ∞ is well justified.
Figure 2 shows good agreement between our theoretical results

FIG. 2. Differential conductance as a function of voltage for an
isolated molecule (open circles and dashed line) and the 2D lattice
(solid circles and full line). Circles correspond to experiment [15]
and lines to theory with � = 10.12 meV. For one molecule Eh =
−112 meV, and q = −0.025. For the lattice Eh = −128 meV, t1 = 7
meV, t2 = 3t1, and q = −0.006.

and the experiment, in accordance with previous results on
single Co impurities on Cu(111) [34]. However, in contrast
to that case, here the experimental curves had to be slightly
shifted 0.55 mV to the left to make both curves coincide. This
might be related to experimental uncertainties [36].

The situation is more difficult for the case of the lattice,
because of the double-dip structure of the observed FKA.
We have kept the same � obtained from the fit of the single
molecule, but we had to slightly increase the magnitude of
Eh to |Eh| = 0.128 eV in order to obtain better fits. This
is well justified by the fact that the molecular states, and in
particular the Fe 3d orbitals, increase their occupancy when
the molecule is adsorbed on the Au surface [13], and the
single-electron levels are expected to increase their energy
due to interatomic Coulomb repulsion. In addition, we had to
slightly modify the value of q to q = −0.006, a fact that might
be related to the different experimental conditions in which the
single molecule and lattice dI/dV spectra were obtained in
Ref. [15]. As shown in Fig. 2, our theory is able to provide
semiquantitative agreement with the experiment. In particular,
note that the shape of the experimental curve near V = 0 is
well reproduced. As before, we have shifted the experimental
curve to the left by 1.1 mV.

The double-dip structure is a consequence of correlation
effects combined with the van Hove singularities (VHS) in
the spectral density of Hmol, directly related to the different
|t1| �= |t2| in Eq. (2) (see Ref. [37]). In the SBMFA, the
splitting of the VHS is given by  = 4z2||t1| − |t2||, where the
quasiparticle weight z2 introduces a band-narrowing effect due
to correlations. In the case of Fig. 2 (solid lines), the minimum
of the ground state energy is obtained for z2 ≈ 0.045, which
results in a splitting of  ≈ 2.5 meV, consistent with the
experimentally observed one. This value of z2 points to a strong
renormalization effect near the Fermi surface, with a mass en-
hancement m∗

e/me ≈ 20. Correlations are therefore essential
to explain the magnitude and the position of the observed
feature. The anisotropy of an individual molecular orbital
[in spite of the orbital-spin SU(4) and space C4v symmetries
[38]] is the key for this splitting. The hybridization with the
conduction states broadens the VHS but the splitting persists.

The dI/dV has been measured at different sites of a finite
cluster, to study the effects of coordination on the observed
spectra [15]. In order to compare with experiment, we have
applied our theory to a finite cluster of 5 × 4 molecules, as
shown in Fig. 3 (see Ref. [39]). Some of the curves display
an oscillatory behavior, which are likely to disappear for a
more realistic calculation [39] or in the presence of disorder or
inhomogeneities (not considered here). In any case, the results
provide definite conclusions: The differential conductance at
the corners (sites of coordination number Z = 2) do not show a
splitting, while those with Z = 4 do show two dips in the FKA.
The sites with Z = 3 display an intermediate and variable
behavior which depends on the specific site. These results also
agree with the experimental trends [15].

Summary and discussion. Motivated by recent experiments
[13–15], we have derived a Hubbard-Anderson model describ-
ing a square lattice of magnetic atoms or molecules with
orbital degeneracy on top of a metallic surface. Extension
to other lattices is straightforward. While the model has the
C4v symmetry of the square lattice, the individual molecular
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FIG. 3. (Color online) Differential conductance as a function of
voltage for several sites of a 5 × 4 cluster. The figures have been
displaced vertically for clarity.

orbitals are coupled via an anisotropic hopping which leads
to two strongly renormalized VHS in the density of states
of 3d electrons. The hybridization to the substrate broadens
these VHS, but these features persist and dominate the density
of states observed by the STM tip, therefore displaying two
dips in the dI/dV around V = 0. We conclude that these
VHS are the main explanation of the experimentally observed
splitting in the FKA. Our results explain the observed behavior
in systems of FePc molecules on Au(111), for an isolated
molecule, the lattice, and the evolution between them in a
consistent way.

Our work has its own interest beyond FePc molecules. A
study of a similar 2D model without coupling to the substrate,

suggests a ferromagnetic (FM) orbital ordering and antiferro-
magnetic (AFM) spin ordering at T = 0 for small Hund’s rule
exchange [24]. The nearest-neighbor AFM interactions are of
the order of 4t2

2 /U ≈ 10 K or 4t2
1 /U ≈ 1 K, depending on

direction [see Eq. (10) of Ref. [24]], which are of the order
of the Kondo temperature TK ≈ 4.7 K estimated from the half
width at half maximum of the FKA. In addition, while the
RKKY interaction I is unlikely to explain the splitting of the
FKA, it might also introduce interesting competing effects
[22,26]. For our specific system, a preliminary calculation
based on the Stoner criterion shows that magnetic order would
occur for |I | > 16.1 K. While fluctuations in 2D destroy
long-range magnetic order at finite temperature, this opens
up the intriguing possibility of observing quantum critical
behavior at low enough temperatures in 2D molecular Kondo
systems. Indeed, the existence of orbitally ordered phases [24]
and dissipative quantum phase transitions [31,32] have been
suggested in related systems. Recently, long-range FM order
was observed for a 2D layer of organic molecules absorbed on
graphene [20]. In transition-metal phtalocyanines the coupling
to the substrate is very sensitive to the particular transition-
metal atom [21]. We also expect a strong dependence on
the substrate, as, for example, replacing Au by Ag or Cu.
Therefore new physics is likely to appear in the near future,
and our theory (or some modification of it) is expected to bring
valuable insight.
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