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Metaheuristics algorithms are widely recognized as one of most practical approaches for combinatorial
optimization problems. One the most interesting areas of application are the power systems. In particu-
lar, Distribution Systems planning and operation. This paper presents some metaheuristics approaches to
solve a typical combinatorial optimization problem: the Phase Balancing in Low Voltage Electric
Distribution Systems. A model supported in Linear Integer-Mixed Programming is presented, to observe
and discussing its limitations. From this, is introduced a new metaheuristic, called Fuzzy Evolutionary
Particle Swarm Optimization, based in the Swarm Intelligence Principles and Evolution Strategies, which
is extended to fuzzy domain to modeling a multi-objective optimization, by mean of a fuzzy fitness func-
tion. A simulation on a real system is presented, and advantages of this approach respect to the Classical
Simulated Annealing and Particle Swarm metaheuristics, selected between the most representatives, are
evidenced.
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Introduction

Metaheuristics algorithms are widely recognized as one of more
practical and success approaches to solve combinatorial problems
[1–3]. However, the original formulations have been oriented to
mono-objective optimizations. Many proposal of extensions to
multi-objective domain have been established, but each formula-
tion has showed particular advantages and limitations, in general,
over certain kind of problems. Such is the case of Phase Balancing
in Low Voltage Electric Distribution Systems (LVEDS), when a clas-
sic programming approach is not addressed to solve it. The balance
is referred to the loads in the feeders of a LV network in an EDS. The
classic approach, has demonstrated significant limitations, as will
be discussed. For this reason, a metaheuristic approach is an alter-
native that may produce very good results.

There are a significant number of metaheuristics, such as Tabu
Search (TS) [4], Simulated Annealing (SA) [5], Ant Colony Optimiza-
tion (ACO) [6] and Particle Swarm Optimization (PSO) [7,8], that
have been proposed to solve specific combinatorial problems, with
a great success. However, there are two aspects that remain in dis-
cussion: (a) How model a best multi-objective metaheuristic and
(b) How design a self-adaptive metaheuristic, with the less number
of external parameters as possible (if were possible, none). This
paper presents a new multi-objective metaheuristic, called Fuzzy
Evolutionary Particle Swarm Optimization (FEPSO), which results
can to drive towards a general model, capable to overcome the
two aspects mentioned. The problem of Phase Balancing, under a
multi-objective formulation, is, then, considered to simulations
with the aim of comparing the performance of FEPSO with respect
to a classical metaheuristic. Among the most representative meta-
heuristics was selected Simulated Annealing (SA), which will be
extended to the fuzzy domain to define a multi-objective version
of SA, that will be called FSA. The selection of SA is not arbitrary,
but respond to fact of to separate two strategies very different that
can be observed in the metaheuristics algorithms: in the first, that
supported SA, the evolution of the solution algorithm, is simulated
using probabilistic sampling techniques, supported by successive
generation of states of energy, corresponding to solutions of the
combinatorial optimization. In the second, that supported FEPSO,
such evolution is based in the denominated Swarm Principles.
These concepts will be presented in section ‘The metaheuristics
simulated annealing and Particle Swarm Optimization’.
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Fig. 1. Single phase loads and balance by phase swapping in some loads.
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The work is organized as follows: in section ‘The Phase Balanc-
ing problem in Low Voltage Feeder System’, the problem of Phase
Balancing is presented. It discussing the no desired effects of a high
unbalance degree on the LV feeders system. A model supported in
Linear Integer-Mixed Programming is presented, to observe and
discussing its limitations. Then, a multi-objective formulation for
the problem, according with the purpose of simulations by meta-
heuristics algorithm, is presented. In section ‘The metaheuristics
simulated annealing and Particle Swarm Optimization’, the essen-
tial of the metaheuristics SA and PSO, are described. In section ‘The
metaheuristic Evolutionary Particle Swarm Optimization (EPSO)’,
the first approach towards the contribution of this paper, the meta-
heuristic Evolutionary Particle Swarm Optimization (EPSO), is pre-
sented. Section ‘Static fuzzy decision and fuzzy fitness function’ is
focused in the formulation of a fuzzy fitness function, supported in
the static decision-making in fuzzy environment principle, formu-
lated by Bellman and Zadeh [9]. From this, in section ‘Simulation
on the real LV feeder system’, the multi-objective metaheuristics
FSA and FEPSO, in the specific context of Phase Balancing problem
considered in section ‘The Phase Balancing problem in Low Voltage
Feeder System’, are introduced. Finally, in section ‘Simulation on
the real LV feeder system’, a simulation of the two fuzzy meta-
heuristics on the same real LV feeders system is presented, and
its results are compared and discussed. In section ‘Conclusions’,
the most important conclusions of this work, are presented.

The Phase Balancing problem in Low Voltage Feeder System

The most LV networks of an EDS are three-phase systems. Feed-
ers loads in a LV network, for low incomes residential areas, are
commonly single-phase. Original feeders system design, depends
on accuracy of the given load data, there always will be certain
unbalance degree and it must be as low as possible.

There are, in general, two options for Phase Balancing: (a) feed-
ers reconfiguration at the system level and (b) phase swapping at
the feeder level. The option (b), phase swapping, is a direct and
effective way to balance a feeder in terms of phases, and this
method will be considered in this work. For the purpose of this
paper, LV feeders system will have only single-phase loads. A for-
mulation to the general problem of Phase Balancing, in this con-
text, considering, without loss of generality, only one feeder
(principal), can be expressed as follows:

Min LossT ; IðDuÞ; I½o�
��� ���

f

� �
ð1Þ

Subject to:

I½R�
��� ���

f
6 IMax ð2Þ

I½S�
��� ���

f
6 IMax ð3Þ

I½T�
��� ���

f
6 IMax ð4Þ

where the subindex f, refers the output of substation connected to
the principal feeder of the system; LossT indicates the total active
power loss of system and IðDuÞ is an index that depends of voltage

drops. I½o�
��� ���

f
is the homopolar component of the unbalance intensi-

ties system, that satisfy the equation:

I½R�
��� ���

f
þ I½S�
��� ���

f
þ I½T�
��� ���

f
¼ 3� I½0�

��� ���
f

ð5Þ

If the system is balanced, then I½0�
��� ���

f
¼ 0.

The subindex ½R�; ½S� and ½T�, represent each phase of system. In
addition, three constraints are imposed: the intensities in each
phase at the output, must be less than the phase line capacity,
IMax, Eqs. (2)–(4). The problem can be seen as a set of swapping sin-
gle phase loads or a load assignment to lines. For example, a single
phase load can only be assigned to either phase ½R�; ½S� or ½T� (see
Fig. 1). This assignment should be executed until the objectives
(1) are satisfied. This problem is clearly combinatorial: if there
are 3 phases and n loads that can be swapping, then the number
of states of search space for the solution, is 3n.

An approach from mathematical programming supported in linear
Mixed-Integer Programming

The MIP (Mixed-Integer Programming) model, was presented in
[10], and its formulation, to the context of this work, can be stated
as follows:

Min
X
j

pj � Uj

( )

Subject to :

Uj ¼ Max
X
j

I½R�f � I½T�f
��� ���; I½S�f � I½T�f

��� ���; I½R�f � I½S�f
��� ���

( )
ð6Þ

I½U�j ¼
X
k

I½U�k þ
X
w

d½U�i w � I½U�i w ð7Þ
X
w

d½U�i w ¼ 1; 8½U� 2 fR; S; Tg ð8Þ
X
w

d½U�i w ¼ 1; 8½w� 2 ½1 . . .nL� ð9Þ

I½U�j 6 IMax j ð10Þ
d½U�i w 2 f0;1g; 8½i;U� ð11ÞX
j

pj ¼ 1; 8½j� 2 ½1 . . .nB� ð12Þ

From Eq. (6), in the context of this work, it is intend to assign
the single-phase loads to the conductors (phases) such that in each
branch j, the maximum difference in magnitude between the
intensities (taken in pairs of phases), be a minimum. Then Uj

becomes in a measure of unbalance degree per branch. To com-
plete the objective, a convex set of weights, indicated as pj, is exter-
nally fixed, by the decision-maker, and, this way, the most simple
multi-objective linear programming formulation is proposed. pj is
a subjective value that reflex the importance of unbalance degree,
Uj, in the branch j of feeder system. The remaining symbols have

the following meaning: U is the phase in fR; S; Tg; d½U�i w is a decision
variable, (binary) in f0;1g, for w-th load connected to phase U at
node i; nL is the number of loads; nB is the number of branches;
IMaxj is the phase line capacity of branch j. In this formulation, Eq.
(7) represents the Kirchhoff Law of current at the node i; Eqs. (8),
(9) and (11) ensure that each load has assigned (or is connected
to) only one phase; the Eq. (5) is the line capacity constraint, and
the Eq. (12) is the convex set of branch-weights constraint.

This model has three major limitations: (a) The problem is not
linear and its linearization is valid only if the load characteristics
are constant-current. In the most real systems, this condition is
not observable, (b) the model require the subjective weights, pj,
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which is a poor approach to search a global minimum in the objec-
tives functions formulated in (1). Is probably that the ‘‘optimal
solution” reached from this MIP approach, result very far from real
optimum (minimum unbalance degree) and (c) the model ignores
the voltage drops, which is an aspect that must be had into account
to improve the quality of service (under regulation control).

The metaheuristics simulated annealing and Particle Swarm
Optimization

Simulated Annealing (SA)

The concept of Simulated Annealing in combinatorial optimization
was introduced by Kirkpatrick [11]. SA appears like a flexible meta-
heuristic that is an adequate tool to solve a great number of combina-
torial optimization problems. It is motivated by an analogy to
annealing in solids. The Metropolis algorithm simulated the cooling
of material in a heat bath. This is the process know as annealing. Con-
sists on two steps: (a) the temperature is raised to a state of maxi-
mum energy and (b) the temperature is slowly lowered until a
minimum energy state, equivalent to thermal equilibrium, is reached.
The structural properties of system, depends on the rate of cooling. If
it is cooled slowly enough, large crystals will be formed. However, if
the system is cooled quickly, the crystals will contain imperfections.
Metropolis’s algorithm simulated thematerial as a system of particles.

In order to more clearly explain the SA metaheuristic, is possi-
ble present an analogy between a physical system, with a large
number of particles, and a combinatorial problem. This analogy
can be stated as follows:

The solutions of combinatorial problem are equivalent to the
physical system states.
The attributes of solutions are equivalent to the energy of dif-
ferent states.
The control parameter in the combinatorial problem is equiva-
lent to the temperature of physical system.

The evolution of the solution algorithm is simulated using prob-
abilistic sampling techniques, supported by successive generation
of states. This process begins with an initial state, i, evaluated by
an energy function, EðiÞ. After generating and analyzing a second
state, j; EðjÞ, it is performed an acceptation test. The acceptance of
this new solution, j, depends on a probability computed by:

pðaccept jÞ ¼ 1; if EðjÞ 6 EðiÞ
e
EðjÞ�EðiÞ

c ; if EðjÞP EðiÞ

(
ð13Þ

where c is a positive real number, c ¼ kB � T; kB is a constant (called
Boltzmann constant, in Metropolis’s Algorithm) and T is a tempera-
ture of system.

A procedure is defined, in pseudo-code, as follows:

Minimize the function f(i) for i on S (Search Space)
Begin Procedure SA
1. set starting point i ¼ i0
2. set starting temperature T ¼ T0 and cooling rate: 0 < a < 1;
3. set NT (number of trials per temperature);
4. while stopping condition is not satisfied do
5. for k 1 to NT do
6. generate trial point j from Si using q(i, j);
7. accept j with probability p(accept j) (Eq. (13));
8. end for
9. reduce temperature by T  T � a;
10. end while
End Procedure SA
Si is a Neighborhood of solution i: is a set of discrete points j sat-
isfying j 2 Si () i 2 Sj. The generation function of Si is qði; jÞ defined
externally.
Swarm Intelligence (SI)

Swarm Intelligence refers a type of artificial intelligence, based
on the collective behavior of self-organized systems. The expression
was introduced by Gerado Beni, in 1989 [8]. There are five Swarm
Intelligence Principles that have been recognized as the fundamen-
tal of optimization strategies: (a) Proximity: The swarm should be
able to perform simple calculation of space and time. (b) Quality:
promotes the swarm ability to respond to factors that improve the
fitness of individuals in the space of solutions. (c) Diversity of
Response: promotes the possibility of different responses of individ-
uals, to the same stimuli. (d) Stability: The swarm should be stable
in the absence of stimuli that induce improvements in the solutions
reached. (e) Adaptation: It is a complementary aspect to the Stabil-
ity, because the swarm should adapt to any change that causes an
improvement in the fitness of its solutions.

Classical PSO
The Swarm Intelligence is adopted by Particle Swarm Optimiza-

tion metaheuristic, (PSO) [7,8] that rely on a following concepts:
mimicking zoological behavior, imitating the collective or social
behavior of animals swarms, flocks or schools, a set of particles
evolves in the search space motivated by three factors, called habit,
memory and cooperation. The first factor impels a particle to follow
a path along its previous movement direction. It is frequently
called the inertia factor. The second factor influences the particle
to come back on its steps (i.e., to tend to go back to the best posi-
tion it found during its life). The third factor (related with to infor-
mation exchange), induces the particle to move closer to the best
point in the space, found by the collective of all particles in its fam-
ily group. Analogy between Particle Swarm and Combinatorial
Problem is easy to see, establishing a correspondence between
the position of particle and a solution in the search space.

In the Classical PSO, one must have, at a given iteration, a set of
solutions or alternatives called ‘‘particles”.

From one iteration to the following, each particle, i, moves
according to a rule that depends on the three factors described
(habit, memory and cooperation). In addition, each particle of swarm
keep the record of the best point found in its past life, bi, and the
record of the current global best point found by the swarm, bG. Then,
the PSO Movement Rule, sates that (X;V , bi and bG are vectors):

XNew
i ¼ Xi þ VNew

i � Dt ð14Þ
and if Dt is adopted as 1 (t is a discrete variable that indicates the
iteration number, and Dt indicates the iterative incremental step):

XNew
i ¼ Xi þ VNew

i ð15Þ
where Vi is called the velocity of particle i, and is defined by the
equation, referred as Canonical PSO:

VNew
i ¼ Vi þ rnd1 �wM � ðbi � XiÞ þ rnd2 �wC � ðbG � XiÞ ð16Þ

For this version, a typical selection of constants, are: wM ¼ wC ¼ 2.
An small alteration, and most common to observe, is the form

called with Inertial Weight:

VNew
i ¼ wI � Vi þ rnd1 �wM � ðbi � XiÞ þ rnd2 �wC � ðbG � XiÞ

ð17Þ
And for this version, a typical selections of constants, are:
0:4 6 wI 6 0:8 and wM ¼ wC ¼ 2.

The dimension of vectors is the number of decision variables.
The first term of (17), represents the inertia or habit of the particle:
keeps moving in the direction it had previously moved. The second



bit

bGt

vi
Gt

d1

vh
Gt

d2

pi

Xi
t

vbi

vi
t

Xi
t+1

pj

Xj
t

vj
bt

vj
Gt

vj
t

Xj
k+1

bjt
bht phXh

t
vh

bt

vh
t

Xh
t+1

Fig. 3. Three particles of PSO moving in two dimensions.
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term, represents the memory: the particle is attracted to the best
point in its trajectory-past life, bi. The third term represents the
cooperation or information exchange: the particle is attracted to
the best point found by all particles, bG. The parameters wI; wM

and wC are weights fixed in the beginning of process; rnd1 and
rnd2 are random numbers sampled from a uniform distribution
Uð0;1Þ. The movement of a particle is represented in Fig. 2. The
movement rule is applied iteratively, until either of two conditions
occurs: there are no changes in the global best, bG or the number of
iterations reaches a limit. It can be seen that the PSO meets, from
the equations of Movement (15) and Velocity (16), the five Swarm
Intelligence Principles.

Modifications on Classical PSO
There are some variations on Classical or Canonical form of PSO.

The most important are discussed briefly in this section.

(A) PSO with Inertia Function: in this form, the velocity operator
is modified introducing a function decreasing with the pro-
gress of iterations, dðtÞ, that reduce, progressively, the impor-
tance of inertia term. Is expressed as follows:
VNew
i ¼ dðtÞ �wI � Vi þ rnd1 �wM � ðbi � XiÞ

þ rnd2 �wC � ðbG � XiÞ ð18Þ
A typical linear function can be formulated as follows:

d tð Þ ¼ wMax � wMax �wMinð Þ
nT

� t ð19Þ

where t is the actual iteration and nT is de maximum number
de iterations externally imposed; wMax and wMin are two
inertial weights whose values typically are 0.9 and 0.4
respectively. The external definition of decreasing function,
dðtÞ, require some caution, because is intuitive that if inertia
term is eliminated at an early stage of the process, the proce-
dure risks to be trapped at some local minimum.
(B) PSO with Constriction Factor:
VNew
i ¼ v�fViþuM � rnd1� bi�Xið ÞþuC � rnd2� bG�Xið Þg

ð19Þ
where � is the Constriction Factor. Is obtained from:

v ¼ 2� j
2�u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4�u

p��� ��� ð20Þ

with uM þuC ¼ u; u > 4 and 0 < j 6 1 ð21Þ
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Fig. 2. Movement rule of PSO in two dimensions.
Two typical configurations for this set of parameters, are:
(a) uM ¼ uC ¼ 2:05uM , u ¼ 4:1, j ¼ 1 and v ¼ 0:729;
(b) uM ¼ uC ¼ 2:8, u ¼ 4:1, j ¼ 1 and v ¼ 0:729.
In Fig. 3, it can observe the movements of three particles of PSO,
pi, pj and ph, with all components, in a two dimensional space.
Notice the influence of the individual best of each particle, bi,j,h,
and the swarm global best, bG, in the components of respective
velocities. The transition refers the interval Dt ¼ t þ 1ð Þ � t, from
one iteration to the following.

The strategy of PSO, as an algorithm, will be described in section
‘Simulation on the real LV feeder system’, where the multi-
objective metaheuristic FEPSO, proposed in this work, is explained.
This is because FEPSO is an extension of PSO and EPSO.

The metaheuristic Evolutionary Particle Swarm Optimization
(EPSO)

There are some striking points in PSO, such as: (a) it depends of
a number of parameters defined externally by the user, and most
certainly with values that are problem-dependent. This is certainly
true for the definition of weights wI;wM and wC: a delicate work of
tuning is necessary in the most of practical problems; (b) the exter-
nal definition of decreasing function, dðtÞ, require some caution,
because is intuitive that if inertia term is eliminated at an early
stage of the process, the procedure risks to be trapped at some local
minimum; (c) last, the random factors rnd1 and rnd2, while intro-
ducing stochastic flavor, only have a heuristics basis and are not
sensitive to evolution of the process; and (d) however the modifi-
cations introducing on the Canonical form of PSO, with the purpose
of confer most stability and adaptability to this metaheuristic,
nothing guarantees that the optimization to be trapped in some
local optimum.

The introducing of EPSO/self-adaptive metaheuristic, be intend
overcome these limitations.

PSO can be observed as a proto-evolutionary process, because
exists a mechanism to generate new individuals from a previous
set (the movement rule). It is not a explicit selection mechanism
in the darwinian sense. However the algorithm exhibits a positive
progress rate (evolution) because the movement rule induces
such property implicitly. The idea behind EPSO is to grant a
PSO scheme with an explicit selection procedure and with self-
adapting properties for its parameters. The self-adaptive Evolution
Strategies (rA-ES) model, although there are many variants, may
be represented by the following procedure:

(a) Each individual of generation is duplicated. (b) The strategic
parameters of each individual are undergo mutation. (c) The object
parameter of each individual are mutated under a procedure
commanded by its strategic parameters (this generates new
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individuals). (d) A number of individuals are undergo recombina-
tion (this also generates new individuals). (e) From the set of
parents and sons (the original and the new individuals), the best
fit are selected to form a new generation.

If both strategies (rSA-ES and PSO) are combined, it is possible
to create a such scheme (self-adaptive/evolutionary PSO). At a
given iteration, consider a set of solutions that can will keep calling
‘‘particles”. Then, the general scheme for EPSO is the following:

Replication: each particle is replicated r times; Mutation: each

particle has its weights mutated; Reproduction: each mutated
particle generates an offspring according to the particle movement

rule; Evaluation: each offspring has its fitness evaluated; Selec-

tion: by stochastic tournament, the best particles survive to form
a new generation. Then, the Movement Rule of EPSO is not changed
respect PSO, and is valid, for example, the Eq. (17). But the new
EPSO velocity operator, is expressed by:

VNew
i ¼ w�Ii � Vi þw�Mi � bi � Xið Þ þw�Ci � b�G � Xi

� � ð22Þ
The Movement Rule of EPSO, keeps its terms of inertia, memory

and cooperation. However, the symbol � indicates that the parame-
ters will undergo mutation:

w�Ii ¼ wIi þ r� N 0;1ð Þ ð23Þ
w�Mi ¼ wMi þ r� N 0;1ð Þ ð24Þ
w�Ci ¼ wCi þ r� N 0;1ð Þ ð25Þ
b�G ¼ bG þ r0 � N 0;1ð Þ ð26Þ

where N 0;1ð Þ is a random variable with gaussian distribution, mean
0 and variance 1; r and r0 are learning parameters (either fixed or
treated also as strategic parameters and therefore also subject to
mutation). The global best bG is randomly perturbed too. In Fig. 4,
a new Movement Rule of EPSO, with the perturbed global best, is
represented. Notice that the vector associated with the cooperation
factor does not point to the global optimum, bG, but to a mutated loca-
tion, b�G. An option about randomly disturbed best global, is set by
the expression:

b�G ¼ bG þw�Gi � N 0;1ð Þ ð27Þ

where w�Gi is the forth strategic parameter, associated with the parti-
cle i. It control the size of neighborhood of bG where is more likely to
find the real global best solution. Another difference respect to the
velocity operator of PSO, is that the weights are defined for each
particle of swarm (subindex i).
Inertia

Memory

Cooperation

Xi

Xi
New

bi

bG
bG

*

Fig. 4. Movement rule of EPSO in two dimensions.
Static fuzzy decision and fuzzy fitness function

Fuzzy decision

The metaheuristics SA and PSO were designed, originally, to
mono-objective optimizations problems.

There are many approaches proposed to extend them to multi-
objective optimizations [8]. In this paper, a new extension capable to
treat with no stochastic uncertainties of value, is proposed. This kind
of uncertainties are present in the preferences between the criteria
of multi-objective optimization, and in the satisfaction degree that
certain value of a single objective, produce in the decision-maker.

To represent and introduce such uncertainties in the model, the
static decision-making in fuzzy environments principle [9] is pro-
posed. It is expressed as follows:

Let a set of fuzzy objectives (whose uncertainties of value are
represented by mean of fuzzy sets) Of g ¼ O1;O2; . . . ;Onf g whose
membership functions are lOj, with j ¼ 1 . . .n, and a set of fuzzy
constraints (whose uncertainties of value in the upper and lower
limits, are represented by mean of fuzzy sets) Rf g ¼ R1;R2; . . . ;Rhf g
whose membership functions are lRi, with i ¼ 1 . . .h. The Decision
fuzzy set, D, results:

D ¼ O1hCiO2hCi � � � hCiOnhCiR1hCiR2hCi � � � hCiRh ð28Þ
where hCi is a fuzzy sets operator called ‘‘confluence”. The most
common confluence operator, is the intersection. Then, the member-
ship function of D is expressed as:

lD ¼ lO1ClO2C . . .ClOnClR1ClR2C . . .ClRh ð29Þ
where C is an operator (called, in general, t-norm) between values of
membership functions. For example, if the confluence is hCi � \ (inter-
section), then C is the t-norm �min (minimum value, at certain
instance, of all membership function in Eq. (29)). Then, theMaximizing
Decision over a set of alternatives, [X], is:

lMax
D ¼ MAX ½X�flO1ClO2C . . .ClOnClR1ClR2C . . .ClRhg ð30Þ

A t-norm is defined as follows:
If t : 0;1½ � ! 0;1½ � is a t-norm, then: (a) t 0;0ð Þ ¼ 0; t x;1ð Þ ¼ x; (b)

t x; yð Þ ¼ t y; xð Þ; (c) if x 6 a and y 6 b) t x; yð Þ 6 tða; bÞ; and (d)
t t x; yð Þ; zð Þ ¼ t x; t y; zð Þð Þ.

Notice that all fuzzy sets (Objectives and Constraints) are mapping
in the same fuzzy set of decision, D, and are treated the same way.

This type of fuzzy decision, is static. Is evaluated at certain
instance or values corresponding to memberships functions.

Fuzzy sets of optimization criteria in the Phase Balancing problem

To define amulti-objective fuzzy function, will be used these con-
cepts. Develop of expressions, will be oriented to the objectives and
constraints (criteria) of the Phase Balancing problem, but it could be
extended to any set of criteria, represented by fuzzy sets.

Will be assume that the LV feeder system is under operation
and exhibit a significant unbalance degree. Four criteria/objectives
are introduced in the optimization, and all of them must be mini-

mized: LossT , IðDuÞ, I½o�
��� ���

f
, from model (1), and NC that represent

the number of changes (swapping) respect to reference system or
existing system. A change has associated a cost (and it can disturb
the normal service). The constraints (2)–(4), extended to all
branches of system, will be considered as crisp sets, and any solution
that no satisfy that equations, will be discarded.

Allmembership functions of fuzzy sets, will be construct as linear
functions and, then, will be affected by exponentials weights, that
represent the importance between the preferences of criteria. This
is explain below.
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Then, let two limits values for a given criteria m : vMax and
vMin, and let pm

l the exponential weight of fuzzy set.
The membership function associated to criteria-objective m, is

expressed by:

lm ¼ 1; if vMinm P vm ð31Þ

lm ¼
vMaxm � vm

vMaxm � vMinm

� 	pml
; if vMinm 6 vm 6 vMaxm ð32Þ

(pm
l > 1?more importance-Contraction of fuzzy set; pm

l < 1? less

importance-Expansion of fuzzy set).

lm ¼ 0; if vMaxm 6 vm ð33Þ
To observe this effect of exponential weights on a linear fuzzy

sets, see Fig. 5.
In this work, such limits values are obtained as follows: (a) the

vMinm will be the result of a PSO mono-objective simulation (that
minimize the criteria vm) with a deterministic fitness function and
(b) vMaxm is a value that depend on the criteria under analysis.
The calculation of limit values for eachmembership function, consid-
ering the four criteria in the specific Phase Balance problem, is pre-
sented to continue.

(1) Total Active Power Loss (LossT)
In this case, a mono-objective PSO is simulated to obtain the
minimal power loss of LV feeder system, vMinLoss. The value
vMaxLoss is obtained by a simulation of a three-phase load
flow, in the reference situation (real LV feeder system, before
optimization).

(2) Drop Voltage Index (IðDuÞ)
A LV feeder system is the radial operation. This mean that
one option to evaluate the maximum voltage drop, is from
voltages in the terminal nodes of each feeder of system.
Then, setting two values uint (voltage in tolerance) and uoutt
(voltage out of tolerance), assigning it pertinent values per
unit of nominal voltage (for example: uint = 0.95 [pu] and
uoutt = 0.92) and applying it to the terminal nodes (the
worst situation of voltage drops), is possible to define the
limits as follow: vMinu ¼ 1=uint and vMaxu ¼ 1=uoutt. For
each terminal node of LV feeder system, is considered a
membership function (31)–(33), with this limits. Let nt
the number of terminal nodes, then there will be lðvuÞ1;
lðvuÞ2; . . . ;lðvuÞnt membership functions related to the
voltage drops in the feeders system. Then, it’s proposal the
following index IðDuÞ:
Fig. 5.
IðDuÞ ¼ lðvuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYnt

i¼1lðvuÞi
nt
q

ð34Þ
 �

(3) Homopolar Component Current I½o�

��� ���
f

In this case, a mono-objective PSO is simulated to obtain the

minimal I½o�
��� ���

f
in LV feeder system, vMinjI½0�jf .
vMaxmvMinm

pμ
m =1

vm

1

μ(vm)

0

pμ
m <1

pμ
m >1

Contraction ðpm
l > 1Þ and expansion ðpm

l < 1Þ of a linear fuzzy set lðvmÞ.
The value vMaxjI½0�jf is obtained by a simulation of a three-
phase load flow in the reference situation (real feeder sys-
tems, before optimization).

(4) Number of Phase Changes- Swapping (NC)
To determine vMaxNC , is proposed the expression:
vMaxNC ¼ MAX NCPSO LossT ;NCPSO IðDuÞ;NCPSO jI½0�jf
�  ð34Þ

And to determine vMinNC is proposed:

vMinNC ¼ MAX NCPSO LossT ;NCPSO IðDuÞ;NCPSO jI½0�jf
� � NC0

ð35Þ
where NC0 is a number externally fixed (can be selected as 0,
if is convenient).
Fuzzy fitness function

To extend the Fitness Function of a metaheuristic to multi-
objective domain, two fundamentals requirement must be
imposed to the eligible t-norm: (1) it must satisfy the Pareto-
Dominance scale that may to exist between solutions and (2) it must
have Compatibility Metric with the Space of Search of problem to
solve. The first requirement is clearly necessary to any measure
of merit associated to solutions, in a multi-objective optimization:
must be identified the better solutions and the non-dominated solu-
tions (non dominated frontier). To explain the second requirement,
must be considered the type of mechanism (heuristic) that produce
the different individuals in the evolution of metaheuristic algo-
rithm. For example, in SA metaheuristic, these evolution is simu-
lated using probabilistic sampling techniques, and the fitness
multi-objective function should be work together with the Func-
tion of Generation of Neighborhood for each solution, qði; jÞ, to pro-
mote that a stimuli produced from q, be capable to impels the
search in the space of solutions, to better global optimum approx-
imation. In this case, the fitness function, for the SA, is said metric
compatible respect to Search Space. In PSO/EPSO metaheuristics,
the five principles of the Swarm Intelligence, constitute the refer-
ence toward metric compatibility: in this case, the fitness function
is said metric compatible respect to Search Space if promote the satis-
faction of five Swarm Intelligence Principles. Thet-norm proposed in
this work, that satisfy the two requirements (Pareto-Dominance
and Metric Compatibility) mentioned, is the Einstein Product,
defined as:

tPE ¼ x� y
2� ðxþ y� x� yÞ ð36Þ

where x and y are two generic membership functions. From the
properties of a t-norm, presented in section ‘Fuzzy decision’, is pos-
sible construct the membership function of Decision fuzzy set, as
follows:

t1PE ¼
l LossTð Þ � l I½0�

��� ���
f


 �

2� l LossTð Þ þ l I½0�
��� ���

f


 �
� l LossTð Þ � l I½0�

��� ���
f


 �
 � ð37Þ

t2PE ¼
t1PE � l vuð Þ

2� t1PE þ l vuð Þ � t1PE � l vuð Þ� � ð38Þ

and then:

lD ¼
t2PE � l NCð Þ

2� t2PE þ l NCð Þ � t2PE � l NCð Þ� � ð40Þ

Finally, the Fuzzy fitness function, Fff, as stated as follows:

lD ¼ tPE l LossTð Þ;l vuð Þ;l I½0�
��� ���

f


 �
;l NCð Þ

� �
¼ Fff ð41Þ



G. Schweickardt et al. / Electrical Power and Energy Systems 76 (2016) 1–10 7
applied on each individual in the metaheuristic algorithm. The set
of alternatives, ½X�, for the static fuzzy decision in the Eq. (30),
depending on metaheuristic considered. For example, in PSO/EPSO,
if the number of individuals or particles of swarm were 150, and at
a given iteration, each particle has a position vector Xi, with
i = 1 . . . 150, then should be 150 alternatives to selection. However,
if the metaheuristic were SA, the number of alternatives should be
stated by the total energy states of system, evaluated in the whole
algorithm, until the stopping condition is reached. This multi-
objective approach is valid to the fitness function of any meta-
heuristic: the SA is extended to FSA, and the EPSO to FEPSO with
the same fuzzy fitness function.

Simulation on the real LV feeder system

The simulation of the two metaheuristics, FSA and FEPSO, is
applied on the same real LV feeder system, represented in Fig. 6.
This system exists in the city of Bariloche, province of Río Negro,
Argentina. It corresponds to one of the six output of a Medium
Voltage (MV)–Low Voltage (LV) substation, located in a
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Fig. 6. Real LV feeder sy
low-incomes suburban area. For this reason there are only single
phase loads in the feeders. This system is adopted as reference. It
can observed the connection of loads to phases [R], [S] an [T]. The
conductors of feeders have the followings parameters: Pr: 3 � 95
[mm2], r ¼ 0:372þ i xl ¼ 0:089ð Þ [X]/[km]; SI, SII, SIII, SIV, SV,
SVI, TI, TII, TIII and TIV: 3 � 35 [mm2], r ¼ 1:390þ i xl ¼ 0:097ð Þ
[X]/[km]. The number of loads is nL = 115.

The FSA algorithm, follows the procedure described in section
‘Simulated Annealing (SA)’, by replacing the Energy function E to
Fff. The FEPSO algorithm, is described in the flow-chart of Fig. 7.
NIterMax is the maximum number of iterations externally defined.
It possible observe the scheme corresponding to PSO, by eliminat-
ing the processes called Evolutionary Operators and MultiObjec-
tive. By eliminating only the process called MultiObjective, it
observed the scheme corresponding to EPSO. The parameters used
in FSA, are listed below:

(a) Initial temperature: T0 ¼ 1:0. (b) Number of iteration to the
same Temperature: NT = 100. (c) Maximum number of iterations
without improvement of fitness function (stopping condition):
nMaxI ¼ 300. (d) Cooling rate: a ¼ 0:8. (e) Function of generation of
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Fig. 7. Flow chart of FEPSO in Phase Balancing.

Table 1
Results of metaheuristics.

Reference system results:

LossT [kW] =13.02 � jI½0�f j [A] = 47.6 � I(Du) = 0 � NC = 0

Size Time [min] LossT jI½0�f j I(Du) NC

PSO
LossT 150 45 6.94 18.93 0.32 81

jI½0�f j 150 37 10.16 0.100 0.00 79

I(Du) 150 43 7.02 13.80 0.34 85

FSA
tPE – 63 9.35 1.73 0.11 72

FEPSO
tPE 200 48 7.21 0.4 0.27 59
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neighborhood, q(i, j): this identification is making by selection, ran-
domly, of one single phase load, and connecting it in a changed phase.
(f) kB Constant: kB ¼ 0:00025.

The Fuzzy fitness function, Fff, is evaluated from the results of a
three-phase load flow.

Table 1 shows the results corresponding to application of two
metaheuristics (FSA and FEPSO). Table 2 shows the complete
results of swapping Phase Balancing for mono-objective PSOs and
FEPSO. [S] is the load power vector [kVA] and [d] the nodes distances
to substation output [km]. The power factor was considered fp = cos
Fi = 0.85 and the simultaneity factor of feeder system, fs = 0.6.

The exponential weights, can be obtained from the preference
matrix between the optimization criteria. These preferences, are
certainly subjective, and are expressed of contraction/expansion
of fuzzy sets. The exponential weights were adopted as:
plðLossTÞ ¼ plðjI½0�jf Þ ¼ plðNCÞ ¼ 3; plðvuÞ ¼ 4.

The reference values to form the membership functions to each
optimization criteria were results:

½vMinLoss ¼ 6:94 ½kW�; vMaxLoss ¼ 13:02 ½kW��;
½vMinjI½0�jf ¼ 0:1 ½A�; vMaxjI½0�jf ¼ 47:6 ½A��;
½vNCMin ¼ 45; vNCMax ¼ 85�:

The parameters used in FPSO, are listed below:
(a) Initial Weights: wI ¼ 0:5; wM ¼ wC = 2. In PSO are constants.
(b) r and r0 = 0.2. (c) Number of replication for each particle: r = 5.
(d) Maximum number of iterations without improvement of fitness
function (stopping condition): nMaxI = 400.

It can observe in Table 1, the best results reached for the meta-
heuristic FEPSO, respect to FSA. There are some reasons for this: (a)
FSA exhibit a poor ability to ‘‘escape” from local optimal, when the



Table 2
Complete swapping Phase Balancing results of metaheuristics PSO and FEPSO.

Feeder Pr [All elements follows the index order of Fig. 7]
[S] = [1.8 1.15 1.15 1.95 1.15 1.15 1.13 1.14 1.15 1.15 1.14 1.15 2.93 1.12 1.13 1 1.15 1.15 1.15 1.15 1.15 1.17 1.16 1.15 1.13 1.13 1.12 1.13 1.15 1.15 1.15 1.18 1.16 1.15

1.15 1.17 1.15 1.18 1.36 1.36 1.36 1.36]
[d] = [0.035 0.035 0.035 0.035 0.035 0.035 0.045 0.045 0.045 0.045 0.045 0.045 0.065 0.065 0.065 0.065 0.065 0.065 0.095 0.095 0.095 0.095 0.095 0.095 0.16 0.16 0.16

0.16 0.16 0.16 0.45 0.45 0.45 0.45 0.45 0.45 0.7 0.7 0.7 0.7 0.7 0.7]
[PSO(LossT)] = [T S R S S S S T T S R S R S S S S T S T T R T T T S T R T T T S T R T T R S R R R S]

[PSO(jI½0�f j)] = [S S S T S S S R T R R R S R S T T S S R S S S R T R S T S R T R S T T T R S R R T R]

[PSO(I(Du)] = [R S R T R R T R R S R R R S R R R T T T R R S T T R T S T T S T T R R T R S S S S S]
[FEPSO] = [R R S T R R T R R S R R R S R R R T R R R R T S R R T S T T R T S R R T S S T T S S]

Feeder SI [All e elements follows the index order of Fig. 7]
[S] = [1 1.15 1 1.15 1.155 1 1.15 1.17 1.15 1.15 1.18 1.125 1.125]
[d] = [0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.25 0.25 0.3 0.3 0.3 0.3]

[PSO(LossT)] = [T R R T S R R T R T S T R] � [PSO(jI½0�f j)] = [T T T T S R S R T S R S R]

[PSO(I(Du)] = [T T S S R R T S T S S T S] � [FEPSO] = [T S T R S R T S T R S T T]

Feeder SII [All the elements follows the index order of Fig. 7]
[S] = [1.15 1.158 1.125 1.125 1.118 1.125 1 1.15 1.15 1.18]
[d] = [0.15 0.15 0.15 0.15 0.3 0.3 0.3 0.3 0.3 0.3]

[PSO(LossT)] = [T T R T T R R T R R] � [PSO(jI½0�f j)] = [T T T R S T R R S T] � [PSO(I(Du)] = [S T T T S S S R T R] � [FEPSO] = [R T T T S S S R T R]

Feeder SIII [All the elements follows the index order of Fig. 7]
[S] = [1 1.15 1 1.155 1.155 1.18 1.15 1.155 1.15] � [d] = [0.25 0.25 0.25 0.25 0.25 0.35 0.35 0.35 0.35]

[PSO(LossT)] = [T S R S S T R T R] � [PSO(jI½0�f j)] = [T T S T T S R T R] � [PSO(I(Du)] = [R R R S T T T S S] � [FEPSO] = [R S R R T T S S T]

Feeder SIV [All the elements follows the index order of Fig. 7]
[S] = [1.15 1.148 1.125 1.125 1.15 1.18 1.125 1 1.15] � [d] = [0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2]

[PSO(LossT)] = [S R R T R T R T T] � [PSO(jI½0�f j)] = [S R T R R T S T R] � [PSO(I(Du)] = [T T S S T S T S T] � [FEPSO] = [T S R R T R S S T]

Feeder SV [All the elements follows the index order of Fig. 7]
[S] = [1 1.15 1 1.12 1.125 1 1.18 1.12 1.155 1.15 1.128 1.125 1.125]
[d] = [0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2]

[PSO(LossT)] = [S R T T T R S R R R S S R] � [PSO(jI½0�f j)] = [R T R R S T T S R S S R R] � [PSO(I(Du)] = [R S T T R S T R R S S S S] � [FEPSO] = [R S T T R S T R T S S S S]

Feeder TI [All the elements follows the index order of Fig. 7]
[S] = [1 1.15 1 1.128 1.125] � [d] = [0.15 0.15 0.15 0.15 0.15]

[PSO(LossT)] = [R T T S R] � [PSO(jI½0�f j)] = [T S R S T] � [PSO(I(Du)] = [S T T S S] � [FEPSO] = [T T S S T]

Feeder TII [All the elements follows the index order of Fig. 7]
[S] = [1 1.122 1 1.124 1.15] � [d] = [0.095 0.095 0.095 0.095 0.095]

[PSO(LossT)] = [R T R T R] � [PSO(jI½0�f j)] = [S T S R T] � [fUft] = [T T S S T] � [FEPSO] = [T S S S T]

Feeder TIII [All the elements follows the index order of Fig. 7]
[S] = [1 1.152 1.123 1.725] � [d] = [0.135 0.135 0.135 0.135]

[PSO(LossT)] = [R S S R] � [PSO(jI½0�f j)] = [R T R R] � [PSO(I(Du)] = [T R S S] � [FEPSO] = [S R S T]

Feeder TIV [All the elements follows the index order of Fig. 7]
[S] = [1.12 1.15 1 1.8] � [d] = [0.125 0.125 0.125 0.125]

[PSO(LossT)] = [S R R R] � [PSO(jI½0�f j)] = [T S R S] � [PSO(I(Du)] = [T S R S] � [FEPSO] = [T S S S]
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search space is discrete and the good solutions are very dispersed.
In fact, a bootstrapping procedure (not in a statistics sense, but
computing) was necessary to change the membership function of
IðDuÞ because this index is strict, and the algorithm FSA reached
the stopping condition with Fff = 0. The bootstrap, begins with

another more flexible membership function, l vuð Þ#, expressed as
IðDuÞ ¼ l vuð Þ# ¼ e�½n�Nnot�; 0 < n 6 1, where Nnot is the number
of terminal nodes with out of tolerance voltage. If, in certain itera-
tion, some solution that satisfy the Eq. (34), with IðDuÞ > 0 is
reached, then it change to IðDuÞ ¼ lðvuÞ. (b) Identical situation
was presented when simulation of PSO mono-objective to mini-
mize only IðDuÞ, whose results are shown in Table 1 using the same
bootstrap procedure. This confirm that PSO nor has able enough to
‘‘escape” that local optimum in this type of search space. (c) How-
ever, this ability is inherent to EPSO structure, because the self-
adaptation introduced by the Evolutionary Operators, allows a
self-tuning of weights in the velocity operator. Consequently, this
avoid that algorithm to be trapped at some local minimum, or,
even worst, at fitness 0. (d) In the FSA, even when a bootstrap pro-
cedure was introduced, after several simulations, always was
reached a local minimum. The solution FSA shown in Table 2, is
the best reached in 22 executions of algorithm. In this aspect
PSO is a better option than SA, for this problem of Phase Balancing.
This conclusion can be extended to any combinatorial optimization
where the search space is discrete, the variables have narrow inter-
vals as domain, and goods solutions are very much dispersed.

Conclusions

(A) A new metaheuristic, FEPSO, produce very good results in
multi-objective combinatorial optimization problems, such
as Phase Balancing with only single phase loads in a LV feed-
ers system, with multiple objectives. It would be not possi-
ble to solve this problem with mathematical programming
techniques.

(B) A comparison FEPSO vs. FSA methaheuristics, allow observ-
ing the advantages of swarm self-adaptive approach. The
swarm intelligence principles, such as cooperation, com-
bined with Evolution Strategies, seem like and address of
metaheuristics toward solution for any combinatorial opti-
mization problem.

(C) The introduction of PSO metaheuristic to obtain the lower
limits in each criteria individually considered, at the same
time that a comparison respect SA metaheuristic is pre-
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sented. In particular, for the search space of Phase Balancing
problem, a bootstrap procedure to minimize the strict Drop
Voltage Index is required in SA and PSO, having a better per-
formance in PSO. However this procedure is not required in
EPSO/FEPSO, because its self-adaptive capacity to adjust the
weights in the velocity operator.

(D) The extension of mono-objective metaheuristic EPSO to
multi-objective FEPSO, is supported on the static decision-
making in fuzzy environments principle, by mean of Einstein
Product t-norm. This selection, had demonstrated very good
results, satisfying the two requirements imposed to fitness
function: Pareto-Dominance scale and Metric Compatibility
respect to search space. However, other t-norms would be
analyzed and proposed.

(E) The Phase Balancing problem, under the approach proposed in
this work, is general and applicable to any LV feeder system.
More objectives would be introduced in the optimization,
under the same considerations presented in section ‘Fuzzy
sets of optimization criteria in the Phase Balancing problem’.

Appendix: Nomenclature

Acronyms

EDS
 Electric Distribution System

EPSO
 Evolutionary Particle Swarm Optimization

FEPSO
 Fuzzy Evolutionary Particle Swarm Optimization

FSA
 Fuzzy Simulated Annealing

LV
 Low Voltage

LVEDS
 Low Voltage Electric Distribution System

MIP
 Mixed-Integer Programming

MV
 Medium Voltage

PSO
 Particle Swarm Optimization

SA
 Simulated Annealing

rA-ES
 Self- Adaptative Evolution Strategies
Symbols

LossT
 Total Loss of Active Power in the Low Voltage

Feeder System

½R�; ½S�; ½T�
 Each phase of three-phase system
I½0�f

Homopolar component of three-phase currents
system, referred to the substation output, f
IðDuÞ
 Drop Voltage Index (indicated as lðvuÞ in the
associated fuzzy set)
NC
 Number of Swappings (Chages of Phases)

NC0
 Offset to calculate the lower limit of swappings/

changes of phases
I½R;S;T�f

Phase intensities refers to the substation output, f
IMaxj
 Phase line capacity of branch j

EðiÞ
 Simulated Annealing – energy function evaluated

in state i

T
 Simulated Annealing – temperature

kB
 Simulated Annealing – Boltzmann constant

(Metropoli’s algorithm)

a
 Simulated Annealing – cooling rate

NT
 Simulated Annealing – number of trials per

temperature

Si
 Simulated Annealing – neighborhood of state i

qði; jÞ
 Simulated Annealing – neighborhood Generation

Function to state j from state i

p(accept j)
 Simulated Annealing – acceptation probability of

state j
Xi
 Particle Swarm Optimization – position vector of
particle i
Vi
 Particle Swarm Optimization – velocity vector of
particle i
t
 Particle Swarm Optimization – iteration number

Dt
 Particle Swarm Optimization – iterative

incremental step

wI;M;C
 Particle Swarm Optimization – weights (I:

Inertia; M: Memory; C: Cooperation)

bi
 Particle Swarm Optimization – individual best of

particle i (at given iteration t)

bG
 Particle Swarm Optimization – global best of

Swarm (at given iteration t)

dðtÞ
 Particle Swarm Optimization – inertia function

v
 Particle Swarm Optimization – constriction factor

r
 Evolutionary Particle Swarm Optimization –

number of replications of each particle

�
 Evolutionary Particle Swarm Optimization –

evolutive operator of mutation

r
 Evolutionary Particle Swarm Optimization –

learning parameter to weights

r0
 Evolutionary Particle Swarm Optimization –

learning parameter to global best

wGi
 Evolutionary Particle Swarm Optimization –

Strategic Parameter to Control the Size of
neighborhood of global best
hCi
 Operator of confluence between fuzzy sets

C
 Generic t-norm, solidary to hCi, between

membership functions of fuzzy sets

l
 Generic membership function of a fuzzy set

lMax
D

Maximizing decision over certain set of
alternatives
vMaxm
 Upper limit value of criteria m

vMaxm
 Lower limit value of criteria m

vm
 Generic variable to criteria m

tPE
 t-norm Einstein product

lD
 Maximizing decision in the fuzzy fitness function

Fff
 Fuzzy fitness function
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