
Expert Systems with Applications 42 (2015) 8243–8258
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Improving argumentation-based recommender systems through
context-adaptable selection criteria
http://dx.doi.org/10.1016/j.eswa.2015.06.048
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Artificial Intelligence Research and Development
Laboratory, Department of Computer Science and Engineering, Universidad
Nacional del Sur – Alem 1253, (8000) Bahía Blanca, Buenos Aires, Argentina.
Tel.: +54 3455288349.

E-mail addresses: jct@cs.uns.edu.ar (J.C.L. Teze), sg@cs.uns.edu.ar (S. Gottifredi),
ajg@cs.uns.edu.ar (A.J. García), grs@cs.uns.edu.ar (G.R. Simari).
Juan C.L. Teze a,b,c,⇑, Sebastian Gottifredi a,c, Alejandro J. García a,c, Guillermo R. Simari a

a Artificial Intelligence Research and Development Laboratory, Department of Computer Science and Engineering, Universidad Nacional del Sur – Alem 1253, (8000) Bahía
Blanca, Buenos Aires, Argentina
b Agents and Intelligent Systems Area, Fac. of Management Sciences, Universidad Nacional de Entre Ríos – Monseñor Tavella 1424, (3200) Concordia, Entre Ríos, Argentina
c Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, (C1033AAJ) Ciudad Autónoma de Buenos Aires, Argentina
a r t i c l e i n f o

Article history:
Available online 9 July 2015

Keywords:
Reasoning server
Argumentation system
Multiple preference criteria
Criterion selection
a b s t r a c t

Recommender systems based on argumentation represent an important proposal where the recommen-
dation is supported by qualitative information. In these systems, the role of the comparison criterion used
to decide between competing arguments is paramount and the possibility of using the most appropriate
for a given domain becomes a central issue; therefore, an argumentative recommender system that offers
an interchangeable argument comparison criterion provides a significant ability that can be exploited by
the user. However, in most of current recommender systems, the argument comparison criterion is either
fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable
selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a
new type of recommender system; instead we present a mechanism that expand the capabilities of exist-
ing argumentation-based recommender systems. More precisely, our proposal is to provide a way of
specifying how to select and use the most appropriate argument comparison criterion effecting the selec-
tion on the user’s preferences, giving the possibility of programming, by the use of conditional expres-
sions, which argument preference criterion has to be used in each particular situation.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Recommender systems represent an important addition to plat-
forms where the user is confronted with many choices. To come up
with recommendations, recommender systems usually rely on
user preferences, popularity indexes, or on similarity measures
defined between users or contents, which are computed on the
basis of methods coming from the social sciences, the information
retrieval or the machine learning communities (Bobadilla, Ortega,
Hernando, & Gutiérrez, 2013). Although the effectiveness of these
kind of recommenders is remarkable, in Chesñevar, Maguitman,
and González (2009, chap. 20) some limitations regarding their
underlying quantitative model are pointed out. On the one hand,
these quantitative models are not equipped with mechanism to
revise previous conclusions; thus, given that the dynamic nature
of user preferences usually leads to conflictive and incomplete
domain information, these recommenders deal poorly with
changes in preferences. On the other hand, these quantitative
approaches do not have a clean underlying model that is easily
understandable by the user; this obscuring the explanations the
system provides to support its recommendations. As mentioned
in Tintarev and Masthoff (2007), qualitative explanations are rele-
vant to user support systems, because users prefer recommenda-
tions when they can understand the reasons behind its selection.

Several current studies claim that the qualitative reasoning
mechanism provided by defeasible argumentation is useful to
tackle the above mentioned limitations (see Amgoud & Prade
(2009), Chesñevar et al. (2009, chap. 20), & Monteserin & Amandi
(2011)). The reason behind this observation is that argumentation
can qualitatively deal with conflicting domain information, and its
dialectical reasoning nature can provide a clear explanation of the
recommendation without further cost as shown in Garća,
Chesñevar, Rotstein, and Simari (2013). Such advantages have
motivated the development of several argumentation based rec-
ommender and decision support systems: Bedi and Vashisth
(2011), Bedi and Vashisth (2015), Briguez, Capobianco, and
Maguitman (2013), Briguez et al. (2014), Chesñevar et al. (2009,
chap. 20), and Amgoud and Prade (2009).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.06.048&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2015.06.048
mailto:jct@cs.uns.edu.ar
mailto:sg@cs.uns.edu.ar
mailto:ajg@cs.uns.edu.ar
mailto:grs@cs.uns.edu.ar
http://dx.doi.org/10.1016/j.eswa.2015.06.048
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

8244 J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258
Intuitively, defeasible argumentation provides ways of con-
fronting contradictory statements to determine whether some par-
ticular information can be accepted as warranted (Rahwan &
Simari, 2009). To obtain an answer, an argumentation reasoning
process goes through a series of steps. A very important one is
the comparison of conflicting arguments to decide which one pre-
vails; this requires the introduction of a preference relation to set-
tle the question. Argumentation frameworks using a single
argument comparison criterion have been extensively studied
(Amgoud, Cayrol, & Berre, 1996; Antoniou, Maher, & Billington,
2000; García & Simari, 2004; Godo, Marchioni, & Pardo, 2012;
Simari & Loui, 1992; Vreeswijk, 1997).

Despite its importance, mechanisms to dynamically change the
argument comparison criterion have not been extensively studied.
For instance, there are works that propose to use two comparison
criteria (Deagustini et al., 2013; Godo et al., 2012), but the pro-
posed combination is fixed in the formalism. There exist other sys-
tems that allow to work with dynamic information, for instance
(Tucat, Garcia, & Simari, 2009) can answer to queries based on facts
received as contextual information. Nevertheless, in such systems
is not possible to adjust dynamically the argument comparison cri-
terion in order to satisfy user’s preference for different contexts.

In the literature of argumentative recommender systems
(Briguez et al., 2014) the importance of having the possibility of
changing the comparison criteria within their systems has been
recognized. However, in most of current recommender systems,
the comparison criterion is either fixed (i.e., cannot be changed)
or codified within the arguments (i.e., the arguments are built to
satisfy a particular criteria) (Bedi & Vashisth, 2011, 2015; Briguez
et al., 2013; Chesñevar et al., 2009, chap. 20). In others approaches,
as in Deagustini, Dalibón, Gottifredi, Falappa, and Simari (2012)
and Briguez et al. (2014), when several criteria are available, the
system does not provide a formal way to select or change the com-
parison criteria that should be used. In other words, none of these
approaches presents a mechanism to dynamically change the com-
parison criteria, and none of them propose a formalism to address
the presence of multiple comparison criteria within their system.

In terms of the importance and significance of our approach,
here we propose a novel approach to systematically select among
several argumentation comparison criteria that can benefit most
argumentative systems. In particular, even when our proposal does
not focus on introducing a new type of recommender system, it
presents a mechanism that contributes to the strengthening of
existing argumentive-based recommender systems. In this sense,
the contribution of our proposal is to provide a way of specifying
a context-adaptable selection mechanism that allows to select
and use the most appropriate argument comparison criterion
based on user’s preferences. Therefore, our approach gives the pos-
sibility of programming, by the use of conditional expressions,
which argument preference criterion has to be used in each partic-
ular situation.

Next, we present an example that will serve two purposes: to
motivate the main ideas of our proposal, and to serve as a running
example.

Example 1. Consider an onboard computer programmed to offer
recommendations to the user of the vehicle in which is installed,
like suggesting a hotel nearby. To offer advice, the system uses two
types of knowledge: the user’s particular preferences which are
obtained in advance, and particular information about the context,
e.g. nearby hotels, which is obtained dynamically during traveling.
Besides that knowledge, the system also requires certain argument
comparison criteria for deciding what to recommend. For instance,
suppose the system can use two argument comparison criteria:
one of them based on driver’s safety and the other based on
driver’s comfort. Then, before starting a journey, the driver informs
in which situations to use each comparison criterion by specifying
conditions; e.g., in a dangerous zone the safety criterion has to be
used, whereas in a safe zone the comfort criterion has to be
selected.

To formalize our approach, we will start from Defeasible Logic
Programming Servers, or DeLP-servers for short (García & Simari,
2014; García, Rotstein, Tucat, & Simari, 2007); this implemented
framework has been used in the integration of argumentation
and recommendation systems to Multi-Agent System settings
(Briguez et al., 2014; Deagustini et al., 2013). These servers were
developed to provide an argumentative reasoning service which
is able to handle queries from several client agents. To provide a
recommendation for client queries, a DeLP-server uses public
knowledge, stored in the server, and individual knowledge of the
client agents which will act as private context for such queries.
The recommendation will be obtained using an argumentative rea-
soning mechanism (García & Simari, 2004) that considers an
exhaustive analysis of arguments for and against the
recommendation.

In a DeLP-server the argument preference criterion used for
deciding which arguments prevail is fixed. Thus, users do not have
the possibility of adjusting the behavior of the system towards its
preferences by selecting the argument comparison criterion
dynamically. A recommendation will be more compelling if the
server adapts the argument comparison criterion of the inference
engine to the one that suits the user’s needs. Another interesting
point to consider is that DeLP-servers act like black boxes, without
providing the user of any insight of the argument preference crite-
rion under which a recommendation will be based. For instance,
considering the application domain of Example 1, the user can
not express in a query for a recommendation that the server should
use a different argument comparison criteria when the hotel is in a
dangerous zone.

Given these considerations, it is desirable to provide the servers
with the additional capability of complementing each query with
way of selecting the argument preference criterion the server will
use in computing the corresponding recommendation. In this
paper, we will propose a defeasible logic programming recom-
mender server with these features.

The rest of the paper is structured as follows. In Section 2, an
overview of Defeasible Logic Programming (DeLP) and
DeLP-servers is included. In Section 3 we will introduce the formal-
ization of the components of our proposed framework. Then, in
Section 4 some properties of how our framework handles the
selection of the comparison criteria are shown. In Section 5, we will
formalize our proposed mechanism for answering queries for rec-
ommendations. Finally, in Section 6, we discuss some related work,
and in Section 7, we offer our conclusions and possible directions
for our future work.

2. Preliminaries

In this section we will briefly introduce the background related
to Defeasible Logic Programming (DeLP for short) and DeLP-servers
(García & Simari, 2014). DeLP-servers were developed to provide an
argumentative reasoning service based on DeLP which is able to
handle queries from several client agents in a multi-agent settings
(García et al., 2007). In Tucat et al. (2009), DeLP-serves were also
used for implementing a recommender system. A brief description
of DeLP-servers will be included below, then in the next section,
this kind of servers will be extended to dynamically select the
argument comparison criteria.

To answer client’s queries, a DeLP-server uses public knowledge
stored in the server and represented by a DeLP-program. The indi-
vidual knowledge of the client agents (also represented as a DeLP

J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258 8245
program) acts as private context for queries and it is integrated
with the public knowledge in order to compute and issue a recom-
mendation. Answers are computed by a DeLP interpreter that per-
forms an exhaustive analysis to consider all the arguments for and
against a recommendation. Therefore, a DeLP-server can be repre-
sented as a 3-tuple hI;O;Pi where I is a DeLP-interpreter, P is a
DeLP-program which represents the public knowledge, and O is a
set of operators for handling the integration of client contexts with
P.

We include below an introduction to the language of DeLP that
will be used for representing public and private knowledge in our
approach (a complete description of DeLP can be found in García &
Simari (2004, 2014)). We will also include a brief description of
how a DeLP interpreter computes an answer. Nevertheless, the
explanation of operators for integrating client contexts is out of
the scope of this paper. A complete explanation of this kind of
operators can be found in García et al. (2007) and García and
Simari (2014).

DeLP is a formalization that combines results of Logic
Programming and Defeasible Argumentation. This formalism allows
to represent information declaratively using rules, and employing a
defeasible argumentation inference mechanism for warranting the
entailed conclusions. Defeasible rules are used to represent a rela-
tion between pieces of knowledge that could be defeated after all
things are considered. A DeLP-program is a set of facts, strict rules,
and defeasible rules, defined as follows. Facts are ground literals rep-
resenting atomic information or the negation of atomic information
using the strong negation ‘‘�’’. Strict Rules represent non-defeasible
information and are denoted L0 L1; . . . ; Ln, where L0 is a ground lit-
eral and fLig0<i6n is a set of ground literals. Defeasible Rules represent
tentative information that may be used if nothing could be posed
against it and are denoted L0 L1; . . . ; Ln, where L0 is a ground lit-
eral and fLig0<i6n is a set of ground literals. A defeasible
rule Head Body expresses that reasons to believe in the antecedent
Body give reasons to believe in the consequent Head. Following García
and Simari (2004), DeLP rules can also be represented as schematic
rules with variables. As usual in Logic Programming, schematic vari-
ables are denoted with an initial uppercase letter. For convenience a
DeLP-program P can also be denoted as (P, D) distinguishing the
subset P of facts and strict rules, and the subsetD of defeasible rules.
Example 2 below shows a DeLP-program that represents informa-
tion of the application domain introduced in Example 1 and will
be used as a running example in the rest of the paper.

Example 2. Let Pl ¼ ðPl;DlÞ be a DeLP-program where:
Pl¼

mStops

mHDriving

atNight

tJam tSlow

8>>><
>>>:

9>>>=
>>>;

Dl¼

suggestðHÞ goodðHÞ;nbHotelðHÞ
suggestðHÞ sStop;nbHotelðHÞ
� suggestðHÞ dangerZðHÞ
dangerZðHÞ theftZðHÞ
�dangerZðHÞ pOfficersZðHÞ
goodðHÞ starsðH;SÞ;SP3
�goodðHÞ starsðH;SÞ;S<3
� sStop mStops

sStop mHDriv ing

sStop atNight

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

Observe that the set Pl has three facts and one strict rule. These
facts represent information about the current situation that can be
automatically obtained during travel: the driver has been driving
for many hours (mHDriving), during the night (atNight), and the
driver has stopped several times (mStops). The strict rule repre-
sents that ‘‘a traffic jam exists when the traffic is very slow.’’
The set Dl contains several defeasible rules. The first two
defeasible rules represent two tentative reasons to suggest a hotel
H: ‘‘if H is a good, nearby hotel’’ or ‘‘if H is a nearby hotel and there
is a reason to suggest to stop’’. The last three rules represents
reasons for and against suggesting a stop: being many hours
driving or driving at night are both reasons for suggesting a stop,
whereas having done several stops before is a reason against
suggesting a stop. Observe that the sixth and seventh defeasible
rules are used for establishing whether H is a good hotel. The third
rule represents that ‘‘if a hotel H is in a dangerous zone then there
exists a tentative reason for not suggesting H’’. Finally, the fourth
and fifth rules can be read as follows: ‘‘the hotel is in a dangerous
zone if it is in a zone with many reported thefts’’, and ‘‘the hotel is
not in a dangerous zone if it is a zone with police officers.’’

With the use of strict and defeasible rules it is possible to derive
other literals from a DeLP-program P. A defeasible derivation of a lit-
eral L from P is a finite sequence of ground literals L1; L2; . . . ; Ln ¼ L,
where each literal Li is in the sequence because: (a) Li is a fact in P,
or (b) there exists a rule Ri in P (strict or defeasible) with head Li

and body B1;B2; . . . ;Bk and every literal of the body is an element
Lj of the sequence appearing before Li (j < i). We will say that L
has a strict derivation from P if either L is a fact or all the rules used
for obtaining the sequence L1; L2; . . . ; Ln are strict rules. For
instance, from the program Pl of Example 2 there are defeasible
derivations for sStop and �sStop, and a strict derivation for atNight.

Strong negation is allowed in the head of program rules, and
hence, may be used to represent contradictory knowledge; two lit-
erals are contradictory if they are complementary. Given a literal L,
the complement with respect to the strong negation will be noted
L, i.e., L is �L, and � L is L. Thus, a set is contradictory iff a pair of
complementary literals can be obtained from this set. In DeLP,
P [D can be contradictory (e.g., sStop and � sStop are derived from
Pl). However, it will be assumed that the set P is
non-contradictory, i.e., in a valid DeLP-program there cannot be
strict derivations for contradictory literals.

Since contradictory literals can be defeasibly derived, DeLP
builds arguments supporting tentative conclusions and then, this
arguments can be compared to decide which conclusion prevails.
Hence, argument comparison criteria play a central role in this
kind of formalism.

In DeLP, an argument for a literal L from a program (P,D) is
denoted hA; Li, where A# D is a minimal and non-contradictory
set, such that together with P allows a defeasible derivation of L.
Given a DeLP-argument hA; Li; L is called the conclusion of the argu-
ment, and sometimes for simplicity we will say that A is the
argument that supports L. For instance, the following two argu-
ments can be constructed from the program Pl of Example 2:
hA3; sStopi and hA4;� sStopi where A3 = {sStop mHDriving}
and A4 = {� sStop mStops}. Observe that A3 represents a rea-
son for suggesting a stop (the driver has been many hours driving),
whereas A4 represents a reason against suggesting a stop (the dri-
ver has stopped many times during the trip). An argument hA; Li is
said to be a subargument of hA1; L1i, if A#A1.

Two literals L and L1 disagree regarding a program (P, D), when
the set P [fL; L1g is contradictory. We say that the argument
hA1; L1i counter-argues or attacks hA2; L2i at literal L, if and only if
there exists a sub-argument hA; Li of hA2; L2i such that L and L1 dis-
agree. For instance, the two arguments introduced above:
hA3; sStopi and hA4;� sStopi, attack each other because literals
sStop and� sStop disagree. Note that in DeLP an argument can attack
the conclusion or an inner point of other argument: consider
nbHotelðh1Þ is added to P l then A4 will be a counterargument
for hA10; suggestðh1Þi where A10 ¼ fsuggestðh1Þ � sStop;
nbHotelðh1Þ; sStop mHDrivingg. In Section 5 an application
example that considers inner attacks will be given.

8246 J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258
In DeLP, given an argument that attacks another (e.g., A3 and
A4), in order to decide which one prevails, the arguments are com-
pared using an argument preference criterion. We will denote that
an argument A1 is preferred to A2, as A1 � A2. In DeLP the notion
of defeat is considered as an attack that is effective, i.e., an argu-
ment A1 is a defeater for an argument A2 if A1 � A2 (called proper
defeater) or both arguments are incomparable (called blocking
defeater). As explained above, in DeLP (and hence in
DeLP-servers) arguments are compared using a fixed and prede-
fined preference criterion.

In the next sections we will propose a new approach that will
allow to program how to select dynamically which argument pref-
erence criterion to use. In Section 3 we will propose an extension of
DeLP-servers (called Conditional-preference based Reasoning
Server) that will allow to store a repository of argument preference
criteria. We will also introduce a special type of contextual query
that will allow to specify how the server should select a criterion
for such repository. In DeLP the answer for a query Q can be: YES

if the Q is warranted; NO if an argument against Q is warranted,

UNDECIDED if neither arguments for nor against Q can be warranted,
and UNKNOWN if the query includes literals that are not in the pro-
gram’s language. In Section 5 we will explain in details the notion
of warranted adapted to our new formalization and how answers
are computed in our proposed formalism, and then in Sections
5.2 and 5.3 we will show an application examples.
3. Conditional-preference based Reasoning Server

In this section, we propose a Conditional-preference based
Reasoning Server (CRS-server for short) that will answer queries
using an argumentative inference mechanism, and it will allow a
context-adaptable selection of the argument preference criterion.
In our proposed approach, a CRS-server will answer queries select-
ing one preference criterion that will be indicated by the client agent
using a special type of expression in the submitted query.
CRS-servers will be defined as an extension of DeLP-servers. As
described above, a DeLP-server has three components: hI;O;Pi: a
DeLP-interpreter I, a set of operators O used for the handling of the
received contextual information and the public knowledge stored
in the server as a DeLP-program P. In our proposal a CRS-server will
have four components hI;O;P;Ki, where K (formally introduced
below) will be used for storing all the argument preference criteria
that will be available on that CRS-server. Then, the notion of contex-
tual query will be extended to include a special kind of expression
that will be used to automatically select one argument preference
criterion from K for answering that specific query.

Several argument preference criteria have been proposed in the
literature of structured argumentation, for instance: evidence
based (Tang, Hang, Parsons, & Singh, 2012), literals based
(Ferretti, Errecalde, García, & Simari, 2008), presumptions based
(Martinez, García, & Simari, 2012; Deagustini et al., 2012), rule’s
priorities (García & Simari, 2004; Prakken & Sartor, 1997), general-
ized specificity (García & Simari, 2004). Some of these criteria
require additional domain information to compare arguments.
Consider for instance, the criterion called rule’s priorities intro-
duced in García and Simari (2004). This criterion requires a partial
order defined over defeasible rules (denoted ‘‘.’’). The intuitive
meaning of ‘‘r1 . r2’’ is that rule r1 is deemed better than r2 under
some criterion (e.g., driver’s safety) considering the application
domain. Then, given two arguments A and B, A is preferred over
B with respect to ., if there exist at least a rule ra 2 A and a rule
rb 2 B such that ra . rb, and there is no rule r 2 B such that r . r0

for any r0 2 A. Hence, if in an application like the one introduced
in Example 1, one argument comparison criterion is implemented
with rule’s priorities (e.g., driver’s safety), then a partial order .S
over defeasible rules (with respect to safety conditions) should
be provided and associated with this criterion. If the application
has another argument comparison criterion (e.g., driver’s comfort)
then another type of information may be associated.

Therefore, in a CRS-server, we propose to have a repository that
will be used to associate each available criterion with the specific
information needed by it. We assume a finite set of criterion iden-
tifiers N and then, we can denote each available preference crite-
rion as �x, where x 2 N.

Definition 1 (Repository set). Let N be a set of criterion identifiers.
A repository set is a finite set K ¼ fR1;R2 . . . Rng where each
Rjð1 6 j 6 nÞ is a pair hIcj; Sji such that Icj 2 N and Sj stores all the
specific information needed by Icj. There cannot be two elements
hIci; Sii and hIcj; Sji in K such that Ici ¼ Icj, and the set NK # N

represents all the criterion identifiers in the repository set K.
Example 3. Consider the application domain introduced in
Example 1, where two argument preference criteria are consid-
ered: driver’s safety and driver’s comfort. Then we can define the
following repository set Kl ¼ fhsec; Sseci; hcomf ; Scomf ig where there
are two criterion identifiers NKl

¼ fsec; comfg that are respectively
associated with the following sets:

Ssec ¼

ð� suggestðHÞ dangerZðHÞÞ.SðsuggestðHÞ goodðHÞ;nbHotelðHÞÞ
ð� suggestðHÞ dangerZðHÞÞ.SðsuggestðHÞ sStop;nbHotelðHÞÞ
ð� sStop mStopsÞ.SðsStop mHDrivingÞ
ðsStop atNightÞ.Sð� sStop mStopsÞ
ðdangerZðHÞ theftZðHÞÞ.Sð� dangerZðHÞ pOfficersZðHÞÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Scomf ¼
ðsuggestðHÞ goodðHÞ;nbHotelðHÞÞ.Cð� suggestðHÞ dangerZðHÞÞ
ðsuggestðHÞ sStop;nbHotelðHÞÞ.Cð� suggestðHÞ dangerZðHÞÞ
ð� sStop mStopsÞ.CðsStop mHDrivingÞ

8><
>:

9>=
>;

Then, a CRS-server with the repository Kl introduced in Example
3 will offer to select and use two available argument comparison cri-
teria:�sec and�comf . The argument preference criterion�sec will pre-
fer arguments containing information that favors the security of the
driver or the vehicle, whereas�comf will prefer arguments containing
information that promotes the comfort of driver. For the examples of
this paper both will be implemented with rule’s priorities but each
one with different priorities among rules: Scomf and Ssec.

One of our goals is to allow CRS-servers to select dynamically a
criterion depending on certain conditions; to this end, guards
would offer a special way of associating conditions to client prefer-
ences. A guard could be viewed as a way of guiding the choice of a
criterion depending on the user’s preference over certain informa-
tion stored on server. For us a guard will be a set of literals that
should be satisfied by a given DeLP-program.

Definition 2. A set of literals G that we will call guard, is satisfied
by a DeLP-program P iff for each literal L 2 G there exists a strict
derivation from P.
Remark 1. The guard ; is satisfied by any DeLP-program.
Example 4. Consider the guards G1 ¼ fe; f ;� pg;G2 ¼
fa;� pg; G3 ¼ fbg and G4 ¼ ;; and the DeLP-program
P4 ¼ ðP4;D4Þ with the following sets of rules:
P4 ¼ fða bÞ; ðf hÞ; ð� p h; eÞ; d; e; hg, and D4 ¼ fðb dÞ;
ð� b d; eÞg. The guard G1 is satisfied by P4 because all the literals
in G1 have strict derivations from P4. Since ; can be always satisfied
by any DeLP-program; then, G4 is satisfied by P4. However, G2 and
G3 are not satisfied by P4.

J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258 8247
The rationale for using strict derivations for determining
whether a guard is satisfied by a DeLP-program, is that there is
no need for an auxiliary criterion to decide between conflicting
information since P is non-contradictory; clearly, restricting the
guards to use only strict derivations is a design choice. Other alter-
natives are already being explored and, given the complexities,
they will be subject of a future publication.

In our approach, a server will answer a query considering the
preference criteria indicated by the client agent in a
conditional-preference expression, or cp-exp for short. Thus, as
we will show later, every client query will include a cp-exp and,
in that manner, the server will be able to determine the criterion
used to answer the corresponding query. A cp-exp will be either
a criterion identifier or a guard G followed by two
conditional-preference expressions as formalized below.

Definition 3 (Conditional-preference expression). Let K be a repos-
itory set and Ic a criterion identifier in NK. Given a set of literals G.
A cp-exp E is a finite sequence of symbols recursively defined as:

E ¼
Ic; or

½G : E1; E2� where E1 and E2 are cp-exps:

�

The set of all possible cp-exps will be denoted E. A cp-exp Ewill be
interpreted in the following way: if E is a criterion identified Ic, then
the criterion�Ic is applied, whereas if E is ½G : E1; E2� and G is satisfied
by a DeLP-programP, thenE1 is evaluated, otherwiseE2 is evaluated.
This last evaluation sequence is applied recursively until a criterion
identifier is found. This intuitive idea of how a cp-exp E is evaluated
will be captured by the function cond, which is formalized below.
Definition 4 (Condition Evaluation Function). Let E be the set of all
possible cp� exps, P the set of valid DeLP-programs, and NK a set of
criterion identifiers from a repository set K. The function
cond : E� P�!NK, is defined as:

condðE;PÞ¼
Ic if E ¼ Ic; or

condðE1;PÞ if E ¼ ½G : E1;E2� and G is satisfied by P; or
condðE2;PÞ if E ¼ ½G : E1;E2� and G is not satisfied by P

8><
>:

Using the cp-exp the client will able to program which argu-
ment preference criterion the server will select in each particular
situation. The way in which we have modeled the function for
evaluation these expressions provides a context-adaptable selec-
tion mechanism, that will select a preference criterion depending
of which guards from the expression are satisfied. As we will show
below to establish which guards are satisfied the server will con-
sider both the public knowledge stored in the server and the pri-
vate knowledge provided by the client.
Example 5. Consider the criterion identifiers NKl
¼ fsec; comfg

introduced in Example 3. The criterion to establish whether the
hotel ‘‘h1’’ is recommended may be obtained by means of some of
the following expressions:

E1 ¼ ½fpOfficersZðh1Þ; starsðh1;5Þg : comf ; sec�

E2 ¼ ½ftheftZðh1Þ; tJamg : sec; ½fstarsðh1;5Þg : comf ; sec��

The expression E1 can be read as follows: ‘‘If there is a strict
derivation for pOfficersZðh1Þ and starsðh1;5Þ then use the criterion
which favors driver’s comfort, otherwise use the criterion which
favors driver’s security’’. The expression E2 can be interpreted in
the following way: ‘‘If there is a strict derivation for theftZðh1Þ
and tJam, then use the security criterion, otherwise the expression
½fstarsðh1;5Þg : comf ; sec� should be evaluated’’. Consider that the
set Pc ¼ fnbHotelðh1Þ; starsðh1;5Þ; theftZðh1Þg is added to the
DeLP-program of Example 2, and lets P0l ¼ P l [Pc . For E1, the guard
fpOfficersZðh1Þ; starsðh1;5Þg is not satisfied by P0l, since
pOfficersZðh1Þ is not strictly derived from P0l; thus
condðE1;P0lÞ ¼ sec. For E2, the guard ftheftZðh1Þ; tJamg is not satis-
fied by the program, since tJam does not have a strict derivation
from P0l; then we should evaluate the subexpression
½fstarsðh1;5Þg : comf ; sec�. For this subexpression the guard
fstarsðh1;5Þg is satisfied by P0l, since starsðh1;5Þ has a strict deriva-
tion from P0l (it is a fact of that program); thus we have that
condðE2;P0lÞ ¼ comf holds.

As previously mentioned the CRS-server will answer client
queries containing a cp-exp. These queries, denoted as
conditional-preference based query, are an extension of the contex-
tual queries from the DeLP-Servers. Thus, besides a cp-exp, these
queries will be characterized by a context given by the clients pri-
vate knowledge and a literal with the DeLP-query. We formalize
this notion as follows:

Definition 5 (Conditional-preference based query). Given a DeLP
program P ¼ ðP;DÞ, a conditional-preference based query to P is a
tuple ½Co; E;Q �, such that where Co is a set of ground literals that is
non-contradictory with P, called the context, E is a cp-exp, called
the selection criterion, and Q is a literal that represents the
DeLP-query.
Example 6. Consider for instance the cp-exp introduced above in
Example 5 E1 ¼ ½fpOfficersZðh1Þ; starsðh1;5Þg : comf ; sec�.

Then, the following conditional-preference based query can be
formulated:

CQ1 ¼ ½Pc; E1; suggestðh1Þ�;

where Pc ¼ fnbHotelðh1Þ; starsðh1;5Þ; theftZðh1Þg is a set of literals
representing agent’s private contextual information related to the
hotel current situation. With CQ 1 the client agent wants to know
the answer for the DeLP-query ‘‘suggestðh1Þ’’, considering that
‘‘h1’’ is a nearby hotel, it is a five stars hotel, and the hotel zone
has many theft cases. Note that in CQ1 the agent proposes E1 to
be used for the selection of the argument comparison criterion to
be used by the server is being consulted.

A different conditional-preference based query can be formu-
lated with the same context but different cp-exp, for instance:

CQ2 ¼ ½Pc; E2; suggestðh1Þ�

where E2 ¼ ½ftheftZðh1Þ; tJamg : sec; ½fstarsðh1;5Þg : comf ; sec�� is the
cp-exp introduced in Example 5. Observe that CQ1 and CQ2 have the
same DeLP-query and context, but the proposed selection criterion
is different, therefore the answer could be different.

The CRS-servers, like the DeLP-Servers, will answer an incoming
query combining the contextual information with the stored pro-
gram using an available operator stored in O. In particular, in our
proposal we will use the ‘‘+’’ operator defined in García et al.
(2007), which in case of a conflict gives priority to the information
received in the query. That is, given a DeLP-program P ¼ ðP;DÞ and
a non contradictory set of literals Co received as the context of the
query, then: P þ Co ¼ ðððP n RÞ [CoÞ;DÞ where R ¼ fL : L 2 Cog. As
we mentioned, the detailed study of such operators is out of the
scope of this article (for details refer to García et al. (2007) and
García & Simari (2014)).

For instance, if we combine the context Pc of the queries from
Example 6 with the program Pl ¼ ðPl;DlÞ of Example 2 using the
‘‘+’’ operator, we will have as a resulting program just
ðPl [Pc;DlÞ since there is no fact of Pl that is in contradiction with

8248 J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258
a literal of Pc . This resulting program is the one that the server will
use to evaluate the cp-exp in the query. Then, using that program
and the selected preference criterion from the expression evalua-
tion, the server will invoke the DeLP-interpreter to answer the
query. Next, we present the structure of the DeLP-interpreters used
in the CRS-servers, and after that we formalize the intuitions of
how our server answers a query, recalling that a valid
DeLP-program is such that there cannot be strict derivations for
contradictory literals.

Definition 6 (DeLP-interpreter). Let P be the set of valid
DeLP-programs, NK the set of criterion identifiers from a repository
set K and Q the set of possible DeLP-queries. A DeLP-interpreter is a
function I : P�NK �Q�!R, where R is the set of DeLP answers.

Having introduced every component, now we will formally
define the CRS-servers.

Definition 7 (Conditional-preference based Reasoning Server). A
conditional-preference based reasoning server is a 4-tuple
hI;O;P;Ki, where I is a DeLP-interpreter, O is a set of
DeLP-operators, P is a DeLP-program, and K is a repository set.

Next, we will formalize the intuitions on how the server han-
dles an incoming query and how it invokes the interpreter to
answer that query.

Definition 8 (Answer to a query). Let hI;O;P;Ki be a CRS-server,
CQ ¼ ½Co; E;Q � a conditional-preference based query for
CRS-server, P0 a program modified with contextual information
Co, and condðE;P0Þ ¼ Ic a criterion identifier in K obtained from
evaluating the expression E. An answer for CQ from CRS-server,
denoted Ans(CRS-server, CQ), corresponds to the result of the
function IðP0; Ic;QÞ.

Fig. 1 depicts a situation with a CRS-server and a
conditional-preference based query ½Co; E;Q � sent by a client agent.
Operators from O handle the integration of the contextual infor-
mation Co with the program stored P, generating a new program
P0. Then, given the program P0 and the cp-exp E, a criterion identi-
fier Ic is obtained with the function condðE;P0Þ. This criterion iden-
tifier Ic determines the argument preference criterion, and
Fig. 1. Main components of a conditional-p
consequently, consulting the repository K obtaining the pair
hIc; Si, and from there, the specific information S to be used in
the comparison of arguments. Thus, the DeLP-interpreter I takes
the program P0, the identifier Ic, and the queried literal Q as input,
and finally returns the computed answer Ans for Q.

In Section 5 we will explain in detail how answers are com-
puted in our proposed formalism and we will develop an applica-
tion example. Nevertheless, first, in the following section, we will
study some properties of cp-exp.

4. Evaluation of conditional-preference expressions

We will perform more detailed analysis of the properties of
cp-exp and its evaluation semantics considering relevant character-
istics that would lead to their optimization. To facilitate this task
we will characterize cp-exp using a tree representation.

4.1. Tree representation

Conditional-preference expressions can be represented through
a full binary tree where every inner node is labeled with a guard
and each leaf node is labeled with a criterion identifier. A special
case of this type of binary tree corresponds to the representation
of the most simple cp-exp (E = Ic) where the root is also a leaf node
that is labeled with a criterion identifier.

Definition 9 (Tree representation). Given a set of comparison
criterion identifiers N and a conditional-preference expression E,
a tree representation for E, denoted TE , is a full binary tree defined
recursively as follows:
1. If E ¼ IcðIc 2 NÞ then TE contains only one node labeled with Ic.
2. If E ¼ ½G : Ei; Ej�, then the tree representation TE is a full binary

tree where:

–the root is labeled with the guard G,
–the left child of the root is the tree representation for E i,
and
–the right child of the root is the tree representation for Ej.
reference based query and CRS-server.

J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258 8249
As will be show below the tree representation of a cp-exp will be
useful for showing some formal results. The following proposition
shows that for any cp-exp there exist a unique tree representation.
This proposition will be also used for the proof of an important
result at the end of this section.

Proposition 1. There exists an unique tree representation TE for a
cp-exp E.
Proof. Straightforward from Definition 9. h

Fig. 2 shows the tree representation for the cp-exps E1 and E2

introduced in Example 5. The next example shows two cp-exps
with a greater level of nested conditions that will be used in the
rest of the section.

Example 7. Consider the following conditional-preference
expressions:
Ea ¼ Ic1

Eb ¼ ½ff ; e;dg : ½f� p;� ag : ½fm; ag : Ic1; Ic2�; Ic3�; ½f� p;hg : Ic1; Ic3��

Ec ¼ ½ff ;eg : ½fh;� pg : ½fdg : Ic1; Ic2�; ½f� p;� eg : Ic3; Ic2��; ½f� p;hg :

½fe;� p;� fg : Ic3; Ic2�; ½fdg : Ic1; Ic2���
Annotated path Criterion selection structure

h½ff ; e; qgþ; f� p;� agþ; fm; agþ�; Ic1iTEb
C1 ¼ ðfff ; e; qg; f� p;� ag; fm; agg; fg; Ic1ÞTEb

h½ff ; e; qgþ; f� p;� agþ; fm; ag��; Ic2iTEb
C2 ¼ ðfff ; e; qg; f� p;� agg; ffm; agg; Ic2ÞTEb

h½ff ; e; qgþ; f� p;� ag��; Ic3iTEb
C3 ¼ ðfff ; e; qgg; ff� p;� agg; Ic3ÞTEb

h½ff ; e; qg�; f� p;hgþ�; Ic1iTEb
C4 ¼ ðff� p;hgg; fff ; e; qgg; Ic1ÞTEb

h½ff ; e; qg�; f� p;hg��; Ic3iTEb
C5 ¼ ðfg; fff ; e; qg; f� p; hgg; Ic3ÞTEb
Fig. 3 shows the tree representations TEa ; TEb
, and TEc associ-

ated to cp� exps Ea; Eb, and Ec. Note that TEa is a tree with only
one node, and that in the same tree, different leaves can be labeled
with the same criterion identifier.

It is interesting to observe that every path from the root to a
leaf in a tree TE represents a finite sequence of guards
supporting the decision that chooses a preference criterion.
The following definition characterize this notion and will be
used for the analysis and propositions in the rest of the
section.
Fig. 2. Tree representations for E1 and E2 of Example 5.
Definition 10 (Annotated path/criterion selection structure). Let TE
be the tree representation for a cp-exp E. Let Ic be the label of a leaf
L in TE and ½G1;G2; . . . ;Gn�ðn P 1Þ, the sequence of labels (guards) of
inner nodes from the root of TE labeled G1 to the leaf L. An
annotated path for L in TE is a tuple denoted hC; IciTE such that

C ¼ ½Gx1
1 ;G

x2
2 ; . . . Gxn

n �(n P 1), and where:

(a) for each Gi (1 6 i 6 n� 1) the annotation xi is ‘‘+’’ if Giþ1 is
the left child of Gi in TE , or ‘‘-’’ otherwise, and

(b) the annotation xn is ‘‘+’’ if Ic is the left child of Gn in TE , or ‘‘-’’
otherwise.

We will also say that, a criterion selection structure for the
criterion identifier Ic in TE , extracted from the annotated path
hC; IciTE , is a triplet ðCþ;C�; IcÞTE such that: Cþ ¼ fGijGþi 2 C;1 6 i
6 ng, and C� ¼ fGjjG�j 2 C;1 6 j 6 ng.
Example 8. Given the tree representation TEb
in Fig. 3, in following

table we show each annotated path that can be obtained from TEb

together with its respective criterion selection structure:
Given a DeLP-program P and a annotated path hC; IciTE , a guard

Gþi in the sequence C is interpreted as a guard Gi that must be sat-
isfied by P in order to apply the preference criterion identified with Ic,
whereas with G�j , is interpreted as a guard Gj that must not be satis-
fied by P. Thus, if we consider the criterion selection structure
ðCþ;C�; IcÞTE associated to the given path, the elements of Cþ must
be satisfied from P and the elements of C� must not satisfied from
P. Then, when a program and a criterion selection structure fulfil
these constraints, we will say that the criterion selection structure
is conformant regarding to the program.

Definition 11 (Conformance). Given a DeLP-program P. A criterion
selection structure ðCþ;C�; IcÞTE is conformant regarding to P if it
holds:

– For all G 2 Cþ;G is satisfied by P, and
– for all G 2 C�;G is not satisfied by P.

For instance, the structure C4 of Example 8 is conformant with
respect to the program P4 of Example 4.

Remark 2. A tree TE with a single node will contain just a criterion
identifier Ic; thus, this tree will have a single annotated path h;; IciTE
which will have ð;; ;; IcÞTE as its corresponding criterion selection
structure and this is conformant with respect to any DeLP-program
P. For this reason and for the purpose of this section, from now on
we will focus the study on trees containing more than one node.

Fig. 3. Tree representations TEa , TEb
, and TEc .

8250 J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258
The following proposition shows that for any two criterion
selection structures in the same tree representation, at least one
guard G is shared by both structures. This result will be used for
the proof of the Proposition 3. For instance, the structures C1 and
C2 of Example 8 share all their guards, whereas C3 and C4 share
only the guard ff ; e; qg.

Proposition 2. Let TE be a tree representation. Given two different
annotated paths h½Fx1

1 ; F
x2
2 ; . . . Fxm

m �; IciiTE and h½Hx1
1 ;H

x2
2 ; . . . Hxn

n �; IcjiTE
and their associated criterion selection structures ðCþi ;C

�
i ; IciÞTE and

ðCþj ;C
�
j ; IcjÞTE . There exists at least a guard G in both ðCþi ;C

�
i ; IciÞTE

and ðCþj ;C
�
j ; IcjÞTE such that either G 2 Cþi \ C�j or G 2 Cþj \ C�i .
Proof. Let h½Fx1
1 ; F

x2
2 ; . . . Fxm

m �; IciiTE and h½Hx1
1 ;H

x2
2 ; . . . Hxn

n �; IcjiTE be
two different annotated paths. It is clear that they will share a pre-
fix ðG1;G2; . . . ;GkÞ; k 6 m and k 6 n, such that Fi ¼ Hi ¼ Gi(i 6 k).
Indeed, if there exists only one guard Gi in the prefix, that is i ¼ k
and k ¼ 1, then the prefix is the root labeled Gi of the tree TE and
Gi 2 Cþi \ C�j or Gi 2 Cþj \ C�i . In contrast, if there exists more than
a guard in the prefix, then the last guard Gk in ðG1;G2; . . . ;GkÞ is such
that Gk 2 Cþi \ C�j or Gk 2 Cþj \ C�i . h
Remark 3. For any tree representation TE there will exist two dif-
ferent criterion selection structures ðCþi ;C

�
i ; IciÞTE and ðCþj ;C

�
j ; IcjÞTE

such that Cþi ¼ ; and C�j ¼ ;. Given that TE is a full binary tree,
then the left-most path of the root of TE will be represented by
the structure ðCþi ; ;; IciÞTE and the right-most path by ð;;C�j ; IcjÞTE .
In Example 8, C1 and C5 are the structures in TEb

(Fig. 3) where
C�1 ¼ ; and Cþ5 ¼ ;. Note also that, given the tree TEa of Fig. 3, the
only obtained structure is ð;; ;; Ic1ÞTEa

, where both C� ¼ ; and

Cþ ¼ ;.
The following proposition states that given any tree repre-

sentation TE and a DeLP-program P, it is not possible to find
two different criterion selection structures in TE such that they
are conformant w.r.t. P. As we will show further below, this
result will be used to establish that the selected preference
criterion is obtained from the structure that is conformant
w.r.t. P.

Proposition 3. Given a DeLP-program P and a cp-exp E and its
tree representation TE . There exists a unique criterion selection
structure ðCþ;C�; IcÞTE in TE such that ðCþ;C�; IcÞTE is conformant
w.r.t. P.
Proof. Assume ðCþi ;C
�
i ; IciÞTE and ðCþj ;C

�
j ; IcjÞTE are two different

structures in the same tree TE . By Proposition 2 there exists at least
one guard G in ðCþi ;C

�
i ; IciÞTE and ðCþj ;C

�
j ; IcjÞTE such that

G 2 Cþi \ C�j or G 2 Cþj \ C�i . Thus, one of the structures would be
conformant w.r.t. P with G satisfied by P, and the another one with
G not satisfied by P. However, by Definition 2 a guard G is either
satisfied or not satisfied by a given DeLP-program P, then
ðCþi ;C

�
i ; IciÞTE and ðCþj ;C

�
j ; IcjÞTE can never be conformant w.r.t.

the same DeLP-program P. h

Consider again the DeLP-program P4 of Example 4 and the trees
TEb

and TEc in Fig. 3. The structure ðff� p;hgg; fff ; e; qgg; Ic1ÞTEb
of

TEb
is the only one conformant w.r.t. P4 and the structure

ðfff ; eg; fh;� pg; fdgg; fg; Ic1ÞTEc
is the only one conformant w.r.t.P4.

When analysing whether a structure ðCþ;C�; IcÞTE is confor-
mant w.r.t. a DeLP-program, repeated literals may appear in the
guards of the set Cþ. For instance, when analysing the structure
ðff� p;hg; fe;� p;� fgg; fff ; egg; Ic3ÞTEc

of the tree representation

TEc in Fig. 3, the literal � p is repeated. In this case, this structure
will be conformant w.r.t. a DeLP-program if f� p;hg and
fe;� p;� fg are satisfied by the program, that is, if there is a strict
derivation for every literal in these guards. Thus, in this particular
case, we will have to analyse twice if there is a strict derivation for
� p, leading to a redundant computation. In the following defini-
tion we will characterize which paths will suffer from this kind
of redundancy.

Definition 12 (Redundancy). Let ðCþ;C�; IcÞTE be a criterion selec-

tion structure. We say that ðCþ;C�; IcÞTE is redundant iffT
Gi2CþGi – ;.

Note that this redundancy problem could be solved by using the
following transformation. Let hC; IciTE be the annotated path associ-

ated to the structure ðCþ;C�; IcÞTE where C ¼ ½Gx1
1 ; . . . ;Gxi

i ;

. . . ;Gxn
n �(n P 0 and i 6 n). We can build a new path hC0; IciTE from

hC; IciTE such that there exists not repeated literals in the guards

G0þi 2 C0, that is \

G0þi ¼ G

0þ
i n

G0þ
j
2C0 ; j6i

G0þj :
Then, the criterion selection structure ðC0þ;C0�; IcÞTE , obtained from

the path hC0; IciTE , is not redundant. For instance, as shown previ-
ously, the structure hff� p; hg; fe;� p;� fgg; fff ; egg; Ic3iTEc

is

redundant. Thus, after the transformation just described, the new

J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258 8251
structure hff� p; hg; fe;� fgg; fff ; egg; Ic3iTEc
without repeated liter-

als is obtained. We will assume that every structure ðCþ;C�; IcÞTE in
a tree TE is non redundant.

Next, we continue with the analysis of particular situations that
can arise in a cp-exp. Propositions 4 and 5 will identify characteris-
tics that make a structure ðCþ;C�; IcÞTE non conformant w.r.t. any
given DeLP-program.

Proposition 4. Given a cp-exp E, its tree representation TE , and a
program P, let ðCþ;C�; IcÞTE be a criterion selection structure. If

Cþ \ C� – ;, then ðCþ;C�; IcÞTE is not conformant regarding to P.
Proof. Suppose that ðCþ;C�; IcÞTE is conformant regarding P and

Cþ \ C� – ;. By Definition 11 the guards of the set Cþ would be
satisfied and the guards of C� would not be satisfied by P.
However, if Cþ \ C� – ;, there exists a guard G such that
G 2 Cþ \ C�. Thus, ðCþ;C�; IcÞTE would be not conformant regard-
ing P. h

Note that, a guard G may contain contradictory literals. the
interesting case to analyse is when contradictory literals appear
in the set Cþ of a structure ðCþ;C�; IcÞTE . The following proposition

shows that if there exists contradictory literals in Cþ, then at least
one guard in Cþ will not be satisfied by any given DeLP-program P.
Thus, ðCþ;C�; IcÞTE will not be conformant w.r.t. P.

Proposition 5. Given a criterion selection structure ðCþ;C�; IcÞTE
and a DeLP-program P ¼ ðP;DÞ. If the set resulting S ¼

S
G2CþG is

contradictory, then ðCþ;C�; IcÞTE is not conformant regarding to P.
Proof. Assume that S is a contradictory set, therefore, there exist
strict derivations for two complementary literals L; � L 2 S from
P. Then P is contradictory and P would not be a valid
DeLP-program. h

For instance, the annotated path h½ff ; egþ; fh;� pg�; f� p;� egþ�;
Ic3i of TEc with its criterion selection structure ðfff ; eg; f� p;�
egg; ffh;� pggÞTEc

. Note that, there is no DeLP-program capable of

satisfying both ff ; eg and f� p;� eg, since no valid program can
have strict derivations for both e and � e.

We will consider as sound criterion selection structures those
structures that do not suffer from the problems characterized in
Propositions 4 and 5. This notion is formalized in the following
definition.

Definition 13 (Sound criterion selection structure/tree
representation). Let TE be a tree representation and ðCþ;C�; IcÞTE
a criterion selection structure. The structure ðCþ;C�; IcÞTE is a
sound criterion selection structure iff:
(i) Cþ and C� are disjoint sets.
(ii) The set Cþ is non contradictory.

A sound tree representation TE contains only valid criterion selec-
tion structures.
Definition 14. Let E be a cp-exp and TE its associated tree repre-
sentation. We say that the expression E is valid iff the tree TE is
sound.
Observe that in Fig. 3 not all trees are sound tree representa-
tions. For instance, TEc is not sound since, as we previously dis-
cussed, in the structure ðfff ; eg; f� p;� egg; ff� p;hgg; Ic3ÞTEc

, the

set ff ; eg [f� p;� eg is contradictory. On the other hand note that
both TE1 and TE2 in Fig. 2 are sound tree representation.

Proposition 6. Given a valid cp-exp E and its tree representation TE .
For every criterion selection structure ðCþ;C�; IcÞTE , there exists a

DeLP-program P such that ðCþ;C�; IcÞTE is conformant w.r.t. P.
Proof. Given that the tree TE is sound and ðCþ;C�; IcÞTE an arbi-
trary structure in TE , then

S
Gi2CþGi is a DeLP-program that satisfies

the condition in the statement. h

Given the tree representation TE associated to the cp-exp E, dif-
ferent sequences of guards can possibly lead to different criterion
identifiers. Nevertheless, from a DeLP-program P, the evaluation
result obtained from condðE;PÞ reflects the fact that there exists
only one path from the root of the tree TE to the criterion identifier
resulting of such evaluation process. For example, considering the
expression E2 of Example 5 and the program P l of Example 2 the
answer of the function condðE2;P lÞ is the criterion identifier sec
due to the fact that theftZðh1Þ; tJam, and starsðh1;5Þ have not strict
derivations. The following lemma shows that it is always possible
to obtain a criterion identifier from a sound tree representation.

lemma 1. Given a DeLP-program P, a cp-exp E with its tree
representation TE , and a criterion identifier Ic. It holds that
condðE;PÞ ¼ Ic iff Ic appears in a criterion selection structure
ðCþ;C�; IcÞTE that is conformant w.r.t. P.
Proof. If ðCþ;C�; IcÞTE is conformant w.r.t. P, then by Proposition 3
the structure obtained from the tree representation TE using the
program P is ðCþ;C�; IcÞTE . By Proposition 1, TE is the tree associ-
ated the expression E, then Ic would be the evaluation result
obtained from condðE;PÞ.

If condðE;PÞ ¼ Ic, then by Definition 4 either E ¼ Ic or
E ¼ ½G : Ei; Ej�. If E ¼ Ic, by Definition 9 there exists a tree repre-
sentation for E with only one node labeled with Ic. Then, by Remark
2 this tree has a single annotated path h;; IciTE with the unique
respectively associated criterion selection structure ð;; ;; IcÞTE . If
E = [G: Ei; Ej], then by Definition 9, E has an associated tree
representation TE such that by Proposition 3 there exists a criterion
selection structure ðCþ;C�; IcÞTE conformant w.r.t. P in TE . h

Several conclusions can be drawn from the results that we
obtained in this section. In general terms, we would like to empha-
size the fact that a tree representation not only helps to understand
the evaluation semantics of conditional-preference expressions,
but also allowed us to discuss several aspects related to the selec-
tion of a criterion. For example, it is easy to see that would not be a
coherent decision if the user specifies the guards in such a way that
to select a criterion it would be required to infer contradictory lit-
erals from the strict part of the program. In fact, an important point
to mention is that the flexibility of our approach regarding how
cp-exps are constructed by the user, allowing the possibility of
building expressions that could be incoherent or contradictory.
Situations of these type were described in the Propositions 4 and
5; to deal with these possible problems and forcing the construc-
tion of expressions that satisfy internal coherence is that cp-exps
in a conditional-preference based query are required to be valid
expressions.

8252 J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258
5. Computing answers

We will introduce here the warrant procedure carried out by
the interpreter of a CRS-server for computing answers. Then, we
will exemplify how the CRS-server handles conditional-
preference based queries in our running example. Finally, we will
show how our proposal can be applied in a mobile robot
environment.

5.1. Warranting queries

The notion of attack introduced in Section 2 helps to identify
a conflict between two arguments; to decide which argument
prevails, a preference criterion must be used. We will now for-
malize the notion of defeat which considers the preference cri-
terion selected by the CRS-server. As we will show in the next
section, when a CRS-server receives a conditional-preference
based query it will use the cp-exp for selecting the appropriate
preference criterion that will be used for computing the answer
of the received query. This selected preference criterion will
help in the comparison of arguments as the following definition
shows.

Definition 15 (Defeat). Let hI;O;P;Ki be a CRS-server, and Ic a
criterion identifier in the repository set K. Let hA1; L1i and hA2; L2i
be two arguments from P. We say that hA1; L1i defeats hA2; L2i
according the preference criterion �Ic , iff there exists a
sub-argument hA; Li of hA2; L2i such that hA1; L1i counter-argues
hA2; L2i at L and it holds that:
1. A1�IcA (proper defeater), or
2. A1¤IcA and A¤IcA1 (blocking defeater).

As shown in Section 2, the argument hA3; sStopi attacks
hA4;� sStopi at literal � sStop. Considering the comfort criterion
�comf and the priorities among rules associated with this criterion
as presented in Example 3. With this priorities, A4 is preferred to
A3 because ð� sStop mStopsÞ.CðsStop mHDrivingÞ, then A4

is a proper defeater forA3, whereas the argument hA5; sStopiwhere
A5 ¼ fsStop atNightg is a blocking defeater forA4, and vice versa.

In DeLP (García & Simari, 2004), a queried literal Q is warranted
from a program P if there exists a non-defeated argument A for Q
built from P. To establish whether A is a undefeated argument, all
the defeaters for A are considered, and the defeaters for these
defeaters are looked up recursively in a dialectical process. As each
defeater could in turn be defeated, a sequence of arguments called
argumentation line K = ½A0;A1;A2; . . . ;An� arises where each argu-
ment (except the first one) is a defeater of its predecessor. In K, in
regard to the initial argument the arguments in even positions play
a role as supporting arguments and the ones in odd positions act as
interfering arguments. In DeLP, an argumentation line K is accept-
able if the following conditions hold: (1) K is finite, (2) the set of
supporting arguments in K is non contradictory and the set of
interfering arguments in K is non contradictory, (3) no argument
Aj in K is a subargument of an argument Ai in K; i < j, and (4)
every blocking defeater Ai in K is defeated by a proper defeater
Aiþ1 in K. These four constraints are necessary for avoiding falla-
cious situations (see García & Simari (2004) for a complete discus-
sion). Since there can be more than one defeater for a given
argument, a set of argumentation lines is produced, referred as a
‘‘bundle’’ using the terminology of Chesñevar and Simari (2007).
A convenient tree structure can be build to consider all the
involved argumentation lines together. Next we will formally
define this notion considering the preference criteria identifier pro-
vided to the interpreter.
Definition 16 (Dialectical Tree). Let hI;O;P;Ki be a CRS-server, and
Ic a criterion identifier in the repository set K. Let A0 be an
argument for a query Q from the program P. A dialectical tree for
A0 under the preference criterion �Ic , denoted T Ic

A0
, is defined as

follows:

1. The root of the tree is labeled with A0.
2. Let N be a node on the tree labeled An, and K =
½A0;A1;A2; . . . ;An� the sequence of labels on the path from
the root to N. Let B1, B2, . . ., Bk be all the defeaters according
the criterion �Ic for An. For each Bi ð1 6 i 6 kÞ such that, the
argumentation line K0 ¼ ½A0;A1;A2; . . . ;An;Bi� is acceptable,
then the node N has a child Ni labeled Bi.
If there is no defeater w.r.t. the criterion �Ic for An or there is no
Bi such that K0 is acceptable, then N is a leaf.

In a dialectical tree, each path from the root to a leaf corre-
sponds to a different acceptable argumentation line. Note also that
every node (except the root) is a defeater of its parent, and leaves
are undefeated arguments.

The marking of a dialectical tree (García & Simari, 2004) is a pro-
cess that assigns every node the mark of defeated (‘‘D’’) or the mark
of undefeated (‘‘U’’) as follows. Leaf nodes are marked as ‘‘U’’; and,
an inner node is marked as ‘‘D’’ if it has at least a child marked as
‘‘U’’, while an inner node is marked as ‘‘U’’ if all its children are
marked as ‘‘D’’.

Definition 17 (Warrant). Let hI;O;P;Ki be a CRS-server, and Ic a
criterion identifier from the repository set K. A literal Q is
warranted from the program P under �Ic , if there exists an
argument A for Q from P and the root of the dialectical tree T Ic

A is
marked as ‘‘U’’.

Given a DeLP-program P, a criterion identifier Ic and a literal Q,
the function IðP; Ic;QÞ (Definition 8) will return YES, if the literal Q is
warranted from P; NO, if the complement of Q is warranted from P;

UNDECIDED, if neither Q nor its complement are warranted from P; or

UNKNOWN, if Q is not in the signature of P.

5.2. Application example

We will develop here a detailed account of how answers for
conditional-preference based queries can be obtained following
our running example introduced in Example 2. In particular, we
will show how the answer can change depending on the criterion
that is selected after evaluating a cp-exp.

Consider a CRS-server hI;O;Pl;Kli, where I is a DeLP-interpreter,
O ¼ fþg has just the context integration operator that was intro-
duced in Section 3; in case of a conflict this operator gives priority
to the information received in the query (García et al., 2007),
Pl ¼ ðPl;DlÞ is the program introduced in Example 2, and
Kl ¼ fhsec; Sseci; hcomf ; Scomf ig is the repository set presented in
Example 3. We will show next how hI;O;P l;Kli computes an
answer for the conditional-preference based query CQ1 introduced
in Example 6 and showed below:

CQ1 ¼ ½Pc; E1; suggestðh1Þ�; where
Pc ¼ fnbHotelðh1Þ; starsðh1;5Þ; theftZðh1Þg; and
E1 ¼ ½fpOfficersZðh1Þ; starsðh1;5Þg : comf ; sec�

Next, we will explain in detail the different steps that a CRS-server
performs to compute the answer for CQ1. The first step is to inte-
grate the contextual information with the stored program (depicted
in Fig. 1 as the program P0). In our example this means to integrate
Pc with Pl in the following way: Pl þ Pc ¼ ðððPl n RÞ [PcÞ;DÞ,
where R ¼ fL : L 2 Pcg. Since Pc is not in conflict with Pl, then,

J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258 8253
nbHotelðh1Þ; starsðh1;5Þ, and theftZðh1Þ are added to the set Pl, and
the program Pm ¼ ðPm;DmÞ is obtained:

Pm ¼

mStops

mHDriving

atNight

nbHotelðh1Þ
starsðh1;5Þ
theftZðh1Þ
tJam tSlow

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

Dm¼

suggestðHÞ goodðHÞ;nbHotelðHÞ
suggestðHÞ sStop;nbHotelðHÞ
� suggestðHÞ dangerZðHÞ
dangerZðHÞ theftZðHÞ
� dangerZðHÞ pOfficersZðHÞ
goodðHÞ starsðH;SÞ;S P 3
� goodðHÞ starsðH;SÞ;S<3
� sStop mStops

sStop mHDriving

sStop atNight

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

The second step is to select the preference criterion that has to
be used for determining if CQ1 is warranted. For this selection, it is
necessary to evaluate the expression E1; since there is no strict
derivation of pOfficersZðh1Þ from Pm, as a result of evaluating
condðE1;PmÞ, the selected preference criterion will be sec.

The third step is to build dialectical trees using the criterion sec
in order to determine if suggestðh1Þ is warranted. Note that
hsec; Sseci will be the pair from the repository considered in this
dialectical process. Fig. 4(a) gives a graphical representation of
the resulting dialectical analysis for CQ1 considering �sec as prefer-
ence criterion. In that figure each argument is depicted using trian-
gle shape (for the detailed structure of these arguments see Fig. 5),
dashed lines denote blocking defeat relations and solid lines
denote proper defeat relations. In particular, in Fig. 4(a), it can be
seen that the root argument of the most right dialectical tree,
which supports the conclusion ‘‘� suggestðh1Þ’’, is marked as ‘‘U’’;
thus, the conclusion ‘‘suggestðh1Þ’’ is not warranted, and the
answer for the query is NO.

Now, lets consider that the same CRS-server receives the fol-
lowing conditional-preference based query:

CQ2 ¼ ½Pc; E2; suggestðh1Þ�;where

E2 ¼ ½ftheftZðh1Þ; tJamg : sec; ½fstarsðh1;5Þg : comf ; sec��
Fig. 4. Dialectical analysis for the
For answering CQ2, the CRS-server uses the same DeLP-program
Pm ¼ ðPm;DmÞ introduced above because CQ1 and CQ2 have the
same context Pc . Then when evaluating the expression E2; tJam
has not strict derivation, while starsðh1;5Þ does, thus, in contrast
with condðE1;PmÞ, the function condðE2;PmÞ will return the crite-
rion identifier comf . A graphic representation of resulting dialecti-
cal trees by using the criterion �comf for CQ2 is showed in Fig. 4(b),
where the conclusion ‘‘suggestðh1Þ’’ is warranted, thus the resulting
answer for CQ2 is YES. Observe that defeat relations arising from the
criteria sec and comf differ, thus different tree structures are built
and showed in Fig. 4(a), and (b), respectively.

As we mentioned above, in García et al. (2007) the proposed
server is configured to use a fixed comparison criterion embedded
in the system; therefore, the answers to our example queries will
be always solved using the same criterion. Our approach, as is
shown in the complete example above, extends the behavior of
García et al. (2007) showing that the same queried literal with
the same context but with different conditional-preference expres-
sions, can use a different criterion, possibly obtaining different
answers. This was one of our established goals.

5.3. Application example in a mobile robotic environment

Below, we will show how the proposed model could be applied
for making a recommendation in the robotic environment that was
described in Ferretti et al. (2008). In particular, the application
domain consists of a micro-world environment using robots for
cleaning tasks. There are boxes spread over the environment and
the robot will obtain a recommendation about which box is more
convenient to select next in order to move it to a particular place
called store. In Fig. 6(a) and (b) we present two different scenarios
of this robotic environment that will be used in the examples
below.

In Ferretti et al. (2008) it was shown that several criteria for
selecting boxes may be pertinent: a robot could select the smallest
box, or the nearest to itself, or the box that is nearest to the store.
In that work, a literal-based preference criterion for comparing
arguments (called ‘‘lit-priority’’) was presented; this criterion uses
a strict partial order (denoted >) over some distinguished literals
queries CQ1 (a) and CQ2 (b).

Fig. 5. Arguments considered as part of dialectical analysis showed in Fig. 4(a) and (b).

8254 J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258
used in arguments: L > L0 means that the literal L is preferred to the
literal L0. Using lit-priority an argument A will be preferred to an
argument B with respect to a particular order >, iff there are two
literals L12�A and L22�B such that, L1 > L2, and there are no literals
L3 and L4 such that L32�A; L42�B, and L4 > L3. Note that L2�Ameans
that there exists a defeasible rule ðq0 q1; q2; . . . ; qnÞ in
A and L ¼ qi ð1 6 i 6 nÞ.

If a different priority order > among literals is used, then a dif-
ferent literal-based preference criteria can be defined. In our appli-
cation example, we will consider three different preference criteria
based on literals.

� The criterion denoted �sm means that ‘‘the robot will prefer first
smaller boxes, then boxes near itself, and in the last case boxes near
to the store’’.
� The criterion denoted �nr means that ‘‘the robot will prefer first

boxes near itself, then boxes near to the store, and in the last case
smaller boxes’’.
� The criterion denoted �ns means that ‘‘the robot will prefer first

boxes near to the store, then boxes near itself, and in the last case
smaller boxes’’.

In order to recommend which box the robot should move next, the
following DeLP program will be used.

Pk ¼
stuffed store stored boxesðNumÞ;Num P 3
complex path free boxesðNumÞ;Num P 5

� �
Dk ¼

recommendðBoxÞ betterðBox;OboxÞ
betterðBox;OboxÞ nearer robotðBox;OboxÞ
betterðBox;OboxÞ nearer storeðBox;OboxÞ
betterðBox;OboxÞ smallerðBox;OboxÞ
� betterðBox;OboxÞ nearer robotðObox;BoxÞ
� betterðBox;OboxÞ nearer storeðObox;BoxÞ
� betterðBox;OboxÞ smallerðObox;BoxÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

In Ferretti et al. (2008), a single comparison criterion was used;
instead, here we propose to provide the CRS-server with the pro-
gram ðPk;DkÞ, and the three literal-based criterion described
above. Then, we propose to use a cp-exp to program how to select
dynamically the more suitable comparison criterion depending on
the boxes that are in the environment in that moment. We will
present a cp-exp that implements the following intuition: ‘‘if the
store is stuffed with boxes then use a criterion that prioritizes small
boxes, else if there are several free boxes use a criterion that prioritizes
boxes near the store, otherwise use a criterion that prioritizes boxes
near to the robot’’. This intuition can be captured with the cp-exp
E4 included below. Observe that the literals stuffed_store and com-
plex_path can be derived using strict rules from Pk and both rely on
information that depends on the particular scenario where the
robot is involved.

E4 ¼ ½fstuffed storeg : sm; ½fcomplex pathg : ns;nr��

Recall the scenario depicted in Fig. 6(a) where there are three
boxes at the Store and two free boxes to select: box1 and box2.
The following conditional-preference based query can be used to
ask the CRS-server for a recommendation that considers both the
current scenario and the cp-exp E4 defined above:

CQ4 ¼ ½PðaÞc ; E4; recommendðXÞ�

The contextual information of CQ4 is PðaÞc = {free boxes
ð2Þ; stored boxesð3Þ;nearer robotðbox2; box1Þ;nearer storeðbox1;
box2Þ; smallerðbox1; box2Þg contains the information perceived by
the robot about the environment: there are three boxes at the
Store, two free boxes(box1 and box2), box2 is nearer than
box1; box1 is nearer to the Store than box2, and box1 is smaller than
box2.

To answer CQ4 a CRS-server considers the program
PCQ4 ¼ ðPk [PðaÞc ;DkÞ as the result of adding the elements of PðaÞc

as facts to the program stored in the server. Observe that
stuffed store is strictly derived from PCQ4 using one strict rule from
Pk and the literal stored boxesð3Þ of PðaÞc . Therefore the evaluation
of the cp-exp E4 from PCQ4 results in the selection of the preference
criterion �sm, which prefers to pick small boxes first.

Below, in Fig. 7 we present the dialectical trees that are build for
the query CQ4 from the program PCQ4 considering the preference
criterion �sm. Observe that there are three trees, the first and the
second trees correspond to arguments for recommending box1
(i.e., X ¼ box1), and third one to the argument for recommending
box2 (i.e., X ¼ box2). Since there is at least one dialectical tree for
recommendðbox1Þ that have the root node marked as U (unde-
feated), then the answer to CQ4 will be YES, with X ¼ box1.

Therefore, in this scenario, due to the selected preference crite-
rion �sm, the RS-server warrants the recommendation for selecting
box1 first. Next, we will show that in a different scenario, like the
one described in Fig. 6(b), because the contextual information is
different, the same cp-exp E4 will perform differently and it will
return a different preference criterion.

Consider now the scenario depicted in Fig. 6(b) where there is
one box at the Store and two free boxes to select: box1 and box2.
The conditional-preference based query CQ5 that we show below

Fig. 6. Two scenarios of the robotic environment.

Fig. 7. Dialectical trees built to answer CQ4.

Fig. 8. Dialectical trees built to answer CQ5.

J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258 8255
can be used to ask the CRS-server for a recommendation that con-
siders that scenario and the cp-exp E4 defined above:

CQ5 ¼ ½PðbÞc ; E4; recommendðXÞ�

Note that the only difference between this query and CQ4, is the
contextual information. Here, the context is PðbÞc ¼ ffree boxesð2Þ;
stored boxesð1Þ; nearer robotðbox2; box1Þ; nearer storeðbox1; box2Þ;
smallerðbox1; box2Þg. In this case, when evaluating E4 from
PCQ5 ¼ ðPk [PðbÞc ; DkÞ it holds that neither stuffed store, nor
complex path have strict derivations, thus, the selected preference
criterion is �nr . The dialectical trees in Fig. 8 are built from PCQ5

to answer the query.
In this case, since there is at least one dialectical tree for
recommendðbox2Þ that have the root node marked as U (unde-
feated), then the answer to CQ5 will be YES, with X ¼ box2. That
is, in this scenario, due to the selected preference criterion �nr ,
the CRS-server warrants the recommendation for selecting box2
first.
6. Related work

In considering the existing literature, in SubSection 6.1 we dis-
cuss the related work in the area of recommendation systems,
highlighting the contributions of our approach. Next, in

8256 J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258
SubSection 6.2, we analyze the differences of our work with other
approaches that focus on multiple argument preference criteria.
Then, we discuss how conditional expressions are used in the field
of preference representation.

6.1. Works on recommendation systems

As mentioned in Section 1, the integration of argumentation-
based reasoning with recommender systems was done with the goal
of producing reasoned recommendations. Several works of the liter-
ature (Bedi & Vashisth, 2011; Budzynska, Rocci, & Yaskorska, 2014;
Heras et al., 2013; Rajpal et al., 2014) have already applied argumen-
tation methods to recommendation systems. Recently, Bedi and
Vashisth (2015), have presented an interest-based recommender
system (IBRS) for personalization of recommendations; IBRS consid-
ers user’s preference and employs argumentation to generate sug-
gestions. The use of argumentation allows these systems to reason
about the underlying interests behind user’s personal preferences,
and helps to resolve conflicts (using preferences) between the rec-
ommendations with convincing arguments. The originality of this
approach lies in that the framework considers the behavior of a
group of agents, which work collectively, and these agents have
argumentative dialogues to revise the user’s model and improve
upon current recommendations. Clearly, integrating our proposal
to IBRSs will add several interesting characteristics to this type of
systems. If the recommender system is a CRS-server, then the user
could interact directly with the inference engine. The
DeLP-program rules could model recommendation aspects which
could be modified by the user during the revision phase.
Incorporating qualitative approaches for comparing arguments is
another useful characteristic for IBRSs since it provides users with
a natural and easy way of understanding how the recommendations
are obtained. Despite sharing the motivation of generating convinc-
ing recommendations to a final user, we do not focus on constructing
a formalism exclusively for recommender systems, indeed we gener-
alize our proposal to argumentation-based user support systems
improving aspects of these systems such as transparency (in infer-
ence process), flexibility (for changing their preference behaviors),
and reliability (in their answers).

In Briguez et al. (2013), the authors present an argumentative
trust-based news recommender systems. Their systems is centered
in a set of postulates that capture the intuitions behind user’s trust
obtained from interactions of news sources, reports, topics, and
viewers. Like us, they use DeLP as the qualitative reasoning mech-
anism to infer the recommendations, and their recommender sys-
tem uses a DeLP-program with defeasible rules, where each rule
models a postulate; nevertheless, unlike our approach, in their sys-
tem the comparison criteria is fixed. They use as comparison crite-
rion generalized specificity (see García & Simari (2004)), which
prefers more precise argument (i.e., with greater information con-
tent) or a more concise arguments (i.e., with less use of rules).
Since they want to establish a particular preference among the
postulates, they codify the defeasible rules in such a way that this
fixed criterion will capture those preferences. This can lead to com-
plications if the user wants to change the preferences among these
postulates, since this change will require a complete revision of
every rule DeLP-program to adapt them to the fixed criterion. In
contrast, in our approach it would not be necessary to modify
the DeLP-program, because the user can select the most appropri-
ate comparison criterion that captures the desired preference
among the rules that model the postulates simply by using
cp-exp. A similar situation arises in Briguez et al. (2014), where
an argumentative movie recommender system is proposed,
because they use a fixed comparison criteria to establish the pref-
erences among the defeasible rules that model their postulates.
The authors of both works recognize the importance of changing
the preferences among their postulates or introducing new postu-
lates (which requires a revision of the postulates preference order-
ing); therefore, our proposed mechanism can provide a useful tool
to improve these argumentative recommender systems.

In Tucat et al. (2009) a particular implementation of recom-
mender systems, based on DeLP-servers, called recommender ser-
ver (re-server) was developed; there, the authors focused on the
definition of different types of contextual queries that a re-server
can solve. The first type of query, the regular contextual query
allows the clients to send a query to the server adding a specific
context. The second type, called multiple contextual query, pro-
vides the clients with the facility of grouping several regular con-
textual queries in just one message. The third type of query is a
particular case of previous query consisting of a sequence of
queries with only one context (see Tucat et al. (2009) for further
details). Finally, the authors define the notion of contextual inter-
rogation which is a generalization of the other tree queries where
the context modifications effected over the server by the queries
may remain for subsequent queries of the same message. In a sim-
ilar development, our proposal is based on DeLP-servers; neverthe-
less, in contrast with us, they use a preference criterion embedded
into the DeLP-interpreter, i.e., to answer a query, the server is con-
figured to use always the same criterion. In fact, we provide clients
with the possibility of indicating to the server what criterion could
use at the moment of computing the answer for a specific query;
consequently, the criterion used by server varies dynamically. A
interesting characteristic of our model is that the different types
of queries proposed in Tucat et al. (2009) could be extended incor-
porating the conditional expression introduced here.

6.2. Works on argumentation

Handling multiple preference criteria has not been widely stud-
ied in the argumentation literature (Kaci, 2011). In Amgoud,
Parsons, and Perrussel (2000) an approach to reason from multiple
preference relations was proposed. Their main contribution is to
take into account several pre-orderings on the same knowledge
base. These different pre-orderings are given by the notion of con-
textual preference, i.e., preferences which depend upon a particu-
lar context. Each preference relation between arguments is
induced from a pre-ordering expressed in a particular context. To
determine the acceptable arguments, the set of preference rela-
tions is linearly ordered using another preference relation.
Similarly to them, our proposal takes into account several prefer-
ence relations between arguments by means of the different argu-
ment preference criteria considered by a server, notwithstanding,
there are several differences between them. First, our approach is
focused on structured argumentation, while theirs is based on
abstract argumentation. Second, our aim is not the handle incon-
sistency considering several preference criteria together, but to
introduce a tool where users can take part of the inferential process
indicating the criterion upon which the reasoning system will base
its answers. In Amgoud et al. (2000) there is no specific tool for the
user to specify which preference relation to use. In our approach
user’s preferences play an important role in the choice of a partic-
ular argument preference criterion.

In Amgoud, Bonnefon, and Prade (2005), an argument based
approach to multi-criteria decision making was presented. In this
work arguments supports decisions; the idea is that a decision
has some justification if it leads to the satisfaction of some decision
policy. A decision policy may be satisfied either in a positive way (if
the satisfaction degree is higher than the neutral point of a given
scale) or in a negative way (if the satisfaction degree is lower than
the neutral point of the given scale). Thus, the force of an argument
depends on three components: the certainty level of the argument,
the importance degree of the choice policy which is evaluated for

J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258 8257
the decision supported by that argument, and the (dis) satisfaction
degree of that policy. These three components are used as argu-
ment preference criteria for their abstract argumentation system.
In contrast, our approach is focused on considering several prefer-
ence criteria, but in a structured argumentation setting. The main
difference is that they do not specify how their argument prefer-
ence criteria are chosen. Given this consideration, the conditional
expressions presented here could be useful to model tools that
allow users to change these criteria and principles in decision sup-
port systems using the approach proposed in Amgoud et al. (2005).

In the decision making literature there are works focused on the
association of conditions to user’s preferences (Boutilier, Brafman,
Hoos, & Poole, 1999; Li, Vo, & Kowalczyk, 2011); however, this
association differs from the way in which is proposed in our
approach. In Boutilier et al. (1999), an approach was proposed
where the preference is subject to conditional dependence. A pref-
erence relation is defined as a total preorder (a ranking) over some
set of variables such that the preference over the values of one
variable depends on the value of others. Their main contribution
is a graphical representation of preferences that reflects condi-
tional dependence and independence of preference statements
under a ceteris paribus (all other things being equal) interpretation.
Similarly to us, the authors present a model for representing and
reasoning with the user’s preferences, where conditional prefer-
ence expressions are allowed; but, contrariwise, they provide a
framework where the preferences are considered for decision mak-
ing where the space of possible actions or decisions available to
someone is fixed, with well-understood dynamics. In our frame-
work the situation is different, i.e., the selected application
domains are dynamic and agents deal with incomplete and contra-
dictory information; for that reason, our research is focused on
argumentative systems that can handle this type of epistemic
state. In fact, it is also important to remark that in contrast with
them, we use conditional expressions to be able to choose, in a
declarative way, the way used by the server for comparing
arguments.

A conditional expression is a structure commonly used in the
literature of computation science. For instance, Dijkstra in
Dijkstra (1975) suggested different forms of selection and loop
structures. In order to provide control statements to be supported
by programs, Dijkstra introduces a guarded command language,
where a guard allows a statement to be execute only when a spec-
ified condition is true. Guards in cp-exp can be related to the work
in Dijkstra (1975); however, in there they are used for a different
purpose. Here, they constitute the central structure that the
DeLP-interpreter can use to obtain the argument preference crite-
rion that it will use in the inference process.
7. Conclusions and future work

The use of argumentation-based reasoning engines provides
useful advantages in the implementation in a variety of user sup-
port systems such as expert systems, systems for automated nego-
tiation, recommender systems and decision support systems (see
for instance, Amgoud & Prade (2009), Chesñevar et al. (2009,
chap. 20), Ferretti et al. (2008), Monteserin & Amandi (2011),
Bedi & Vashisth (2015), Briguez et al. (2013, 2014)). As pointed
out in the literature, having different argument comparison criteria
available introduces an interesting degree of flexibility in these
systems; however, in most of the proposed systems, the compar-
ison criterion is either a fixed component or, if there exist multi-
plicity of criteria at the user disposal, there exist no way of
changing it once a criterion is chosen. The contribution of our
approach aims to offer an improvement in current systems, provid-
ing a concrete programmable mechanism for the user to select the
comparison criteria, and a formalization of the semantics for the
interaction of such mechanism with the elements of the system.
In particular, the conditional-preference based query, introduced
in Section 3, and the formalization introduced in Section 4, are
two of the main strengths of this proposal.

An important advantage of introducing argumentation in a rec-
ommender system is to provide more transparency to the recom-
mendation inference process. In particular, argumentation
contributes the user confidence and trust on the system answers
by giving explanations about the reasons favouring a recommen-
dation and the reasons against it (Chesñevar et al., 2009, chap.
20; Tintarev & Masthoff, 2007). As we have explained, argument
comparison criteria have an important role in this regard, since
they determine which arguments (reasons) are preferred when
conflicts arise; in other words, the comparison criterion used for
making a recommendation should be part of that explanation.
Our proposal introduces more clarity about that aspect, which as
yet has not been the focus of the existing argumentative recom-
mender systems. The formalism presented here allows the user,
via a conditional-preference expression, to select the comparison
criteria bringing about important benefits by clarifying the recom-
mendation process. As we have shown in Section 5, this provides
the user with insights about the information that will be priori-
tized in the reasoning process; in this sense, a recommendation
is more compelling if the user, besides been aware of reasons,
can understand why a reason is preferred over others. In the same
section, we discussed how the user can guide the recommendation
process according to its current preferences or needs, and this
guidance can be clearly seen in the dialectical trees produced for
a given recommendation. Thus, the proposed mechanism con-
tributes to augment the trust of the user on the recommendations
provided by the system.

In Section 4, we introduced a tree representation for
conditional-preference expressions which provided ways to anal-
yse several properties of such expressions. These properties are
useful to identify when an expression can be optimized to avoid
the computation of redundant inferences and characterizing when
certain paths in the expressions will not be traversable. Also, using
these results we have characterized whether an expression is
sound, i.e., the expressions where every path to a criterion can be
traversed. These properties are of special interest in our formalism
since they allow to construct valid expression, i.e., expressions
maintaining relations coherent between guards that justify the
choice of a particular criterion.

As for future work, there are several lines of research already
under consideration and others that we plan to follow. Also we
are interested in studying new developments to tackle the limita-
tions that we discuss in the following paragraphs.

In the formalism we have introduced is possible to specify a
comparison criterion that can be seen as a combination of two or
more criteria; however, our system does not provide a systematic
way of doing this combination. For that, we can follow the
approach proposed in Briguez et al. (2014) or in Deagustini et al.
(2012), where a combination of two criteria (rule priority and gen-
eralized specificity) are handled by the systems as it were a single
criteria. This, ad hoc and fixed solution presents several limitations
regarding the extendibility and the modularity of the system, since
changing one of the involved criteria, or the way in which they are
combined, requires to revise the whole composed criterion. To pro-
vide a systematic solution to this limitation, as a future work, it
would interesting to study special operators to combine compar-
ison criteria and how these can be integrated with the conditional
expressions that we have proposed in this article.

As we have mentioned, our proposal has an impact in
multi-agent systems; however, we were not focused in achieving
optimization regarding the time efficiency of the query answering

8258 J.C.L. Teze et al. / Expert Systems with Applications 42 (2015) 8243–8258
process. There are several aspects of the process that can be stud-
ied in this regard: the argumentative dialectical process, the cli-
ent–server interaction overhead, the knowledge revision made by
the server with each query and the sequential processing (among
others). For instance, the notion of multiple-contextual queries
presented in Tucat et al. (2009) could be integrated to our
approach in order to avoid the overhead of sequential processing.
In particular, our conditional preference based queries could be
extended to include several queried literals, which should be
answered using the same cp-exp and the same context.

Finally, one of our future goals is to broaden the presented
framework considering alternatives in the evaluation of the satis-
faction of a guard, possibly using the notion of defeasible deriva-
tion or the notion of warrant. It is also interesting to note that
cp-exps could be optimized, avoiding in that manner certain inco-
herence or contradictory situations, here we have studied just
the case where repeated literals could not appear.

Acknowledgments

This research was funded by PGI-UNS (Grants 24/N035,
24/N030) and PIP-CONICET (Grant 112-201101-01000).

References

Amgoud, L., Cayrol, C., & Berre, D. L. (1996). Comparing arguments using preference
ordering for argument-based reasoning. In Eighth International conference on
tools with artificial intelligence, ICTAI’96 (pp. 400–403). Toulouse, France,
November 16–19.

Amgoud, L., Parsons, S., & Perrussel, L. (2000). An argumentation framework based
on contextual preferences. In Proceedings of the 3rd International Conference
on Formal and Applied Practical Reasoning, FAPR ’00, 2000 (pp. 59–67).

Amgoud, L., Bonnefon, J.- F., & Prade, H. (2005). An argumentation-based approach
to multiple criteria decision. In symbolic and quantitative approaches to reasoning
with uncertainty, 8th European conference, ECSQARU 2005 (pp. 269–280).
Barcelona, Spain, July 6–8, Proceedings.

Amgoud, L., & Prade, H. (2009). Using arguments for making and explaining
decisions. Artificial Intelligence, 173, 413–436.

Antoniou, G., Maher, M. J., & Billington, D. (2000). Defeasible logic versus logic
programming without negation as failure. Journal of Logic Programming, 42,
47–57.

Bedi, P., & Vashisth, P. (2011). Interest based recommendations with
argumentation. Journal of Artificial Intelligence, ANSI, 119–142.

Bedi, P., & Vashisth, P. B. (2015). Argumentation-enabled interest-based
personalised recommender system. Journal of Experimental & Theoretical
Artificial Intelligence, 27, 199–226.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems
survey. Knowledge-Based Systems, 46, 109–132.

Boutilier, C., Brafman, R. I., Hoos, H. H., & Poole, D. (1999). Reasoning with
conditional ceteris paribus preference statements. In Proceedings of the fifteenth
conference on uncertainty in artificial intelligence UAI’99 (pp. 71–80). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Briguez, C. E., Budán, M. C. D., Deagustini, C. A. D., Maguitman, A. G., Capobianco, M.,
& Simari, G. R. (2014). Argument-based mixed recommenders and their
application to movie suggestion. Expert Systems with Applications, 41,
6467–6482.

Briguez, C. E., Capobianco, M., & Maguitman, A. G. (2013). A theoretical framework
for trust-based news recommender systems and its implementation using
defeasible argumentation. International Journal on Artificial Intelligence Tools, 22.

Budzynska, K., Rocci, A., & Yaskorska, O. (2014). Financial dialogue games: A
protocol for earnings conference calls. In Computational models of argument –
Proceedings of COMMA 2014 (pp. 19–30), Atholl Palace Hotel, Scottish Highlands,
UK, September 9–12.
Chesñevar, C. I., & Simari, G. R. (2007). A lattice-based approach to computing
warranted beliefs in skeptical argumentation frameworks. In IJCAI 2007,
proceedings of the 20th international joint conference on artificial intelligence
(pp. 280–285), Hyderabad, India, January 6–12.

Chesñevar, C., Maguitman, A. G., & González, M. P. (2009). Empowering
recommendation technologies through argumentation. Argumentation in
artificial intelligence (pp. 403–422). Springer.

Deagustini, C. A. D., Dalibón, S. E. F., Gottifredi, S., Falappa, M. A., & Simari, G. R.
(2012). Consistent query answering using relational databases through
argumentation. In Database and expert systems applications – 23rd
international conference, DEXA 2012. Proceedings, Part II (pp. 1–15), Vienna,
Austria, September 3–6.

Deagustini, C. A. D., Fulladoza Dalibón, S. E., Gottifredi, S., Falappa, M. A., Chesñevar,
C. I., & Simari, G. R. (2013). Relational databases as a massive information source
for defeasible argumentation. Knowledge-Based Systems, 51, 91–109.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18, 453–457.

Ferretti, E., Errecalde, M., García, A. J., & Simari, G. R. (2008). Decision rules and
arguments in defeasible decision making. In Computational models of argument:
Proceedings of COMMA 2008 (pp. 171–182), Toulouse, France, May 28–30.

García, A. J., Chesñevar, C. I., Rotstein, N. D., & Simari, G. R. (2013). Formalizing
dialectical explanation support for argument-based reasoning in knowledge-
based systems. Expert Systems with Applications, 40, 3233–3247.

García, A. J., & Simari, G. R. (2014). Defeasible logic programming: Delp-servers,
contextual queries, and explanations for answers. Argument & Computation, 5,
63–88.

García, A. J., Rotstein, N. D., Tucat, M., & Simari, G. R. (2007). An argumentative
reasoning service for deliberative agents. In Knowledge science, engineering and
management, second international conference, KSEM 2007. Proceedings (pp. 128–
139). Melbourne, Australia, November 28–30.

García, A. J., & Simari, G. R. (2004). Defeasible logic programming: An argumentative
approach. Theory and Practice of Logic Programming (TPLP), 4, 95–138.

Godo, L., Marchioni, E., & Pardo, P. (2012). Extending a temporal defeasible
argumentation framework with possibilistic weights. In Logics in artificial
intelligence – 13th european conference, JELIA 2012. Proceedings (pp. 242–254),
Toulouse, France, September 26–28.

Heras, S., Atkinson, K., Botti, V., Grasso, F., Julián, V., & McBurney, P. (2013). Research
opportunities for argumentation in social networks. Artificial Intelligence Review,
39, 39–62.

Kaci, S. (2011). Working with preferences: Less is more. Cognitive technologies.
Springer.

Li, M., Vo, Q. B., & Kowalczyk, R. (2011). Majority-rule-based preference aggregation
on multi-attribute domains with cp-nets. In Proceedings of the tenth
international joint conference on autonomous agents and multi-agent systems
(AAMAS) (pp. 659–666).

Martinez, M. V., García, A. J., & Simari, G. R. (2012). On the use of presumptions in
structured defeasible reasoning. In Computational models of argument –
Proceedings of COMMA 2012 (pp. 185–196), Vienna, Austria, September 10–12.

Monteserin, A., & Amandi, A. (2011). Argumentation-based negotiation planning for
autonomous agents. Decision Support Systems, 51, 532–548.

Prakken, H., & Sartor, G. (1997). Argument-based extended logic programming with
defeasible priorities. Journal of Applied Non-Classical Logics, 7, 25–75.

Rahwan, I., & Simari, G. R. (2009). Argumentation in Artificial Intelligence (1st ed.).
Springer Publishing Company, Incorporated.

Rajpal, A., & Khurana, P. (2014). Visualization in argument based recommender
system. International Journal of Computer Science & Information Technologies, 5.

Simari, G. R., & Loui, R. P. (1992). A mathematical treatment of defeasible reasoning
and its implementation. Artificial Intelligence, 53, 125–157.

Tang, Y., Hang, C.- W., Parsons, S., & Singh, M. P. (2012). Towards argumentation
with symbolic dempster-shafer evidence. In Computational models of argument –
Proceedings of COMMA 2012 (pp. 462–469). Vienna, Austria, September 10–12.

Tintarev, N., & Masthoff, J. (2007). A survey of explanations in recommender
systems. In Proceedings of the 23rd international conference on data engineering
workshops, ICDE 2007 (pp. 801–810). 15–20 April 2007. Istanbul, Turkey.

Tucat, M., Garcia, A. J., Simari, G. R. (2009). Using defeasible logic programming with
contextual queries for developing recommender servers. In AAAI Fall
Symposium. The Uses of Computational Argumentation AAAI Technical Report.
AAAI.

Vreeswijk, G. (1997). Abstract argumentation systems. Artificial Intelligence, 90,
225–279.

http://refhub.elsevier.com/S0957-4174(15)00450-9/h0020
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0020
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0025
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0025
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0025
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0030
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0030
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0035
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0035
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0035
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0040
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0040
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0045
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0045
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0045
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0045
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0050
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0050
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0050
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0050
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0055
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0055
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0055
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0070
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0070
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0070
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0080
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0080
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0080
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0085
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0085
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0095
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0095
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0095
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0100
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0100
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0100
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0110
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0110
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0120
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0120
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0120
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0125
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0125
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0140
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0140
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0145
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0145
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0150
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0150
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0155
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0155
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0160
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0160
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0180
http://refhub.elsevier.com/S0957-4174(15)00450-9/h0180

	Improving argumentation-based recommender systems through context-adaptable selection criteria
	1 Introduction
	2 Preliminaries
	3 Conditional-preference based Reasoning Server
	4 Evaluation of conditional-preference expressions
	4.1 Tree representation

	5 Computing answers
	5.1 Warranting queries
	5.2 Application example
	5.3 Application example in a mobile robotic environment

	6 Related work
	6.1 Works on recommendation systems
	6.2 Works on argumentation

	7 Conclusions and future work
	Acknowledgments
	References

