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Abstract Sensory neurons are often described in terms of
a receptive field, that is, a linear kernel through which
stimuli are filtered before they are further processed. If
information transmission is assumed to proceed in a feed-
forward cascade, the receptive field may be interpreted
as the external stimulus’ profile maximizing neuronal out-
put. The nervous system, however, contains many feedback
loops, and sensory neurons filter more currents than the ones
representing the transduced external stimulus. Some of the
additional currents are generated by the output activity of
the neuron itself, and therefore constitute feedback signals.
By means of a time-frequency analysis of the input/output
transformation, here we show how feedback modifies the
receptive field. The model is applicable to various types of
feedback processes, from spike-triggered intrinsic conduc-
tances to inhibitory synaptic inputs from nearby neurons.
We distinguish between the intrinsic receptive field (fil-
tering all input currents) and the effective receptive field
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(filtering only external stimuli). Whereas the intrinsic recep-
tive field summarizes the biophysical properties of the
neuron associated to subthreshold integration and spike gen-
eration, only the effective receptive field can be interpreted
as the external stimulus’ profile maximizing neuronal out-
put. We demonstrate that spike-triggered feedback shifts
low-pass filtering towards band-pass processing, transform-
ing integrator neurons into resonators. For strong feedback,
a sharp resonance in the spectral neuronal selectivity may
appear. Our results provide a unified framework to interpret
a collection of previous experimental studies where specific
feedback mechanisms were shown to modify the filtering
properties of neurons.

Keywords Receptive field · Adaptation · Feedback ·
Resonance

1 Introduction

Sensory areas are exposed to large variations in the physical
magnitudes they encode (Dong and Atick 1995; Schwartz
and Simoncelli 2001; Geisler 2008; Theunissen et al. 2000).
The dynamic range of input signals can often span several
orders of magnitude during the course of a single behav-
iorally relevant time interval. For example, in the visual
system, mean luminosity changes drastically when the gaze
is displaced from a spot that is directly illuminated by the
sun, to a shadowy corner. Neural systems have therefore
developed adaptive mechanisms, modifying the neural code
according to the sensory context (Ulanovsky et al. 2003;
Mante et al. 2005).

Several types of adaptive mechanisms exist, as for exam-
ple, synaptic plasticity (Atwood and Karunanithi 2002;
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Xu-Friedman and Regehr 2004; Sjöström et al. 2008;
Feldman 2009), feedback through recurrent connectivity
(Douglas et al. 1995; Shu et al. 2003; Eytan et al. 2003;
Buonomano and Maass 2009), feedback through adap-
tation currents (Wang 1998; Sanchez–Vives et al. 2000;
Prescott and Sejnowski 2008; Peron and Gabbiani 2009),
and intrinsic non-linear effects (Borst et al. 2005). Differ-
ent mechanisms operate on different timescales; whereas
non-linear mechanisms emerge in a matter of millisec-
onds, synaptic plasticity usually develops in one or a
few seconds. Changes in the intermediate range (hun-
dreds of milliseconds) are mostly due to adaptation cur-
rents and recurrent connectivity. At these time scales,
adaptivity arises from the dynamics associated to cer-
tain processes at cellular and network levels, without
the profound reorganization entailed by learning and
plasticity.

Adaptive phenomena mediated by intrinsic currents
and feedback network connectivity are based on history-
dependent spike-evoked activity. They exert their feedback
influence mainly by reducing neuronal gain (Felsen et al.
2002; Benda and Herz 2003; Ayaz and Chance 2009; Benda
et al. 2010), and thereby, by modifying the input/output rela-
tion of the cell, that is, the relation between spiking rate
and mean stimulus strength. However, adaptation phenom-
ena go far beyond a mere reduction in firing rates, often
involving a dramatic reshaping of the selectivity to time-
dependent inputs, and of the statistics of neuronal output.
For example, in the olfactory bulb, feedback has been shown
to amplify input fluctuations of a specific frequency, and
thereby to induce strong oscillations in the output activity
(Freeman 1972a, b, c), giving rise to complex (often chaotic)
dynamic behavior (Freeman 1987; David and Friston 2003).
Similar conclusions have been reached in theoretical explo-
rations of interacting neural populations (Wilson and Cowan
1972; Coombes and Laing 2009; Buice et al. 2010; Bressloff
2012; Amit and Brunel 1997; Ledoux and Brunel 2011).
Therefore, although adaptation is usually claimed to have
evolved in order to increase the dynamic range of sensory
encoding, its effect on the temporal properties of the neu-
ral code should not be overlooked: Feedback alters the basic
properties of neuronal selectivity (as explored below), and
also the temporal evolution of the output, the amount of
temporal correlations, the precision and the reliability of
neural responses (Ladenbauer et al. 2014; Urdapilleta 2011;
Butts et al. 2011).

In the context of spike-evoked feedback, adaptation pro-
cesses have been shown to modify the selectivity to transient
stimulus temporal profiles, enhancing the representation of
high-frequency components (Benda and Herz 2003; Gigante
et al. 2007; Benda and Hennig 2008; Benda et al. 2010).
Such changes become evident when computing the recep-
tive field, or the relevant stimulus directions, by means of

reverse correlation techniques (Dayan and Abbott 2001;
Chichilnisky 2001; Samengo and Gollisch 2013). Several
previous studies have demonstrated that adaptation in mean
firing rates may or may not be accompanied by changes
in receptive fields (Enroth-Cugell and Shapley 1973; Victor
1987; Butts et al. 2011; Baccus and Meister 2002; Sharpee
et al. 2011; Garvert and Gollisch 2013). To our knowl-
edge, there is yet no theoretical framework that allows us
to understand why and when receptive fields are expected
to be modulated by feedback. Such theoretical framework
should be general enough to be applicable to cases where
adaptation is mediated by feedback at the network level,
or at the level of voltage-dependent ionic conductances
and refractoriness, as for example, in the Hodgkin-Huxley
model (Samengo et al. 2013) or in a LGN model neu-
ron (Gaudry and Reinagel 2007). In this work we describe
the adaptive changes observed in the stationary and tran-
sient encoding properties of linear Poisson models driven
by a combination of external stimuli and spike-triggered
negative feedback. We theoretically analyze how adapta-
tion modifies the shape of the receptive field, providing
a complete spectral and temporal description in the limit
where the feedback signal is fully determined by the spik-
ing probability of the cell under study (perfect feedback).
Spike-evoked negative feedback is shown to induce divi-
sive gain control, to reshape the receptive field, and to
enhance resonant properties. In order to extend these results
to the case where feedback is a noisy function of the spik-
ing probability, we incorporate stochastic elements into the
theory. Finally, we also discuss an extension to non-linear
Poisson models.

2 Results

2.1 Theoretical description of perfect feedback

The main goal of this work is to study how the receptive
field of a neuron varies, when feedback processes are incor-
porated. In addition to the temporal dimension, receptive
fields may be defined as a function of a variety of addi-
tional dimensions (spatial, frequency, chromatic, chemical)
depending on the modality of the sensory system under
study (vision, audition, taste, etc.). Since adaptation pro-
cesses unfold along the temporal domain, for the moment,
we restrict the analysis to the temporal profile of receptive
fields, and defer to the last section of result the extension to
higher-dimensional problems.

Strictly speaking, the concept of receptive field is well
defined for linear-nonlinear Poisson models. In order to
develop the theoretical framework, we initially restrict to
purely linear Poisson models, and later on discuss the exten-
sion to the nonlinear case. In the linear case, the probability
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of generating a spike in the interval [t, t + dt] under the
influence of stimulus I (t) is r(t) dt , with

r(t) = h0 +
∫ ∞

−∞
h(τ)I (t − τ)dτ. (1)

Here, h0 is the spontaneous firing probability, and h(τ)

is the receptive field of the cell. Since only past stim-
uli can influence the present firing probability, causality
imposes that h(τ) = 0, for all τ < 0. The stimulus
I (t) can be interpreted as either the external signal con-
trolled by the experimentalist (light, sound, touch, etc.),
or as the input ionic current entering the cell. By stim-
ulating the cell with stochastic input signals, the shape
of h(τ) may be easily obtained through reverse correla-
tion techniques (Chichilnisky 2001; Samengo and Gollisch
2013). The shape, units and dimensionality of the filter h(τ)

naturally depend on whether the input signal used in the
reverse correlation analysis is the macroscopic external
stimulus, or the microscopic ionic current. We specifi-
cally distinguish between the component of I (t) represent-
ing the transformation of the external signal accomplished
by upstream neurons, and the component describing all
negative feedback signals that are triggered by previous
activity of the cell under study

I (t) = s0 + s1(t) − g x(t). (2)

In Eq. (2), s0 + s1(t) is the extrinsic stimulus compo-
nent stemming from the transduction of sensory signals,
and x(t) is the feedback signal whose value depends on
the spiking history of our neuron. The coupling constant g

has dimensions of transduced stimulus, and represents the
strength of the feedback connection. It may be either nega-
tive or positive, depending on whether the cell under study
fires in response to positive or negative stimulus deflections.
The sign must be chosen in such a way as to produce a
signal that opposes the natural excitability of the cell, in
order to avoid positive-feedback instabilities (see below).
We separate the average external stimulus s0, so that the
time-dependent component s1(t) can be assumed to have
zero mean. Defining the baseline firing rate

r0 = h0 + H s0, (3)

and replacing Eq. (2) in Eq. (1), we obtain

r(t) = r0 +
∫ ∞

−∞
h(τ)[s1(t − τ) − g x(t − τ)]dτ, (4)

where

H =
∫ ∞

0
h(τ) dτ = √

2π ĥ(ω = 0). (5)

The parameter H , hence, is proportional to the zero-fre-
quency component of the Fourier transform of the receptive
field, ĥ(ω = 0) (the convention used for the Fourier
transform is specified in Appendix A).

We assume that the feedback signal x(t) is boosted
by discrete pulses, and has a natural decay time τd. For
example, if feedback is implemented through the inhibitory
action produced by nearby neurons, the pulses represent
spikes produced by other cells in the network providing
inhibitory feedback to the neuron under study. Hence,

dx

dt
= − x

τd
+

N∑
i=1,∀k

αiδ
(
t − tk

i

)
, (6)

where αi weighs the increase of feedback activity due to a
spike in the i-th presynaptic neuron, occurred at time tk

i (k
collectively represents all spike times). If Eq. (6) is meant
to represent a feedback signal, the average activity of the
neurons contributing to the sum must be proportional to the
output of the neuron under study. Only with such propor-
tionality can we ensure that x(t) is linked to the past activity
of the neuron. For the sake of simplicity, we model the link
as a simple proportionality. Moreover, in our first attempt to
model feedback, we assume that the sum in Eq. (6) is not
proportional to the actual output of the cells, but rather, to
the probability r(t) to generate a given output. That is,

N∑
i=1,∀k

αiδ
(
t − tk

i

)
≈ r(t). (7)

This approximation is here called a perfect feedback sig-
nal, since x(t) is a deterministic function of r(t); more
specifically, it is a leakily integrated copy of r(t). Later on
we discuss the case where the feedback signal is a stochas-
tic (as opposed to deterministic) function of r(t), and more
accurately describes the actual output of the cell under
study. The approximation of perfect feedback is valid if
there is a large number of neurons contributing to the sum in
Eq. (6), and if all of them have similar statistical and dynam-
ical properties, so that they are all governed by the same
firing probability. Alternatively, one may assume that the
external input drives a pool of independent neurons, which
collectively provides a normalizing signal associated to the
common processing of the incoming stimuli (Heeger 1992;
Carandini et al. 1997; Carandini and Heeger 2012). Math-
ematically, these conditions mean to assume that all the αi

are equal, to take N → ∞, and in order to maintain the total
input bounded, additionally scale αi = 1/N . With these
approximations, replacing Eq. (7) in Eq. (6), we obtain

dx

dt
= − x

τd
+ r(t). (8)

Equations (4) and (8) constitute a closed set: If the exter-
nal stimulus s0 + s1(t) and the filter h(τ) are known,
both the feedback term and the firing probability can be
calculated.

The aim of this study is to deduce how feedback affects
the filtering characteristics of the neuron. To that end, we
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now assume that both the external stimulus and the fir-
ing probability are known (the latter can be recorded from
repeated presentations of the same stimulus), and evaluate
whether the input/output relation can still be considered a
filtering process, in spite of feedback. The linear nature of
Eqs. (4) and (8) calls for a treatment in Fourier space. Based
on the properties of the Fourier transform (see Appendix A)
and rearranging terms, we obtain

r̂(ω) =
√

2π(1 + iωτd)

1 + iωτd + √
2πgτdĥ(ω)

×[r0δ(ω) + ĥ(ω)ŝ1(ω)]. (9)

In the absence of feedback (g = 0), this expression
reduces to

r̂(ω) = √
2π

[
r0δ(ω) + ĥ(ω)ŝ1(ω)

]
. (10)

Solving Eq. (10) for the filter at non-zero frequencies
leads to

ĥ(ω) = (1/
√

2π)r̂(ω)/ŝ1(ω)

= (1/
√

2π)r̂(ω)ŝ∗
1 (ω)/|ŝ1(ω)|2, (11)

so for white-noise stimuli, the filter in the temporal domain
h(τ) is proportional to the spike-triggered average (Gab-
biani and Koch 1998).

When feedback is active (g �= 0), the filter h(τ) can no
longer be calculated with Eq. (11). Comparing Eqs. (9) and
(10), we see that for each frequency ω, the firing probability
is still a linear function of the applied stimulus. The constant
of proportionality, however, is modified due to feedback,
and the modification affects differently the continuous com-
ponent (ω = 0) and the non-zero frequencies (ω �= 0). For
the continuous case, feedback changes the baseline firing
rate r0 to an effective value

r fb
0 = h0 + H s0

1 + gτdH
≡ hfb

0 + H fb s0, (12)

which implements a divisive gain rescaling.
For non-zero frequencies, feedback modifies the coding

properties of the neuron in such a way that the intrinsic filter
h(τ), processing both the external stimulus and the feed-
back signal, is equivalent to an effective filter hfb(τ ) that
only filters the external signal. In Fourier space, the relation
between the intrinsic and the effective filters is

ĥfb(ω) = 1 + iωτd

1 + iωτd + √
2πgτdĥ(ω)

ĥ(ω). (13)

In the remaining part of the present section, we ana-
lyze the effects of Eqs. (12) and (13) both in the frequency

and the temporal domains, for several types of filters.
We then extend the analysis to imperfect feedback pro-
cesses, where the sum in Eq. (6) is no longer determinis-
tically proportional to r(t). Finally, we consider non-linear
Poisson neurons, and we discuss the validity of the linear
approximation.

2.1.1 Poisson neuron models in the absence of feedback

In order to understand the effect of feedback, we first
describe the basic types of processing in a purely feed-
forward model. Typically, neuronal filtering characteristics
are classified according to the shape of h(τ). For example,
in visual areas, the filters of simple cells are classified in
a limited number of types (Segev et al. 2006): ON, OFF,
biphasic ON and biphasic OFF cells, as shown in Fig. 1.
In a previous study (Urdapilleta and Samengo 2009), we
demonstrated that when processing slow stimuli, the firing
probability of these four different cells is a simple function
of the external stimulus. In ON and OFF cells, r(t) is pro-
portional to s1(t − δ), where the delay δ is determined by
the shape of h(τ). In biphasic cells, r(t) is proportional to
s′

1(t − δ), where s′
1 is the temporal derivative of the stim-

ulus. In Appendix B, we offer a novel derivation of these
results, based on the Fourier approach developed in this
paper.

2.1.2 Poisson neuron models with perfect feedback

To study the effects of feedback, we separate the analysis
in two: First, we focus on the mean response, determined
by the spectral content of the response at ω = 0. Later, we
analyze non-zero frequencies, ω �= 0.

Effect of feedback on the baseline firing level. As stated in
Eq. (12), the presence of feedback reduces divisively the fir-
ing probability. In Fig. 2 we observe how the magnitude of
the reduction depends on the type of cell. In the time interval
between 0 and 500 ms, the response to a constant stimulus
is displayed. Before the onset of the step stimulus (t < 0),
the presence of feedback (g �= 0, red curve, upper panels)
reduces the steady state firing probability, as compared to
the value obtained in the absence of feedback (g = 0, mid-
dle panel), for ON cells (Fig. 2a). The same holds for the
steady-state firing probability after the step increase in input
current, in the interval between ∼ 250 and 500 ms. The
stationary firing level of OFF cells is also diminished by
feedback (Fig. 2b). In this case, negative feedback is imple-
mented through a negative coupling factor, g < 0, which
could, for example, correspond to excitatory feedback from
lateral OFF cells. An OFF cell with a positive g value
could cause the firing probability to grow unboundedly, and
the Fourier transforms to become ill-defined. For biphasic
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Fig. 1 Spectral characteristics of simplified ON, OFF, and
biphasic filters. (a) Example of an ON filter displayed as a function
of time (left). The modulus and phase of its Fourier transform are
displayed as a function of frequency (right). Note the logarithmic
and semi-logarithmic scales. (b), (c), (d): Analogous representations

of OFF, biphasic-ON and biphasic-OFF filters, respectively. In these
examples, ON and OFF filters have exactly the same |ĥ(ω)|, and
the phases are shifted in π (compare a and b). The same relation
is found between biphasic-ON and biphasic-OFF filters (compare c
and d)

symmetric cells, the integral of the filter is zero, H = 0,
so feedback does not modify the asymptotic processing of
stationary signals (see Fig. 2c and d, for t < 0).

Effect of feedback on temporal processing. Combining the
effective baseline level r fb

0 of Eq. (12) and the effective filter

ĥfb(ω) defined in Eq. (13), we may now re-write Eq. (9) as

r̂(ω) = √
2π [r fb

0 δ(ω) + ĥfb(ω)ŝ1(ω)], (14)

which is formally equal to Eq. (10). As a consequence, in
the time domain,

r(t) = r fb
0 +

∫ ∞

−∞
hfb(τ )s1(t − τ)dτ. (15)

The intrinsic filter h(τ) characterizes the biophysical
properties of the cell under study. Since h(τ) filters both
the external component of the stimulus s0 + s1(t) and the
feedback signal x(t), its shape cannot be calculated through
reverse correlation analysis performed with solely the

external signal; knowledge of the internal signal is also
required. The effective filter hfb(τ ), instead, can be obtained
with the sole knowledge of s1(t). Once ĥfb(ω) is obtained,
the intrinsic filter ĥ(ω) can be recovered with Eq. (13),
assuming that feedback properties are known. The temporal
profile of the effective filter hfb(τ ) can be obtained simply
by inverse Fourier transform.

The Fourier spectrum of the intrinsic filters of both
monophasic and biphasic cells decays at large frequencies
(see Fig. 1). Hence, in the high frequency range, the denom-
inator in Eq. (13) is approximately equal to 1 + iωτd, and
consequently, limω→∞ |ĥfb(ω)| ≈ |ĥ(ω)|. Biphasic filters
also have a reduced spectral content in the low frequency
range (see Fig. 1c and d). Therefore, in these cells, feedback
exerts a limited effect in the whole frequency range. Since
the filtering properties of these cells are hardly modified by
feedback, hereafter we focus on monophasic cells (ON and
OFF).

In Fig. 3, we discuss the differences in the spectral
domain between ĥfb(ω) and ĥ(ω). For any OFF filter there
is another ON filter that is exactly equal in shape, but with
inverted sign. To consider negative feedback, the coupling
constant g acting on an OFF cell also has to be inverted in
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Fig. 2 Temporal evolution of
the firing probability of different
cells, with and without feedback.
(a), (b), (c) and (d) ON, OFF,
biphasic ON, and biphasic OFF
cell models, respectively (see
Fig. 1). Bottom panel: Applied
stimulus. At time t = 0 ms, a
step of amplitude s0 = 0.05
stimulus units is applied. At
time t = 500 ms, the sinusoidal
stimulation begins (frequency 10
Hz and amplitude 0.01 stimulus
units). Intermediate panel:
Firing probability in the absence
of feedback. Top panel: Firing
probability r(t) (continuous red
line; scale on the left margin)
and feedback process x(t)

(continuous gray line; scale on
the right margin) for the model
with negative feedback. Shared
parameters: g = 0.005 stimulus
units, τd = 100 ms. Monophasic
filters are characterized by
|H | = 2.506(stim)−1.(ms)−1,
whereas biphasic filters are
symmetric, H = 0. In all cases,
h0 = 300 Hz and the response is
measured in (ms)−1. For OFF
cells (both monophasic and
biphasic) the coupling factor g

is negative

sign, otherwise, we fall on the case of positive feedback,
which is unstable in the linear case. Hence, due to inversion
symmetry, ON and OFF cells present exactly the same gain
spectral behavior. Additionally, filter phases of ON and OFF
cells display the same spectral characteristics but shifted in
π .

Overall, for monophasic cells, we observe a moderate
spectral reshaping of filters due to the presence of feed-
back. The low-pass filtering characteristic of ĥ(ω) are con-
verted to band-pass filtering properties in ĥfb(ω) (see black
and red continuous lines, respectively, in Fig. 3a). Feed-
back reduces the contribution of low frequency stimuli and
slightly enhances the influence of stimuli with intermedi-
ate frequencies. Since the system is linear, the application
of a sinusoidal stimulus (see Fig. 2, for t > 500 ms)
evokes a sinusoidal response probability; the ratio between

relative amplitudes of the response and the stimulus (mul-
tiplied by a factor 1/

√
2π) defines the gain or the modulus

of the filter. The introduction of negative feedback produces
a minor effect on the phase. Importantly, however, a phase
advance is observed at intermediate frequencies, implying
that r overtakes s in the asymptotic regime (see Fig. 2 for
t � 500 ms).

Feedback is defined by two parameters: the time constant
τd that determines the temporal development of x(t), and its
relative contribution to the input signal, given by g. In Fig.
4a and c we study the effect of varying the coupling strength
g on a monophasic ON filter. When g is small, feedback
barely influences neural processing. As g increases, low
frequency content decreases in order to satisfy ĥfb(ω) →
H fb/

√
2π = ĥ(0)/(1 + gτdH) and band-pass behavior is

emphasized. To see how these characteristics appear in the
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Fig. 3 Spectral composition of filters of monophasic cells, with and
without feedback (ĥfb in red and ĥ in black lines, respectively). (a) The
modulus |ĥ(ω)| is exactly the same for ON and OFF cells. Feedback
reduces the spectral content at low frequencies and induces a relative
increase in the intermediate range. (b) Phase of ĥfb(ω) and ĥ(ω), for an
ON cell (full lines) and an OFF cell (dashed lines). Feedback advances
the phases at intermediate frequencies. Parameters as in Fig. 2

temporal domain, we calculate the filter hfb(τ ) by applying
the inverse Fourier transform on ĥfb(ω). The effective filter
hfb(τ ) is no longer purely monophasic, as the original filter
h(τ), since it contains a late phase of inverted polarity (see
Fig. 4c). The absolute value of the integral of the filter is
also reduced, when compared to the original H . Therefore,
the feedback filter is more sensitive to the fluctuations of the
stimulus than the original filter (Urdapilleta and Samengo
2009). As the coupling strength g grows, stronger feed-
back generates a more significant region of inverted polarity
in hfb(τ ).

The effect of varying τd is shown in Fig. 4b and d. For
fixed g, if τd increases, low frequency components decrease
(Fig. 4b). In addition, for small values of τd, the gain extends
its zero-frequency value, H fb/

√
2π , into a wider range of

positive frequencies. As shown in Fig. 4b, τd has only a
minor influence at intermediate frequencies. Finally, in the
temporal domain, the duration of the region of inverted
polarity is governed by τd (see Fig. 4d).

To summarize, we conclude that whenever reverse cor-
relation reveals a filter with biphasic characteristics, the
obtained effective filter hfb(τ ) may not coincide with the
intrinsic filter h(τ). In particular, at least some of the
biphasic filtering characteristics may derive from negative
feedback.

Fig. 4 Influence of parameters defining feedback on spectral and tem-
poral processing. Black line: intrinsic filter h. (a) Modulus of the
feedback filter ĥfb(ω), for different values of the coupling strength g

(red lines), with g = 1, 2, 5, 10 and 20 × 10−3 stimulus units. For
all cases, τd = 100 ms. (b) Modulus of the feedback filter ĥfb(ω),
for different time constants τd (red lines), with τd = 20, 40, 100, 200

and 400 ms. For all cases, g = 5 × 10−3 stimulus units. (c), (d):
Temporal filter reconstructed from the spectra in a and b and the
corresponding phases (not shown). (c) As g increases, the region
of inverted polarity becomes more prominent. (d) As τd increases,
the recovery from the inverted polarity becomes slower. In all cases,
H = 2.506(stim)−1.(ms)−1
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2.1.3 Feedback-induced resonances

A monophasic receptive field behaves as a low-pass fil-
ter, with a cutoff frequency determined by the inverse of
the duration of the non-zero portion of h(τ). The effect of
feedback is to additionally reduce the response at low fre-
quencies, so the effective filter ĥfb(ω) acquires band-pass
characteristics. The value of the lower cutoff frequency and
the resulting Q-factor depend on the properties of feedback
(g and τd). It is therefore conceivable that by appropriately
choosing these two parameters, feedback can be shaped
as to induce a strong resonance in the system, even up
to the point of instability. In Eq. (13), this kind of strong
resonance appears as a sharp peak in ĥfb(ω), or even a
divergence. The denominator of Eq. (13) can indeed van-
ish for specific combinations of discrete frequencies ωj

and values of the product (g τd)j . In these cases, the pres-
ence of negative feedback renders the system unstable,
amplifying one particular frequency (or several). Near a
resonance, any infinitesimal stimulus component matching
the critical frequency is amplified in the response, giving
rise to strong oscillations. The oscillations enter repeat-
edly into the feedback loop producing a divergent response.
Of course, no real neuron can truly produce diverg-
ing responses, because as oscillations grow in amplitude,
Eq. (1) loses validity: The evolution of the system can no
longer be described by a linear equation; in particular, the
linear scheme must be abandoned before the oscillations in
the firing probability r(t) are strong enough as to produce
negative values.

The linear analysis is nevertheless useful to point out the
dramatic amplifying effect that negative feedback can have,
and the conditions that favor resonances. Clearly, if the
denominator of Eq. (13) vanishes for one or more frequen-
cies, the resulting effective filter ĥfb(ω) cannot be trans-
formed back into the temporal domain. As stated above,
such divergences may appear (if at all) at a discrete collec-
tion of frequencies ωj , and discrete values of the product
(g τd)j . The absence of divergences, however, does not
guarantee that the inverse Fourier transforms hfb(τ ) and r(t)

exist and are bounded. In fact, the condition that gives rise to
instabilities is broader and includes the discrete cases where
the denominator of Eq. (13) vanishes. The proper mathe-
matical framework to analyze the onset of instabilities is
provided by control theory (Franklin et al. 1994), and can
be addressed in terms of the behavior of the Laplace trans-
form of the effective filter h̃fb(s) with complex argument
s = σ+iω. As derived in Appendix A, an instability appears
when at least one pole sj = σj + iωj has positive σj . The
pole s∗ with largest real part is hence critical, since the mag-
nitude of σ ∗ determines the stability of the system. When
σ ∗ < 0, the effective filter is qualitatively similar to the
examples shown in Figs. 3 and 4. As the coupling strength

g increases, s∗ gradually shifts to the right and gets closer
to the imaginary axis; consequently, the effective filter
begins to show a prominent peak at the frequency ω∗ of the
critical pole, as shown in Fig. 5a. This resonance is caused
by feedback.

At the resonance, ω ≈ ω∗, the phase of ĥfb(ω) varies
rapidly (Fig. 5b). In the temporal domain, the effective fil-
ter exhibits strong oscillations (Fig. 5c), which occasionally
grow as far as to make the system unstable. A mathemati-
cal analysis of the conditions giving rise to instability (see
Appendix A) reveals that unstable behavior is only observed
if g is above a critical threshold, the value of which is

Fig. 5 Feedback-induced resonances for the ON filter of Fig. 1. (a)
Modulus of the effective filter |ĥfb(ω)| near the resonant instability.
For negative feedback with timescale τd = 100 ms, a sharp peak devel-
ops at ω ≈ 320.4 rad/s. In this case, the critical value for the coupling
strength is gi ≈ 0.1346 stimulus units. (b) The phase of the effective
filter varies rapidly near the resonance. (c) In the temporal domain,
as the resonance is approached, the effective filter develops strong
oscillations at the frequency of the critical ωi . For g > gi , the filter
ĥfb(ω) cannot be transformed back to the time domain, implying that
the linear system of Eq. (1) is ill defined
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determined by the shape of the intrinsic filter ĥ(ω). For
large g, however, the baseline firing level r fb

0 drops signif-
icantly (see Eq. (12)). Therefore, a transition to instability
may only be expected in systems with strong feedback and,
simultaneously, with large intrinsic spontaneous activity r0

or decreased stimulus fluctuations s1(t), so as to ensure that
the firing rate r(t) remains positive. Once these conditions
are met, the frequency ω∗ of the unstable oscillations is
determined by the time constant τd and the shape of the
intrinsic filter h(τ). In the limit of large τd (as in the example
of Fig. 5), the feedback time constant becomes irrelevant,
and the location of the critical frequency depends only on
h(τ).

2.2 Poisson neuron models with imperfect feedback

So far, the analysis was based on Eqs. (4) and (8), where
the temporal derivative of the feedback signal x(t) was pro-
portional to the firing probability r(t). This relation is only
valid in the limit of a homogeneous population of infinitely
many identical neurons, uniformly coupled and driven with
identical stimuli s(t). These conditions are hardly realistic,
since the amount of feedback must be determined by the
actual number of generated spikes, and not by the spiking
probability r(t). There is an important difference between
these two options. The spiking probability r(t) is a deter-
ministic function of the input current I (t) (Eq. (1)), whereas
actual spikes are stochastic point processes governed by
r(t). Therefore, in an attempt to provide a more realistic
description of feedback, we now assume that x(t) is given
by Eq. (6). Although this new model can be studied analyti-
cally in specific parameter regimes (see below), we initially
resort to a numerical approach to determine the point up to
which the results of the previous section can be extended to
more realistic conditions.

In the present description, illustrated in Fig. 6, we assume
that neurons are limited in number, all have identical intrin-
sic filtering properties h(τ), and process a common tempo-
ral stimulus, s1(t). Furthermore, the feedback signal x(t) is
assumed to be the same for all cells, so the firing probabil-
ity r(t) given by Eq. (4) holds for any cell in the population.
However, since spike generation in Poisson processes is
stochastic, the precise temporal location of spikes differs
from neuron to neuron and, therefore, the sum in Eq. (6)
is a random variable, which only recovers its deterministic
limit (Eq. (8)) when the number of neurons tends to infinity
(N → ∞). Since the derivative of x(t) is no longer strictly
proportional to r(t), feedback is now called imperfect.

In Fig. 7a we show the evolution of the firing probabil-
ity r(t) (upper panel), along with the feedback signal x(t)

(middle panel) and the driving stimulus (bottom panel) for
the finite population model. These three signals are common
to all neurons. The feedback signal is the sum of N filtered

Fig. 6 Inhibitory feedback supported by a finite population of neu-
rons. The signal s1(t) stimulates a population of identical neurons. The
output spikes are filtered during synaptic transmission and then return
in the form of a negative feedback input current

spike trains, a few of which are displayed in Fig. 7b. The dis-
continuities in the traces (inset) are produced by individual
spikes. These irregular traces barely resemble the determin-
istic counterpart xdet(t)/N obtained in the limit N → ∞
(black curve). Their sum, however, smoothes fluctuations
out, and follows xdet(t) closely (middle panel of Fig. 7a).

To quantify the stochastic behavior of this system, we
drive the cells with a sinusoidal stimulus. As observed in
Fig. 7a, for times t > 500ms, the firing probability has a
marked periodic component at the frequency of the input
signal. Therefore, the input/output properties can be charac-
terized by studying a single stimulus cycle. This reduction
is implemented by taking the spikes fired in different time
windows (one window per stimulus period T ) and wrapping
them together into a single window, taking care of preserv-
ing the original firing phase with respect to the stimulus.
That is, each spike is displaced an integer number of peri-
ods, and located within a window whose duration is equal to
a single period of stimulation. Once a long spike train real-
ization is so wrapped, the corresponding histogram in the
T -window is built, as shown in Fig. 7c. In this figure, we
can clearly observe the periodic modulation of the response
(stairs-like gray lines), which expectedly can be fitted by
a sinusoidal function (continuous blue lines). The ampli-
tude and phase (relative to the stimulus) of the adjusted
response is used to construct the spectral characteristics of
the stochastic model.

In Fig. 7c we show the spectral characteristics of the
population-based feedback model. Both the gain and the
phase shift are practically invariant with the number of neu-
rons in the population, and a good agreement with the case
N → ∞ (black line) is observed. The dispersion at each
point (error bars) arises from the variability in the sinusoidal
fit, which depends on the irregularities of the histogram
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Fig. 7 Evolution of dynamic variables in the presence of imperfect
feedback. (a) Time-dependent firing probability r(t) and feedback pro-
cess x(t) for the model with imperfect feedback driven by the stimulus
s0 + s1(t). Black lines: prediction for N → ∞. Irregular red lines:
single-neuron signals, obtained from a population of N = 10 neu-
rons. (b) Single spike trains filtered with a simple synaptic dynamics,
dxi/dt = −xi/τd + (1/N)δ(t − tki ). Individual signals in colored
irregular lines. Irregularity arises from the discontinuities evoked by
incoming spikes, amplified in the inset. The feedback signal x(t)

shown in a (middle panel) is
∑N

i=1 xi(t) (notice the scale difference
with xi(t) in b). Black line: proportional contribution of a single xi(t)

in the limit N → ∞. (c) Extracting the relation between stimulus and
response in noisy conditions. For a linear system, a small sinusoidal
stimulus (black line; scale of the left) produces a sinusoidal firing
probability of identical frequency (gray line, scale on the right). A long

run of the output spike train is split in T -windows, where T is the
period of the sinusoidal input. All spikes are then wrapped in a sin-
gle window, and the histogram r(t) is constructed. Top/bottom panels:
Stimulation at 10Hz / 100Hz. (d) From the fit of the histograms in c,
we calculate the gain 1√

2π

�r
�s

, and the phase, φr − φs , of the transfer

function (�r is the amplitude of the sinusoidal function that best fits
the response). Different symbols represent different population sizes.
Spikes are collected in asymptotic conditions (that is, after the initial
transient) during 500 s. For each data point, 10 repetitions are simu-
lated. Error bars indicate the standard deviation of the gain and phase,
as calculated from the best fit parameters obtained for each of these
repetitions. Parameters: H = 2.506(stim)−1.(ms)−1, τd = 100 ms,
g = 0.005 stimulus units, r0 = 0.3ms−1, s0 = 0.05 and �s = 0.005
stimulus units

(controlled by the total recording time and the mean num-
ber of spikes produced during a cycle). The irregularities,
in turn, arise from the Poissonian character of the spike
generation process. When N = 1, the filtered activity of
the neuron itself is used as the feedback signal defined in
Eq. (6), and the sum in i just involves a single element,
i = 1. This situation is adequate to model self-inhibition
due to spike-triggered adaptation currents (Benda and Herz
2003; Benda et al. 2010; Urdapilleta 2011). As N grows, the
description gradually shifts to represent network-mediated
feedback processes.

The wrapping procedure used to construct Fig. 7 allows
us to determine the linear response function as the ratio
between the amplitude of the firing probability (response)
and the stimulus driving the system (input), both measured
at the same frequency. One important result is that the lin-
ear response function is independent of the population size
N (see Fig. 7d). However, the irregularities observed in the
temporal response do indeed depend on N . To exemplify
this behavior, in Fig. 8a and b we show the time-dependent
firing probability r(t) and the feedback process x(t), for the
cases N = 10, N = 5 and N = 1. Irregularities become
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Fig. 8 Characterization of finite size effects. (a), (b) Evolution of the
time-dependent firing rate r(t) (in ms−1) and feedback process x(t)

(adimensional), for the stimulus in (c). In a and b, different panels
correspond to different population sizes: N = 10 (blue, top panel),
N = 5 (green, middle panel), and N = 1 (red, bottom panel). Black
lines: deterministic limit N → ∞. All parameters are the same as
those used in Fig. 2a. As N decreases, fluctuations are amplified. (d),

(e) Power spectral density per unit time of r(t) (d) and x(t) (e), in
the asymptotic regime of small-amplitude, periodic stimulation (fre-
quency: 10Hz, amplitude: 0.005 stimulus units). Colors as in a and b.
The theoretically derived power spectral density, under the weak cou-
pling assumption, is shown in dashed lines (with corresponding colors)
for Sr (f ) (d), Eq. (25), and Sx(f ) (e), Eq. (22). (f), (g) Analogous to
panels d, e for a weaker feedback, g = 0.001 stimulus units

more prominent as the population size decreases. When the
number of neurons is finite, the firing probability contains
a certain amount of power at frequencies different from the
incident frequency. The power at spurious frequencies does
not affect the linear response function, because the fitting
procedure is casted specifically at the input frequency. So
far we have described the properties of the response at this
input frequency. Now we turn our attention to the rest of the
spectrum.

As an example, in Fig. 8d and e we show the power
spectral density of r(t) and of x(t), when the system is
stimulated with a 10 Hz, small-amplitude sinusoidal sig-
nal. Given the linearity of the system, the firing probability
and the feedback signal contain a strong component at pre-
cisely 10 Hz (see the peaks in the corresponding spectra).

The height of the peak in r(t) is given by the linear response
function studied before (see Fig. 7). The remaining spectral
power (the background) arises from the inherent random-
ness of Poisson processes. As the population size increases,
fluctuations in the spontaneous regime diminish and, cor-
respondingly, the background spectral density decreases as
well.

The remaining part of this section is devoted to obtain
an analytical expression of the background spectrum. We
first analyze the feedback process corresponding to N =
1 (adaptation current), and later generalize the result to
arbitrary N . For N = 1, the signal x(t) evolves according to

dx

dt
= − x

τd
+ ξ(t), (16)
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where ξ(t) represents the spike train produced by a Pois-
son process (a realization), with a time-dependent rate
given by Eq. (4). This rate is coupled to Eq. (16) (and
thereby, to the noise source) through the feedback term.
By approximating the time-dependent firing rate by its
baseline level r fb

0 (Eq. (12)), Eq. (16) becomes a standard
linearly filtered Poisson process (filtered shot noise). Under
this approximation, it is simple to find the formal solution
to Eq. (16) and the resulting exponential autocorrelation
function,

Cx(τ) = 1

2
r fb

0 τde−|τ |/τd . (17)

The power spectral density (one-sided, per unit time) of
the feedback signal x(t) can be obtained from the auto-
correlation function through the Wiener-Khinchin theorem
(Gardiner 1985; Press et al. 2007),

Sx(ω)

T
= 1

T

[
|x̂(−ω)|2 + |x̂(ω)|2

]

= 1√
2π

[
Ĉx(−ω) + Ĉx(ω)

]
. (18)

Since the Fourier transform of Eq. (17) reads

Ĉx(ω) = Ĉx(−ω) = r fb
0√
2π

1

(1/τd)2 + ω2
, (19)

the one-sided power spectral density per unit time is

Sx(ω)

T
= r fb

0

π

1

(1/τd)2 + ω2
, (20)

or, in terms of frequency,

Sx(f )

T
= 2π

Sx(ω)

T
= 2r fb

0

(1/τd)2 + (2πf )2
. (21)

The previous analysis can be easily extended to the case
N > 1. In this case, the effective rate for ξ(t) in Eq. (16)
is now Nr fb

0 . We recall that, in order to maintain the feed-
back level constant when N increases, the efficacy of each
spike in Eq. (6) has to be proportional to 1/N . Therefore,
now dx/dt = −x/τd + (1/N)ξ(t), and the autocorrelation
function is a scaled version of Eq. (17), CN neurons

x (τ ) =
C1 neuron

x (τ )/N . Consequently,

Sx(f )

T
= 1

N

2r fb
0

(1/τd)2 + (2πf )2
. (22)

This expression is represented with dashed lines in
Fig. 8e, for different population sizes. The power spec-
trum obtained from simulations agrees with the theoret-
ical description, except at low frequencies, where higher
order statistical interactions between x(t) and r(t) become
noticeable. At medium and high frequencies, the theo-
retical approach provides a very good description of the
simulations.

The firing probability r(t) inherits the correlation struc-
ture of x(t),

Cr(τ) = g2
∫ τm

0
h(τ ′)dτ ′

∫ τm

0
h(τ ′′)C(N)

x (τ + τ ′ − τ ′′)dτ ′′,

= 1

2N
g2r fb

0 τd

∫ τm

0
h(τ ′)dτ ′

∫ τm

0
h(τ ′′)

×e−|τ+τ ′−τ ′′|/τd dτ ′′. (23)

The filter h(τ) is different from zero inside a finite win-
dow [0, τm] (Urdapilleta and Samengo 2009). Therefore, in
Eq. (23), we replaced the upper integration limits by τm.
Whenever τm  τd, the exponential factor in the inte-
grand of Eq. (23) can be further simplified, so that only time
differences τ comparable or larger than τm matter:

• τ ∼ O(τm) ⇒ e−|τ+τ ′−τ ′′|/τd ≈ 1,
• τ � O(τm) ⇒ e−|τ+τ ′−τ ′′|/τd ≈ e−|τ |/τd .

In this case, the autocorrelation function can be approxi-
mated by

Cr(τ) = 1

2N
g2H 2r fb

0 τde−|τ |/τd . (24)

Finally, based on this equation and the Wiener-Khinchin
theorem, the power spectral density for the firing probability
r(t) is

Sr(f ) = 2

N

g2H 2r fb
0

(1/τd)2 + (2πf )2
. (25)

This expression is represented in Fig. 8d for different
population sizes, in dashed lines. As in the previous anal-
ysis, at low frequencies, the coupling between x(t) and
r(t) produces a small discrepancy between the numerical
results and the theoretical expression. At high frequencies,
a faster decay than the predicted Sr(f ) ∼ 1/f 2 is observed,
originated by the approximation at τ ∼ O(τm) during the
assessment of the autocorrelation function Cr(τ).

The derivation in this section is based on the hypothe-
sis that the firing rate r(t) could be approximated by its
baseline level r fb

0 . This assumption is valid if s1(t) is small,
and if x(t) and r(t) are weakly coupled. Obviously, as the
coupling strength g becomes smaller, the theoretical expres-
sions become more accurate, and are valid in a wider range
of frequencies. As shown in Fig. 8f and g, in this limit, the
simulated spectral densities are in excellent agreement with
Eqs. (22) and (25).

2.3 Linear-nonlinear Poisson neuron models

Linear Poisson models are only an approximate descrip-
tion of the processes governing neuronal dynamics. We here
improve the approximation by adding a static nonlinear-
ity, as often done in the description of sensory systems
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(Dayan and Abbott 2001; Chichilnisky 2001; Baccus and
Meister 2002; Gaudry and Reinagel 2007; Sharpee et al.
2008; Butts et al. 2011; Garvert and Gollisch 2013).
The new model constitutes the linear-nonlinear Poisson
approach, where

r(t) = f

[
r0 +

∫ ∞

−∞
h(τ)[s1(t − τ) − gx(t − τ)]dτ

]
.

(26)

In this section we demonstrate that although the results
of the previous section do not strictly hold in the presence
of a nonlinearity, it is possible to develop an approximate
version of the theory that makes very good predictions in
most practical cases.

In Fig. 9a, we show three sigmoidal nonlinearities f , all
with the same functional shape, but with different scaling
parameters in the x-axis. Here we show how to produce
an approximate linearized model, and discuss its range of
validity. The first step is to find the operation point, that
is, the spontaneous firing rate rnl

0 , that may differ from the
spontaneous rate of the linear case r fb

0 (Eq. (12)). In the
absence of time-dependent external stimuli, s1(t) = 0, the
linear-nonlinear model reduces to

rnl
0 = f

[
r0 − gτdHrnl

0

]
⇒ f −1

(
rnl

0

)
= r0 − gτdHrnl

0 .

(27)

Equation (27) implicitly defines rnl
0 as the intersection

between the function f −1
(
rnl

0

)
and the straight line r0 −

gτdHrnl
0 . In Fig. 9b, we illustrate the procedure. The level r0

(arrow on the left margin) sets the offset of the straight line
(thick black line). The slope of the line is determined by the
intrinsic properties of the neuron (H ) and feedback (g τd).
Depending on the steepness of the nonlinearity, one same
r0 may elicit different spontaneous firing rates rnl

0 (colored
circles located at the intersections).

If the constant stimulus component s0 is modified, a new
value r0 is established and, after a brief transient evolution,
the operation level rnl

0 sets to a new value, as predicted by
Eq. (27). The y-intercept of the straight line shifts, thus dis-
placing the stationary firing probability. In Fig. 9b the shift
is represented by the two parallel lines (thin gray lines),
corresponding to the addition of two constant stimuli of
opposite signs. Due to the non-linear nature of the model,
the same stimuli displace the response by different amounts
(lengths of the error bars). Moreover, positive and negative
stimuli produce effects of different magnitude (compare the
lengths of the left and the right portions of the error bars).

In Fig. 9c the temporal evolution of the firing rate (top
panel) and the feedback process (middle panel) is shown,
for a temporally complex input signal. In the spontaneous
regime, t < 0 ms, the firing probabilities obtained in Fig. 9b
are indicated with colored circles. Following the application

of a step stimulus, the firing probability and the feedback
process undergo a transient evolution that rapidly settles
onto a new stationary value. When the curvature of the non-
linearity is mild, the evolution is similar to the linear case
(compare the evolution of the red line in Fig. 9c with the
one of Fig. 2a). As the nonlinearity becomes steeper (blue
line in Fig. 9c), the firing probability evolves faster, and the
initial transient becomes stronger.

The next step is to determine how time-dependent stimuli
are processed. When a sinusoidal signal is applied (t > 500
ms, in Fig. 9c), the response probability is periodic, but not
necessarily sinusoidal. Only in the limit of small s(t) is the
sinusoidal response guaranteed, and in this limit, the ratio
between the (mean-subtracted) relative amplitudes of the
input/output sinusoidal modulations is independent of the
amplitude of the stimulus. The amplitude of the response,
however, depends on the steepness of the nonlinearity
(Fig. 9d).

To understand the spectral processing of the non-linear
model, we define the transformed firing rate

q(t) = f −1[r(t)], (28)

so that Eq. (26) becomes

q(t) = r0 +
∫ ∞

−∞
h(τ)[s1(t − τ) − gx(t − τ)]dτ. (29)

In terms of q(t), the feedback current x(t), previously
described by Eq. (8), is now governed by

dx

dt
= − x

τd
+ f [q(t)]. (30)

Equations (29) and (30) constitute a closed system, but
the presence of the nonlinearity precludes the application
of the linear Fourier approach that allowed us, in the pre-
vious section, to find the relation between h(τ) and hfb(τ ).
Linearizing Eq. (30) around the operation point, q0 =
f −1

(
rnl

0

)
, yields

dx

dt
≈ − x

τd
+ rnl

0 + f ′(q0) [q(t) − q0]. (31)

Equations (29) and (31) are closed and linear, and there-
fore, allow for a linear treatment. Transforming them both
to Fourier space, and after some algebraic manipulations,

q̂(ω) = √
2π

[
q0 δ(ω)

+ (1 + iωτd) ĥ(ω)

1 + iωτd + √
2πgτdf ′(q0)ĥ(ω)

ŝ1(ω)

]
. (32)

Equation (32) can be written in terms of an effective filter
χ̂ fb(ω), such that

q̂(ω) = √
2π

[
q0 δ(ω) + χ̂ fb(ω) ŝ1(ω)

]
, (33)
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Fig. 9 Effects of a static nonlinearity on the feedback model. (a) Sig-
moidal nonlinearities modeled as error functions, (1/2)rmax{erf[(q −
qc)/�] + 1}, with � = 0.05, � = 0.10, and � = 0.20 (blue, green,
and red lines, respectively). In all cases, qc = 0.25 and rmax = 0.50.
Axis units in ms−1. (b) The spontaneous firing rate is defined by the
intersection between the line (r0 − gτdHr) (thick black line) and the
inverse function of the nonlinearity (colored curves in a). Spontaneous
firing rates for the different nonlinearities are indicated by colored
circles, for h0 = 0.30 ms−1. The addition of a static positive or nega-
tive stimulus (gray lines) shifts the operation point nonlinearly (circles
plus error bars in the upper part of the figure). (c) Temporal evolution
of the firing probability (top panel) and the feedback process (mid-
dle panel), under the effect of a particular time-dependent stimulus
(bottom panel). In the absence of stimulus, t < 0 ms, spontaneous
firing rates are defined by the colored circles in b. The step stimulus

deflects the firing probability transiently, until a new stationary value is
reached. A periodic stimulus, t > 500 ms, evokes a periodic response
probability, whose amplitude is a non-linear function of the stimulus’
amplitude. (d) Spectral composition of filters’ gain in the non-linear
model. Continuous black line: gain of the feedback filter for the lin-
ear model, see Fig. 3a. Colors match the non-linearities shown in a.
Symbols: ratio between the amplitudes of the sinusoidal response and
stimulus, for a small sinusoidal stimulation, as a function of the driv-
ing frequency, (1/

√
2π)�r/�s. Irregular lines: gains of the Fourier

transform of the filters obtained from the spike-triggered average of the
nonlinear model, equivalent to χ̂ fb(ω) for small stimuli, see Eq. (35).
Dashed lines: equivalent linear filter of the non-linear model ĥnl, fb(ω),
which can be approximated by an appropriate scaling of the linear fil-
ter, see Eq. (37). Parameters are identical to those used before for the
linear model (see Figs. 2 and 3)

where

χ̂ fb(ω) = (1 + iωτd) ĥ(ω)

1 + iωτd + √
2πgτdf ′(q0)ĥ(ω)

. (34)

The possibility of summarizing the effect of feedback in
Eq. (33) implies that in the temporal domain,

r(t) = f

[
q0 +

∫ +∞

−∞
χ fb(τ ) s1(t − τ) dτ

]
. (35)

The presence of the nonlinearity implies that the effec-
tive filter χ̂ fb(ω) can no longer be calculated as the ratio
between r̂(ω) and ŝ1(ω). Reverse correlation, however, still
allow us to calculate χ fb(τ ) from the spike triggered average
of the recorded data (Gabbiani and Koch 1998; Chichilnisky

2001). The result is illustrated by the irregular lines in
Fig. 9d.

Reverse correlation provides the best possible estimate
of χ̂ fb(ω), since the approach only entails the linearization
of Eq. (8). The method, however, requires large amounts of
data to converge to a reliable estimation (2.5×106 spikes, in
Fig. 9d). For practical purposes, hence, one may be willing
to sacrifice some modeling accuracy, and further linearize
Eq. (35), for the sake of obtaining an easier estimation
method. Such approximation brings the response and the
stimulus to be linearly related

r(t) ≈ f (q0) + f ′(q0)

∫ +∞

−∞
χ fb(τ ) s1(t − τ) dτ, (36)
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so that the linear response function of the non-linear system
is

ĥnl, fb(ω) = (1 + iωτd) f ′(q0)

1 + iωτd + √
2πgτdf ′(q0)ĥ(ω)

ĥ(ω), (37)

differing from the linear approach (Eq. (13)) by a rescaling
controlled by the gain at the operation point.

In Fig. 9d, the spectral behavior of the filter obtained
from the spike-triggered average of the non-linear model,
χ̂ fb(ω), as well as the linearized filter ĥnl, fb(ω) are shown.
The symbols represent the results obtained from the ratio
between r̂(ω) and ŝ1(ω), for small sinusoidal stimuli
(defined as in Fig. 7d). As observed, both filters are in
excellent agreement with the simulated data. Clearly, as the
non-linearity becomes steeper, the band-pass characteris-
tics are more pronounced (see also, temporal responses in
Fig. 9c).

The processing differences so far described for nonlin-
earities of varying steepness are also observed in a single
nonlinearity, at varying operation points. In Fig. 10a, the
operation point is varied by manipulating the value of
h0. The stationary firing rates are represented in Fig. 10b

by symbols located on the nonlinearity (thick black line),
whereas the gains are indicated on the derivative (gray
line). The comparison between the nonlinear model with the
linear approximations is similar to the comparison of
Fig. 9d.

In the purely linear case, we observed that in certain
conditions, feedback could give rise to unstable dynamics.
Resonances, understood as peaks in the power spectrum
of the effective filter, are still possible in the nonlinear
case. However, now the resonant peak cannot grow indef-
initely, so unstable divergences are ruled out. The linear
approximation of Eq. (31) has a limited range of validity.
For sigmoidal nonlinearities, as the firing rate increases,
the operation point rnl

0 shifts upwards, so the slope f ′(q0)

should not be taken as fixed. The value of the derivative
diminishes progressively, as the flat part of the nonlinearity
is approached. In Eq. (34), a diminished f ′(q0) is equivalent
to a smaller feedback coupling constant g, thereby preclud-
ing divergences. Hence, although the firing probability can
still contain a strong oscillatory component in the nonlin-
ear case, the increased firing at the peaks of the oscillations
acts as a self-regulatory mechanism, that forestalls unstable
dynamics.

Fig. 10 Influence of the
operation point in the nonlinear
feedback model. (a) A sigmoidal
nonlinearity operated at different
points. Different straight lines
correspond to different values of
h0 (0.1, 0.2, 0.3, 0.4 y 0.5ms−1,
respectively). The y-intercept is
h0 + Hs0, with
H = 2.506(stim)−1.(ms)−1 and
s0 = 0.05 stimulus units, and
the nonlinearity is defined as in
Fig. 9a, with � = 0.10. (b)
Firing probabilities, for the
different values of h0 defined in
a, indicated by symbols located
on the nonlinearity (thick black
line, scale on the left margin).
Associated gains are represented
with corresponding symbols on
the derivative of the function
(gray line, scale on the right
margin). (c) Ratio between
relative amplitudes of response
and stimulus signals, for
different driving frequencies.
Symbols and colors correspond
to those represented in a. Black
thick line displays the spectral
behavior of the lineal model,
whereas colored dashed lines
are appropriately scaled versions
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In the present section, we have introduced a nonlinear-
ity in the relationship between r(t) and s1(t). The feedback
process, however, always remained linear. One could then
wonder what is the effect of maintaining a linear relation
between r(t) and s1(t), but introducing a nonlinearity in the
feedback process. From Eqs. (29) and (30), we see that in
terms of q(t), a nonlinear relation between r(t) and s1(t)

traduces into a nonlinear system of equations, where the
nonlinearity appears in the feedback equation. Conversely,
a nonlinearity in the feedback process that modifies the sec-
ond term of the right-hand side of Eq. (8) can be treated,
from the mathematical point of view, in the same way as the
the nonlinear system explored in this section. More general
nonlinear feedback processes, for example, modifying the
first term of the right-hand side of Eq. (8), or even mixing
the two terms together, require additional techniques.

2.4 Higher-dimensional receptive fields

The results obtained so far remain unchanged if the stimu-
lus (and therefore also the linear filter) depends on several
dimensions, and not just time, as long as adaptation is homo-
geneous in those dimensions. In this case, we write the
external stimulus as s(y, t), where y ∈ D is a vector in a
one- or a multi-dimensional space D representing the rele-
vant features of the sensory modality under study (direction
of the incoming light or chromatic composition in the case
of vision, frequency content in the case of audition, etc).
The external stimulus is filtered by some sort of transduc-
tion process and perhaps also by one or more neurons that lie
between the sensory receptors and the neuron under study.
We represent such upstream filtering processes by means of
a high-dimensional filter hu(y, τ ), that transforms the high-
dimensional stimulus s(y, t) in a purely temporal ionic input
current s1(t),

s1(t) =
∫
D

∫ +∞

−∞
hu(y, τ )s(y, t − τ) dy dτ. (38)

This expression can be inserted into Eq. (2) to construct
the new full input current I (t) needed in Eq. (1). Notice that
in the present framework, the high-dimensional stimulus
is first filtered in the y-dimensional and temporal domains
by hu(y, τ ) (Eq. (38)), and afterwards by the temporal fil-
ter h(τ) (Eq. (1)). Using a Fourier analysis completely
analogous to the one developed before, we arrive at

r̂(ω) =
√

2π(1 + iωτd)

1 + iω τd + √
2πgτdĥ(ω)

[
r0δ(ω)

+ √
2πĥ(ω)

∫
D

ĥu(y, ω)ŝ(y, ω)dy
]

. (39)

This expression reduces to Eq. (9) when hu(y, τ ) =
δ(y − y0) δ(τ ).

By stimulating the cell with signals that are localized
in the additional dimensions, s(y, t) = δ(y − y0)f (t), the
whole of the previous theory becomes valid for each cho-
sen y0. In particular, feedback still transforms the intrinsic
receptive field in an effective receptive field by multiplying
the Fourier transform of the former by a factor that depends
on the frequency, but does not depend on the stimulation
point y0. At least, such is the effect of feedback if we may
assume that the signal x(t) only depends on the output of
the cell and is not modulated, for example, by spatial input
components.

3 Discussion and conclusions

In this paper, we analyzed how spike-evoked negative feed-
back modifies the effective receptive field of a cell. The
approach was based on an ideal concept, here named per-
fect feedback, where the signal x(t) is not a function of
the actual spikes generated by the neuron, but rather of the
probability that spikes be generated. This assumption is ulti-
mately unrealistic, but becomes a good approximation of the
real system when (a) the stimulus varies slowly compared
to the inter-spike interval of the neuron under study, or (b)
feedback is mediated by a large number of similar neurons
in the network. In both cases, the firing probability r(t) is
sampled exhaustively, and therefore, the distribution of sam-
pled signals follows the probability r(t) closely during the
time scale τd governing the feedback process. This idealized
scenario allowed us to develop an analytical approach, and
to derive the mathematical connection between the intrin-
sic filter h(τ) and the effective filter hfb(τ ). In particular,
Eq. (13) provides the link by which intrinsic or feedback
parameters shape the receptive field.

Previous studies have reported some reshaping of recep-
tive fields as the input changes. For example, in the case
of visual stimuli, the spatial and the temporal context alter
the input/output transformation, as the system adapts to the
local statistics (Schwartz et al. 2007; Wark et al. 2007; Wark
et al. 2009), producing changes all the way up to the per-
ceptual level (Schwartz et al. 2007; Kohn 2007; Lochmann
et al. 2012). In single cells, both the total luminance and
the amount of contrast shape linear filters with increased
band-pass characteristics (Enroth-Cugell and Shapley 1973;
Kaplan and Benardete 2001). The same effects are observed
in single auditory cells, as the mean and the variance
of synthetic sounds are manipulated (Nagel and Doupe
2006). According to our results, these phenomena could be
explained by modulating the amount of feedback as the sig-
nal varies. The modulation could be mediated by synaptic
scaling, in the case of network-based feedback processes,
or by ionic mechanisms, in the case of single cell adapta-
tion, eg. by Ca2+ concentration. Moreover, the reshaping of
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filters can also be modulated by the spatial structure of the
stimulus. For example, the receptive fields processing stim-
uli with natural spatio-temporal statistics are different from
those obtained from simple ensembles. When the higher-
order input statistics are taken into account in the estimation
of receptive fields (Theunissen et al. 2001), the tempo-
ral profile of the filters processing natural stimuli turn out
to be biphasic, whereas monophasic filters are obtained in
responses to gratings (David et al. 2004). In terms of our
analysis, this change could be explained if the amount of
negative feedback depended on the statistical properties of
the input signal. However, given the different long-range
behavior of spatial correlations for different ensembles, this
would require to extend the model in order to include some
spatial dependence of the feedback signal, for example,
associated to the spiking activity of neurons that respond to
stimuli presented in a shifted position.

In the purely linear case, positive feedback always pro-
duces unstable dynamics. If an ON cell is subject to positive
feedback, any positive stimulus fluctuation, no matter how
small, feeds a reverberating loop where activity eventually
diverges. Any negative stimulus fluctuation, in turn, even-
tually extinguishes firing altogether. An OFF cell is also
unstable, with the opposite effect of positive and negative
stimulus fluctuations. Such unstable systems are all-or-
none (divergence or extinction) and have therefore not been
studied here.

An important finding of this paper is that negative feed-
back, which is usually assumed to exert a regularizing
effect, can also produce unstable dynamics in the linear
case. Negative feedback always diminishes the responses
to slow stimuli, enhancing the band-pass characteristics
of the filtering process. However, in certain conditions,
these characteristics can be magnified dramatically, up
to the point that the effective filter ĥfb(ω) be sharply
peaked at a specific frequency ω0. In the time domain,
hfb(τ ) exhibits pronounced oscillations at this particular fre-
quency. Feedback, hence, transformed an intrinsic receptive
field that acted as an integrator into an effective resonator
(Mato and Samengo 2008).

Neurons often display resonant properties. A widely
accepted view states that oscillatory properties can either
stem from intrinsic cellular characteristics or from net-
work interactions (Buzsáki 2006; Prescott et al. 2008;
Wang 2010). The important ingredient is that two types
of mechanisms coexist (Hutcheon and Yarom 2000): those
attenuating high frequencies (typically, leak currents), and
those attenuating low frequencies. Many processes can be
invoked to attenuate low frequencies, both at the single-
cell (e. g., leak filtering), and the network level (e. g.,
synaptic filtering). Previous studies of resonant behavior
have attempted to understand resonances in terms of such
properties, invoking particular subthreshold processes

(Izhikevich 2007; Gutfreund et al. 1995; Hutcheon et al.
1996a; 1996b; Richardson et al. 2003), or specific network
interactions (Wang 2010; Lampl and Yarom 1997; Köndgen
et al. 2008; Buzsáki and Wang 2012). In addition, to avoid
falling into quiescence, amplifying processes are sometimes
also invoked. In agreement with previous studies on proper-
ties of neurons with spike-frequency adaptation (Benda and
Herz 2003; Gigante et al. 2007; Benda and Hennig 2008;
Benda et al. 2010), in this paper we have shown that negative
feedback suffices to attenuate low frequencies. We make
no assumptions about subthreshold properties, inasmuch as
they produce an intrinsic receptive field that contains a max-
imal cutoff frequency. In addition, no ad-hoc mechanisms
are required to produce amplification, as long as the baseline
firing rate r fb

0 remains positive, for which a strong stimulus
baseline s0, or a strong spontaneous rate h0, suffice. More-
over, the formalism proposed here is general enough as to be
equally applicable to network-mediated feedback currents,
or to intrinsic adaptation currents. Our idealized approach,
hence, provides a unified description of the mechanisms
through which spike-triggered negative feedback induces
resonances.

In order to test the validity of the idealized approach pro-
vided by perfect feedback, we also ran numeric simulations
where a finite number N of individual feedback signals xi(t)

were triggered by actual spikes. Importantly, we concluded
that the effective filtering characteristics do not depend on
N . Perfect feedback, hence, can be safely used to study
both self-inhibition (N = 1) and network-induced regula-
tion (N > 1). The analytic study of the fluctuations in the
feedback signal and in the response, however, shows that
the amount of noise in the output spectrum diminishes as
1/N (Eqs. (22) and (25)). Moreover, the shape of the noise
spectrum is given by a Cauchy distribution (Johnson et al.
1994).

The above conclusions hold for linear Poisson neuron
models. Only for the linear case can the analytic approach
be developed. The concept of receptive field, however, can
also be extended to the case of linear-nonlinear Poisson
models, or generalized nonlinear models. Although, strictly
speaking, the presence of a nonlinearity does not allow us
to employ linear methods, in the last section of this paper
we demonstrated that by linearizing one of the two equa-
tions governing the system, an approximate description of
the nonlinear case is possible. We showed that feedback
still produces an effective receptive field that is narrower
than the intrinsic one, and that resonances may also appear.
Moreover, the nonlinear description is also useful to under-
stand how the divergences obtained in the purely linear case
saturate at a finite value in the nonlinear description.
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Appendix A

The convention used here to operate with the Fourier trans-
form is

f̂ (ω) = 1√
2π

∫ +∞

−∞
f (t)e−iωtdt. (40)

From this definition, the following properties follow:

– The Fourier transform of a constant signal of magnitude
r0 is f̂ (ω) = √

2π r0 δ(ω).
– If a signal f (t) is equal to the convolution of two other

signals g(t) and h(t), then f̂ (ω) = √
2π ĝ(ω) ĥ(ω).

– If a signal f (t) is equal to another signal but delayed,
f (t) = g(t − �), then f̂ (ω) = e−iω�ĝ(ω).

– If a signal f (t) is the derivative of another signal
f (t) = dg/dt , then f̂ (ω) = iωĝ(ω).

The Laplace transform, in turn, is defined as

f̃ (s) =
∫ ∞

0
f (t)e−stdt, (41)

where s = σ + iω is a complex number. In the par-
ticular case where s is evaluated at a purely imaginary
number (σ = 0), the Laplace transform is proportional to
the Fourier transform for temporally positive functions. The
Laplace transform, hence, can be seen as a generalization of
the Fourier transform to the whole complex plane. Related
properties hold:

– The Laplace transform of a constant signal of magni-
tude r0 is f̃ (s) = r0/s.

– If a signal f (t) is equal to the convolution of two other
signals g(t) and h(t), then f̃ (s) = g̃(s) h̃(s).

– If a signal f (t) is the derivative of another signal
f (t) = dg/dt , then f̃ (s) = s g̃(s) − g(0).

Using these properties, it is easy to see that if the signals
r(t) and x(t) are governed by Eqs. (4) and (8), the Laplace
transform of r(t), for an initial zero feedback contribution
x(0) = 0, is

r̃(s) = r0/s + h̃(s) s̃1(s)

1 + g h̃(s)/(s + 1/τd)
. (42)

According to control theory (Franklin et al. 1994), this
feedback system becomes unstable when at least one pole
of r̃(s) has positive real part. It is important to search for
instabilities in the Laplace representation, since they may
not be evident in the Fourier space. In addition to the fixed

pole s = 0 given by the constant signal term, the poles of
r̃(s) are those complex points s where the denominator of
Eq. (42) vanish, that is,

1 + g
h̃(s)

s + 1/τd
= 0. (43)

This equation holds in the complex plane, so both the
real and the imaginary part of the equality must vanish.
Feedback gives rise to unstable behavior whenever at least
one solution of Eq. (43) has positive real part. The onset of
instability, hence, appears when the pole (or pair of conju-
gate poles) with largest real part crosses the imaginary axis,
from left to right. At the crossing, σ = 0, so the real and
imaginary parts of Eq. (43) become

Im[ĥ(ω)] − τdωRe[ĥ(ω)] = 0, (44)

1 + √
2πgτdRe[ĥ(ω)] = 0, (45)

where now, ĥ(ω) is the Fourier transform of the intrinsic
filter, obtained when evaluating the Laplace transform at a
purely imaginary point and dividing by

√
2π . The frequen-

cies satisfying Eq. (44) are independent of the feedback
strength, g. Note that, in addition, Eq. (45) can only be ful-
filled by those frequencies ωi , from the set of solutions to
Eq. (44), that result in Re[ĥ(ωi)] < 0. Even among these,
if g is small, no frequency ω satisfies Eq. (45), and the sys-
tem is stable (the pole with largest real part is on the stable
semi-plane). For a critical value of feedback strength, the
condition imposed by Eq. (45) can be finally reached and
the system becomes unstable. This means that for feedback
strengths beyond the critical value, there is at least one pole
on the unstable semi-plane and therefore the inverse Fourier
transform diverges.

Appendix B

In this section, we describe the temporal processing of slow
stimuli. We arrive at the same results as the ones derived
by (Urdapilleta and Samengo 2009), but here we base the
analysis on the spectral properties of filters. In the absence
of feedback,

r(t) = h0 +
∫ +∞

−∞
h(τ)s(t − τ)dτ, (46)

r̂(ω) = √
2π

[
h0δ(ω) + ĥ(ω)ŝ(ω)

]
. (47)

In the present context, a slow stimulus is one that does
not contain high frequency components. In other words, the
input/output relation of the cell is only determined by the
lowest frequency components of the filter ĥ(ω), since the
higher frequencies are not explored. The stimulus, hence,
has to remain fairly constant throughout the time scale of the
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filter (given by the non-zero portions in the temporal filters
shown in Fig. 1). If only low frequencies matter, we may
take the limit ω → 0. In this context, we prove that

– ON cells behave as low-pass filters, see Fig. 1a. For
ω → 0, the Fourier transform of these filters is

ĥ(ω) = 1√
2π

∫ +∞

−∞
h(τ)e−iωτ dτ

= 1√
2π

∫ +∞

−∞
h(τ)[cos(ωτ) − i sin(ωτ)]dτ

≈ 1√
2π

∫ +∞

−∞
h(τ)[1 − iωτ ]dτ = 1√

2π
(H + iωH1) (48)

where H = ∫ +∞
−∞ h(τ)dτ and H1 = − ∫ +∞

−∞ τh(τ)dτ .
The small angle approximation can be used again,

ĥ(ω) ≈ H√
2π

[
1 + iω

H1

H

]

≈ H√
2π

[
cos

(
ω

H1

H

)
+ i sin

(
ω

H1

H

)]

≈ H√
2π

e−iωδ0 , (49)

where we have defined the (positive) delay δ0 =
−H1/H . From this expression, it is easy to check that
the gain of the Fourier transform for ON cells at low
frequencies is constant and equal to H/

√
2π . In addi-

tion, the phase decreases linearly with ω, starting at 0
with slope −δ0 (in Fig. 1a, a linear graph instead of
the semi-logarithmic one would clearly show this linear
relationship).

To relate ĥ(ω) to the neural response in the temporal
domain, we simply make use of the Fourier transform
of a delayed signal (see Appendix A),

r(t) ≈ h0 + F−1
{
He−iωδ0 ŝ(ω)

}
≈ h0 + Hs(t − δ0).

(50)

According to Eq. (50), the amplitude of the response
is exclusively determined by H ; simultaneously, neural
processing introduces a fixed delay δ0 between the
response and the stimulus.

– ON biphasic cells behave as band-pass filters, see
Fig.1c. In the limit ω → 0, ĥ(ω) is still given by
Eq. (47). However, symmetric biphasic filters satisfy

H = 0, so to obtain a meaningful description we have
to perform the expansion around ω = 0 up to the second
order,

(51)

where H2 = ∫ +∞
−∞ τ 2h(τ)dτ . Proceeding as before

and defining a corresponding (positive) delay δ1 =
−H2/(2H1), we obtain

ĥ(ω) ≈ H1ω√
2π

eiπ/2
[

cos

(
ω

H2

2H1

)
+ i sin

(
ω

H2

2H1

)]

≈ H1ω√
2π

eiπ/2e−iωδ1 = H1ω√
2π

ei(π/2−ωδ1). (52)

Hence, in the limit ω → 0, the gain of symmetric
biphasic filters depends linearly on the angular fre-
quency, with a positive slope H1/

√
2π . In addition,

the filter phase is a linearly decreasing function of ω,
with intercept at the origin π/2 and slope −δ1. Both
characteristics can be observed in Fig. 1c.

To relate ĥ(ω) to the neural response in the temporal
domain, it is useful to recover the imaginary unit as a
factor and rewrite Eq. (52) as

ĥ(ω) ≈ H1√
2π

e−iωδ1(i ω). (53)

In this case, given that the Fourier transform of a con-
volution becomes a product in Fourier space, the term
(iω) can be effectively associated to the stimulus, ŝ(ω).
In turn, by applying the Fourier transform of a deriva-
tive, and proceeding as before, it is easy to check that
r(t) is proportional to the delayed stimulus derivative,
with a factor of proportionality given by H1 and a fixed
delay δ1. Explicitly,

r(t) ≈ h0 + F−1
{
H1e−iωδ1

[
iωŝ(ω)

]} ≈ h0 + H1

[
ds

dt

]
(t−δ1)

.

(54)

– Corresponding OFF cells behave analogously to
monophasic and biphasic ON cells (see Fig. 1b and
d). Specifically, the Fourier transforms of these filters
are exactly given by Eqs. (48) and (51), in the limit
ω → 0. The only difference with the previous ON
cells is that the proportionality factors H and H1 for
monophasic and biphasic cells, respectively, are now
negative. The presence of a factor (−1) affecting the
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whole expression can be incorporated into a multiplica-
tive term, exp (±iπ), which shifts the phase of the
Fourier transform in ±π . This shift can be observed
in Fig. 1 by comparing phases of corresponding fil-
ters (monophasic ON/OFF filters and biphasic ON/OFF
filters). Additionally, the factor (−1) does not affect
the magnitude of the Fourier transform of ON or OFF
cells. In the temporal domain, this factor simply means
that the relationships obtained for ON cells are also
valid, but associated to the negative of the stimulus or
its derivative. These results agree our previous analysis
(Urdapilleta and Samengo 2009).
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