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ABSTRACT: The hoist scheduling problem is a critical issue in the design and control of 

Automated Manufacturing Systems. To deal with the major complexities appearing in such 

problem, this work introduces an advanced simulation model to represent the short-term 

scheduling of complex hoist lines. The aim is to find the best jobs schedule that minimizing the 

make span while maximizing throughput with no defective outputs. Several hard constraints 

are considered in the model: single shared hoist, heterogeneous recipes, eventual recycles flows, 

and no buffers between workstations. Different heuristic-based strategies are incorporated into 

the computer model in order to improve the solutions generated over time. The alternative 

solutions can be quickly evaluated by using a graphical user interface developed together with 

the simulation model. 
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1 INTRODUCTION 

Due to the increased efficiency of industrial production, scheduling problems has had an 

increasing impact on practical problems in the last years. Particularly, the Hoist Scheduling 

Problem is one of the harder to solve for practitioners and researchers in Automated 

Manufacturing Systems (Crama, 1997; Riera et al., 2002). This problem consists of a set of 

tanks between which the parts to be treated are transported by a shared automated transfer 

device (hoist). Hoist transportation devices are used commonly in the manufacture of printed 

circuit boards (PCBs) in electroplating plants and also in the automated wet-etch station (AWS) 

in semiconductor manufacturing systems (Aguirre et al., 2014; Aguirre et al., 2011) but also for 

Hoist operation in constructions (Xiang et al., 2016). 

Generally, real-world scheduling problems are highly complex and virtually impossible 

to solve by using pure mathematical approaches (El Amraoui et al., 2016). However, the 

increasing availability of simulation languages, the increase of computational power and the 

development of simulation techniques have made simulation an appropriate tool to deal with 

this kind of problems (Banks et al., 2004). In contrast to optimization methods, simulation 

models are “run” rather than solve, allowing the model to be observed. Simulation allows 

experimenting and analyzing different operation procedures of an organization. The companies 

can model their process in virtual settings, reducing the time and cost requirements associated 

with physical testing. Therefore, complex systems operations can be assessed by developing a 

discrete event simulation model. Moreover, some simulation packages provide a user-friendly 

3D graphical interface which allows obtaining a better visual experience to the world of 

simulation models. It provides rich 3D objects to make the simulation looks more realistic. In 

addition, simulation models can easily be tweaked and adjusted, providing rapid responses to 

even the most abstract situations. 

The hoist scheduling problem is usually very complex. Many exact solution approaches 

and heuristic procedures have been proposed in literature to solve this problem (Kujawski et 

al., 2010; Manier et al., 2003). Moreover, the developments presented by Fröhlich et al. (2009), 

Che et al. (2012) and Che et al. (2015) are able to work with multiple hoists in the same track. 

However, such techniques do not efficiently represent the major complexities appearing in real-

world industrial problems. The control and schedule of the hoist are critical for the system 

performance, especially when chemical processes are involved. This is due to the hoist 

transports the products, one at a time, between chemical tanks. The processing time of each 

product in each tank is restricted to a minimum and a maximum duration. Besides, a zero-wait 
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police is followed between stages. Not reaching the minimum processing time, or exceeding 

the maximum allowed time may cause not only waste of materials but also loosing the critical 

resource of production time. In this way, the main goal of the hoist scheduling problem is to 

minimize the makespan while maximizing throughput with no defective product (waste). 

This paper aims at developing a modern discrete-event simulation model to evaluate, 

analyze and design the operation of electroplating for the aerospace industry based on the hoist 

scheduling problem. The main advantage of simulation technique, with regards to the solution 

approaches referenced above, is that it permits to systematically reproduce the complex 

company process in an abstract and integrated form, visualizing the dynamic behavior of its 

constitutive elements over time (Aguirre et al., 2008). The computer model allows exploring 

different sequences of jobs entered to the hoist line. The results given by the simulation model 

are then presented through a user graphical interface, which is particularly useful for the 

decision-making process. 

The manuscript is organized as follows: Section 2 describes the main features of the 

surface-treatment process. Afterwards, in Section 3, an explanation of how the simulation 

model was developed is given. Moreover, the verification and validation stages of simulation 

project are explained in this section. Section 4 presents a case study with its corresponding 

sensitivity analysis, and the results obtained. Furthermore, the results from simulation studies 

are presented and discussed. Finally, the article concludes with some discussion and remarks in 

Section 5. 

2 PROBLEM DEFINITION 

2.1 Problem characteristic  

The hoist problem deals with a set of jobs that must be processed through a sequence of 

chemical tanks from the input buffer to the output buffer (Grubbs, 2002). Jobs are transported 

from one tank to another by a shared automated transfer device (hoist). The line can process 

several types of products, which generally follow different recipes. A recipe is defined by both 

the sequence of stages (or tanks) that an item must follow and the minimum and maximum 

processing time in each stage. In practice, jobs vary in size or other properties and require 

different sequences or processing times. Each produced item type has its own sequence of 

visiting workstations, processing intervals, etc. 

The hoist is capable of transferring only one item at a time from one chemical tank to 

another. The transferring time is computed by the traveling time from the actual position of the 
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hoist to the source tank plus the loading time plus the traveling time to the destination tank plus 

the unloading time. The loading and unloading times are constant and known in advance. 

Therefore, the traveling time depends on the distance between the tanks. The processing time 

starts when the hoist unloads the item in a tank and finishes when the hoist picks up the job. If 

the duration of the processing time is below or above a predefined time window, the item 

becomes defective and must be discarded.  

Each tank operates independently with a single capacity. There is no buffer between 

adjacent workstations. That is to say, once the item has been processed, it has to be moved 

directly to next stage without intermediate storage. Some critical tanks have an exact 

processing, which implies that as soon as the processing time is finished, the item should be 

moved immediately to the next stage. A picture representing the hoist line is shown in Figure 

1. 

 
Figure 1 – Automated job-shop system with heterogeneous recipes 

 

2.2 Schedule Feasibility: Solving conflicts 

When the hoist problem is solved, it is needed to assure that feasible schedules are 

generated. When the work-in-progress (WIP) of the system is higher than 1, three types of 

conflicts can be presented (Yih, 1994): 

1. Conflict by tank availability: a conflict may occur when a job finishes its processing in a 

stage and the next tank in the recipe is busy. In this case, the hoist must first serve the job 

that is in the destination tank before moving the first job. Unfortunately this is not always 

possible because when the second tank is released the job in the first tank may be defective. 

The worst version of this conflict is when the destination tank of job A is the current location 

of job C, the destination tank of job C is the current tank of job B, and the destination tank of 

job B is the current location of job A (see Figure 2). 
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Figure 2 – Conflict by tank availability 

 

2. Conflict by hoist availability: a conflict may occur when a job is ready to be transported and 

the hoist is being utilized by other job. The job should wait until the hoist is idle, but 

sometimes is too late. This becomes more critical when the minimum and maximum 

processing times are equal, because there is no extra time to wait for the hoist. In this way, it 

was needed to develop an algorithm (see Figure 3) to verify the status of both the robot and 

the jobs waiting for it. 

 

Figure 3 – Hoist decision diagram 

 

3. Conflict by hoist location: a conflict may occur when a job needs to be transported but the 

hoist is too far and when the hoist arrives is too late. This conflict is more common when the 

hoist is unloading in one extreme of the transportation line. 

3 PROPOSED SIMULATION MODEL 

In this paper, a simulation model, developed with SIMIO software, was constructed to 

represent the operation of the electroplating line. SIMIO is a simulation modeling framework 
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based on intelligent objects (Thiesing et al., 1990). An object can be a machine, robot, airplane, 

customer, doctor, tank, bus, ship, etc. A model is built by combining objects that represent the 

physical components of the system. It is worth to remark that SIMIO allows building 3D 

animated model which provides a moving picture of the system in operation. The methodology 

used in this simulation analysis is described in the Figure 4. The following subsections describe 

the major components of the computer model. 

 

Figure 4 – Stages for developing the simulation model of hoist problem 

 

3.1 Model assumptions  

The major assumptions for constructing the simulation model are: 

 There are N types of jobs following a given production sequence (recipe). 

 Each item has to be processed by a sequence of chemical tanks from the input buffer to 

the output buffer (some tanks may be skipped in the process). 

 There are re-entrant and possible recycle flows to the same unit. 

 Each stage has a specific time windows of processing time in each tank; products will 

become spoiled if the processing time falls outside of the time window. 

 There are M workstations (chemical tanks).  

 Each tank has a single capacity, specific functionality, and never breaks down. 

 There is no intermediate storage between stages. 

 There is a single automated material-handling device (hoist), which can transport one item 

at time.  

 The loading and unloading times and travelling speed are constant and known in advance. 

 The hoist is subject to breakdowns and can transport one item at a time. 
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3.2 Input variables 

The major input variables used in the simulation model, among others, are: 

 Max_WIP: Maximum number of jobs that could simultaneously be in the system. 

 Input_Order: It is the sequence in which the jobs enter the system; it is defined by different 

proposed heuristics. 

 Interarrival_Time: Minimum period of time between the inputs of two orders. 

 Priority: Three different alternatives were used to assign the priority to request the hoist. 

The first takes into consideration the time to become defective, assigning highest priority 

to the jobs next to expire. Similarly to the first strategy, the second one assigns the highest 

priority to the jobs that are more advanced. The third option takes into consideration the 

time that the job has exceeded the minimum processing time. 

3.3 Output variables 

The performance indicators are: 

 Makespan: representing the time in which the last job is completed. The problem aims to 

minimize this variable. 

 Job Finished / Defective: Computing the quantity of non-defective jobs completed and the 

number of defective outputs. This last quantity should be minimized.  

 Cost: determining the total cost incurred for processing all the orders. It is computed as 

the sum of the operation cost of the line plus the cost of the defective units. This variable 

should be minimized. 

3.4 Computer model 

The proposed SIMIO-based simulation model is based on the conceptual model 

developed, where elements and properties of the real process are represented. Figure 5 shows 

the conceptual model of the system where all components mentioned above and their 

relationships are represented. As shown, the system includes (i) products to be treated, (ii) 

chemical tanks, (iii) hoist, and (iv) treated products. 
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Figure 5 – Conceptual model 

 

SIMIO software provides an object-based approach to system modeling (Pedgen, 2009). 

Each physical component of the conceptual model, such as the robot, jobs or workstations are 

represented by an object with a predefined behavior. A 2D view of the simulation model is 

given in Figure 6 while the 3D animation view is given in Figure 7. As shown in Figure 6, 

Source, Server, and Sink objects, connected by multiple TimePath Objects, have been used to 

build the simulation model. All objects used in the model are included in the Standard Library 

of SIMIO software. A detailed description of components of the electroplating line is explained 

below. 

 

Figure 6 – 2D view of the simulation model 
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Figure 7 – 3D view of the simulation model 

 

3.4.1 Jobs 

The aeronautical parts produced are called Jobs. As shown in Figure 8, they are 

represented as Entities. An entity is a dynamic object that can be generated / destructed during 

the simulation run. Each job has a unique recipe represented by a sequence table, which then is 

referred in the ModelJob properties (see Figure 8). For instance, the recipe for Titanium sulfuric 

anodized is given in Table 1. As seen this table, each recipe determines the minimum and 

maximum residence time that a job can stay in each tank. The different recipes could vary in 

the path or in the processing times of each tank. A tank could be visited more than once (for 

example in Table 1, tank 16 is visited in stage 5 and 8). A job could move backward in the line 

(tank 22 is followed by tank 16) and not all tanks are visited for all recipes. The difference 

between the maximum and minimum times could be zero, i.e. fixed and exact processing time 

(see stage 10). Following the recipe keeping the exact time in each tank ensures that the 

chemical process is done. Failure to do so may cause the work piece to become unusable.  

 

Figure 8 – Dynamic entities, their properties and sequence table 
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Stage Tank 
Minimum Residence 

Time (min) 

Maximum Residence 

Time (min) 

1 5 10 15 

2 6 5 6 

3 13 1 2 

4 12 5 5.5 

5 16 3 10 

6 21 10 15 

7 22 10 15 

8 16 3 10 

9 20 5 20 

10 3 20 20 

Table 1 – The recipe for Titanium sulfuric anodized 

 

3.4.2 Tanks / workstation: 

Tanks represent the units where different chemicals processes are performed, e.g. sulfuric 

aluminum anodized, chromic anodized, passivation, chroming by immersion, cleaning, etc. 

Tanks operate independently without buffers (Non intermediate Storage), and never break 

down. The processing time in a tank is determined by the minimum processing time of each job 

(see Table 1). After this time the job will become defective. Each tank is represented by Server 

objects (see Figure 9). In SIMIO software, a Server object is used for representing a capacitated 

process such as a machine or service operation. 

 

Figure 9 – 2D and 3D SIMIO model (chemical tanks) 
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Taking into account the processing times in tanks, the jobs can be in the following stages: 

 State 1: when a job has not yet reached its minimum processing time in the tank and 

neither the minimum time required for the hoist picks it up. Consequently, the job does 

not request the hoist. 

 State 2: when a job has not yet completed its minimum processing time in the tank but 

it has reached the minimum time required for the robot picks it up. So, job requests the 

robot with a high priority. 

 State 3: when a job has reached its minimum processing time but is in its tolerance range 

(between the minimum and maximum processing time). Also, it has not reached yet the 

threshold time required to be considered urgent. Job requests the robot with a medium 

priority to avoid becoming defective. 

 State 4: when a job is in the most critical state because it has completed its processing 

and has reached the threshold time to be considered urgent. In this way it has the highest 

priority to request the hoist. 

It is worth to remark that if the Job is not serviced by the hoist before reaching its 

maximum processing time, it must be discarded because of the high quality standards for the 

aeronautical components. The algorithm developed for evaluating the stages of a job is given 

in Figure 10. Note that it is not necessary that a job is in all states. In this figure the parameter 

“WarningT” is threshold that the hoist needs to move from any point of the line to the other 

extreme of the tank, while “Tmin” is the minimum processing time and “Tmax” is the maximum 

time before becoming defective. “Wait” and “Job processing” make reference to keep the time 

passing.  
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Figure 10 – Flow chart of the states of the chemical tanks 

 

3.4.3 Hoist 

It is the device that transfers the jobs between tanks. The hoist is represented in the 

simulation model by using a Vehicle object. The hoist can accomplish the transportation request 

of any job. The loading and unloading times of the jobs are constants. When the hoist is idle, it 

parks at the middle of the line at an intermediate node called “Home”. The hoist evaluates the 

priority of the jobs by using the process that shows Figure 3. This process is a crucial part of 

the logic of the model due the Jobs can only be load or unload from each tank by the Hoist. A 

late arrival could cause that the Job is spoiled. 

3.5 Verification and validation 

Output variables of the model are used to obtained conclusions for the real system, 

consequently it is very important to develop a model that guarantees credibility and accuracy. 

For this reason, verification and validation processes are carried out during the development of 

the model.  

Verification process is concerned with correctly building of the conceptual model, and it 

is utilized in the comparison of this model to the computer representation implemented for that 
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conception (Law, 2007). Several requirements concerning expected values and system behavior 

were determined, such as arrival rates, production rates, use of resources, restrictions of entry 

and operation, etc. These output values of the simulator were compared with expected values. 

The similarity of the values proves that the model was implemented correctly in the computer, 

and the input parameters and logical structure of the model are properly represented. 

Furthermore, validation is utilized to determine that a model is an accurate representation 

of the real system. Validation is usually achieved through the calibration of the model, an 

iterative process of comparing the model to actual system behavior and using the discrepancies 

between the two, and the insights gained, to improve the model. This process is repeated until 

model accuracy is judged to be acceptable. Hence, several iterative comparisons between output 

variables obtained by the simulator and information regarding of the real system are performed 

to carry out necessary changes and adjustments, and achieve the desired values. 

3.6 Heuristics 

After several experimentation and suggestions from the operator of the real-world system, 

the following heuristics were implemented in the simulation model for creating job sequences: 

 Heuristic 1: Jobs are sequenced according to the total production time. Jobs with smaller 

total processing times are placed first in the sequence.  

 Heuristic 2: Jobs are sequenced according to the total production time but in this case, the 

jobs sequence is generated by alternating small and large jobs. 

 Heuristic 3: Jobs are ordered according to the use of critical tank. The tank processing the 

major quantity of jobs is defined as the “critical tank”. 

 Heuristic 4: Jobs are sequenced based on their last processing tank.  

The heuristics detailed above were used to perform experimental designs with the 

simulation model. An iterative procedure was created (see Figure 11) for evaluating the 

simulating results given by each alternative of job sequence. The aim was to rank the best 

scenarios for the response variables defined in Section 3.3. 
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Figure 11 – Algorithm for evaluating simulation results 

 

4 SIMULATION RESULTS 

After an exhaustive verification and validation of the simulation model, the performance 

of an electroplating line working in a real-world aeronautical manufacturing system was 

analyzed. This problem comprises 30 chemical tanks and one single hoist. There are 24 types 

of jobs, each one with its specific processing sequence. Some jobs can visit the same tank more 

than once. 

After constructing the simulation model, several alternative scenarios were defined in 

order to run experimental designs. Particularly, a multifactorial experimental design was 

executed for determining the factors that can affect the response variables defined in Section 

3.3. The aim was to select the best scenarios that minimizing the makespan while maximizing 

throughput with no defective outputs. After testing the different combination of heuristics, the 

input variables maximum WIP, Inter arrival time and priority type were selected for 

experimenting with more than 500 scenarios. As result, the top 10 scenarios given in Table 2 

were obtained. Note that the type of heuristic used to define the initial sequence of jobs is too 

one of the control variables. 

From experimental results, it follows that there are no significant differences in 

simulation results when the maximum WIP is equal to 3 since the difference in cost or makespan 

not exceed the 3.2%. When the maximum WIP value is increased to 4, the only sequence 

(heuristic) that does not generate defective jobs is the Heuristic 4. A maximum WIP below 3 

jobs increases the cost since the system has idle capacity. Maximum WIP above 5 increases the 

cost since the number of defective units is higher.  
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 Control Variables Results 

Scen

ario 
Heuristic 

Max 

WIP 

Inter. 

Time 
Priority Cost MK 

Def. 

Jobs 

Δ Cost 

vs. 1 

Δ MK 

vs. 1 

1 4 4 12 2 189.176 18.9176 0 0 0 

2 4 3 13 2 195.042 19.5042 0 3.0 3.0 

3 1 3 13 2 195.209 19.5209 0 3.1 3.1 

4 2 3 13 2 195.209 19.5209 0 3.1 3.1 

5 3 3 13 2 195.209 19.5209 0 3.1 3.1 

6 1 3 12 2 195.237 19.5237 0 3.1 3.1 

7 2 3 12 2 195.237 19.5237 0 3.1 3.1 

8 3 3 12 2 195.237 19.5237 0 3.1 3.1 

9 4 3 12 2 195.309 19.5309 0 3.1 3.1 

10 4 3 14 2 195.376 19.5376 0 3.2 3.2 

Table 2 – Best results obtained for different scenarios solved by the simulation model 

 

After evaluating all results, the best configuration that minimizes both the makespan and 

the number of defective products is shown in Figure 12. The first 12 hours of the jobs schedule 

is given in this figure.  

 

Figure 12 – Jobs schedule for the first 12 hours 

 

In the Figure 12, we could appreciate that the Jobs are moved from one tank to another 

by the hoist (robot). The different jobs follow different paths through the tanks, but there are 
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some tanks that are busier than others, for example the tank 30 is only used once or not used 

like tank 11. Other Tanks like tank 5 has a high utilization but it is clear that the busiest resource 

it the hoist (robot). The system maintains a work in progress (WIP) of three jobs, when a job is 

finished the next one enters. The hoist is main bottle neck for increasing the WIP; for instance, 

during the day 8 the hoist is extremely busy. When the simulator tries to increase the WIP 

during this work peaks, the system failed because the hoist cannot attend the jobs.  

Note that the results reported by simulation runs are represented graphically by using a 

user-graphical interface. This interface is integrated with the simulation model for quickly 

evaluating simulation results and helping the decision-making process.  

5 CONCLUSIONS 

This paper has presented an innovative discrete event simulation for dealing with the 

short-term scheduling of a complex hoist line. This type of systems are used commonly in the 

manufacture of printed circuit boards (PCBs) in electroplating plants and also in the automated 

wet-etch station (AWS) in semiconductor manufacturing systems. Simulation is a proper 

approach to solve this challenging scheduling problem. The proposed strategy was capable of 

generating near-optimal schedules for many scenarios in a short time period. The aim is to find 

the best job sequence that allows minimizing the total makespan while the number of defective 

products is reduced. Different heuristics were embedded into the simulation model in order to 

test different job sequences to be processed in the system. 
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INDÚSTRIA DE FABRICAÇÃO AEROESPACIAL: UM QUADRO DE APOIO DE 

DECISÃO BASEADO EM SIMULAÇÃO PARA O PROGRAMAÇÃO DE LINHAS 

COMPLEXAS 

 

RESUMO: O problema de agendamento em linhas de elevação é um problema crítico na 

concepção e controle de sistemas automatizados de fabricação. Para lidar com as principais 

complexidades que aparecem nesse problema, este trabalho apresenta um modelo de simulação 

avançado para representar o agendamento de curto prazo de linhas de elevação complexas. O 

objetivo é encontrar o melhor cronograma de tarefas que minimiza o tamanho da marca, ao 

mesmo tempo em que maximiza o rendimento sem saídas defeituosas. São consideradas várias 

restrições difíceis no modelo: talha compartilhada única, receitas heterogêneas, eventuais cortes 

de recicla e sem tampões entre estações de trabalho. Diferentes estratégias baseadas em 

heurística são incorporadas no modelo de computador para melhorar as soluções geradas ao 

longo do tempo. As soluções alternativas podem ser avaliadas rapidamente usando uma 

interface de usuário gráfica desenvolvida em conjunto com o modelo de simulação. 

 

Palavras-chave: Simulação. Problema de agendamento em linhas de elevação. Otimização. 

Tanques químicos. 
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