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Abstract
Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of

retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechan-

ical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated.

Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were

quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoin-

dentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing meth-

odology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of

a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.
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Introduction
AISI 420 is a martensitic stainless steel, commonly used in

pumping applications in the petrochemical industry, oil extrac-

tion and energy generation. As a result, components made of

AISI 420 are subjected to severe mechanical and tribological

solicitations. Therefore, the enhancement of wear resistance of

this steel is of technological and industrial interest.

Although enhancing the wear resistance of steel alloys by

means of cryogenic processing has been known since at least

the last three decades [1], the metallurgical phenomena

responsible for this modifications are still under discussion.

The main operative mechanisms during the cryogenic

treatment of steels discussed in the current state-of-the-art
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Table 1: Chemical composition of AISI 420.

element C Cr Mn Si P S Fe

content in AISI 420 (wt %) 0.17 12.83 0.76 0.55 0.05 0.017 balance

literature are: transformation of retained austenite [2-4], carbide

refinement [5-7] and plastic deformation of virgin martensite

[8,9].

Because of the high hardenability of low-carbon AISI 420 stain-

less steel, both transformation of retained austenite and plastic

deformation of virgin martensite do not seem to be operative

during cryogenic cooling. The main effect observed in AISI 420

after cryogenic processing is a strong reduction in carbide size

and a more even dispersion of them in the martensitic matrix

[10]. This carbide refinement improved the macroscale wear

resistance of the material by 35% under lubricated and by 90%

under dry sliding conditions compared to the conventionally

treated specimens [11]. A slight reduction in the macroscale

friction coefficient has also been observed [11] and an increase

in fracture toughness (ca. 30%) was reported in deep cryogeni-

cally treated specimens [12].

Nanotribological tests, such as the nanoscratch technique de-

scribed in [13], can be used for studying the influence of

microstructural features on the frictional and wear behavior of a

material, thanks to the small size of the tip counterpart, and

applied loads in the order of micronewtons. A nanotribological

approach is necessary, as most engineering surfaces begin to

contact at the tip of asperities, whose dimensions are at the

nanometric scale. However, so far the majority of the research

efforts available in the open literature were focused on the

micro- and nanotribological evaluation of Si and single metals

for microelectromechanical system (MEMS) applications

[14,15] and carbon-based coatings [16-18]. Although, there is

an incipient amount of nanotribological studies performed in

engineering steels [19-24].

Tribometers built on nanoindentation-based equipments, such

as triboindenters, made possible the study of friction and wear

at small contact scales. This kind of equipment can be used to

simulate a single sharp asperity sliding over a surface while si-

multaneously controlling with high precision the applied force,

and measuring the topographical modifications and the friction

forces.

The purpose of this paper is to deepen the understanding of the

influence of cryogenic treatments on the wear resistance and the

mechanical properties of a low-carbon AISI 420 martensitic

stainless steel evaluated at very small scales.

Experimental
The material used in this study was a low-carbon AISI 420

martensitic stainless steel. Its chemical composition is presented

in Table 1 and was determined using an Spectro SPECTRO-

MAXx optical emission spectrometer.

AISI 420 specimens were pre-heated at 830 °C for 10 min, fol-

lowed by quenching in oil from 1030 °C, and afterwards

annealed at 410 °C for 10 min with furnace cooling. This group

was identified as conventionally heat-treated (CHT). The other

group of specimens was quenched in oil from 1030 °C and

immediately afterwards soaked in liquid nitrogen, at an equilib-

rium temperature of −196 °C. The cooling rate was set at

0.45 °C/s and the soaking time at cryogenic temperature was of

2 h. Finally, the specimens were annealed at 410 °C for 10 min

and slowly cooled inside the furnace (Figure 1). This latter

group was identified as deep cryogenically treated (DCT). The

austenization, quenching and annealing of the specimens was

performed in argon atmosphere in order to prevent decarbura-

tion. The selection of the heat-treatment parameters was based

in the results of our previous work [10].

Figure 1: Representation of the applied cryogenic treatment.

Scanning electron microscopy (SEM) was used to characterize

the resulting microstructures after each heat treatment (JEOL

JSM-35CF). The volume fraction of carbides was estimated
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from the SEM micrographs using Delesse’s principle for stereo-

graphic relationships [25].

All specimens were included in carbon-filled bakelite using a

Buehler SIMPLIMET 3 hot press, and then were polished with

a Struers TEGRAMIN-30 automatic polishing machine, em-

ploying diamond suspensions down to 0.25 μm in particle size.

The obtained roughness parameters, measured with a Hysitron

TI950 triboindenter, were: Ra = 15 ± 3.2 nm, Rz = 98 ± 18 nm,

Rt = 125 ± 31 nm. The polished specimens were ultrasonically

cleaned with acetone and isopropyl alcohol for 5 min and then

placed onto the stage of the triboindenter to perform nanoinden-

tation and nanotribological tests.

Nanoindentation tests
A Hysitron TI950 triboindenter was employed for performing

nanoindentation measurements, using a three-plate capacitive

transducer. This transducer can act both as the actuator and the

sensing device and allows for the application of normal forces

up to 10 mN. The triboindenter utilizes the Oliver and Pharr

(O&P) method [26] as the standard procedure to interpret the

data from nanoindentations. According to [26], hardness (H) is

defined as:

(1)

where P is the maximum normal load and A is the contact area

between the tip and the specimen. The contact area can be

related to the contact stiffness by using Sneddon’s law [27]:

(2)

Nanoindentation tests were performed using a Berkovich

diamond tip, with an apex radius of ca. 100 nm. Penetration

depths of 50, 100, and 200 nm were set. A 3 × 4 array of

indentations was performed in the specimens at each penetra-

tion depth, spaced at 20 μm from each other. The significance

of the obtained results was determined by analysis of variance

(ANOVA), using the statistical software INFOSTAT [28].

When carrying out nanoindentations in an elastic–plastic mate-

rial like a metal, it tends to accumulate around the indenter,

forming a pile-up that is higher than the sample surface. This

phenomenon can lead to the underestimation of the true contact

area and a significant deviation of calculated hardness and

elastic modulus from their real values. The formation of pile-

ups during nanoindentation of steels has been studied by several

researchers [29-31].

Our approach was to compare the conventional O&P method

with the one proposed by Joslin and Oliver (J&O) [32]. The

J&O method utilizes the ratio between the hardness and the

square of the elastic modulus (H/E2) as an independent charac-

teristic parameter. The proposed method utilizes the maximum

force applied during the test (P) and the calculated contact stiff-

ness (S) from the nanoindentation data. S is defined as the slope

of the unloading curve (∂P/∂h), evaluated at the point of

maximum force. Both P and S and can be determined without

knowledge of the exact geometry of the diamond tip or the

shape and size of the indentation. The values of P and S are

related through the following equation [32]:

(3)

where Er is the relative elastic modulus, defined as

(4)

Es and νs are Young’s modulus and Poisson’s ratio of the sam-

ple, and Ei and νi are Young’s modulus and Poisson’s ratio of

the indenter (Ei = 1140 GPa, νi = 0.07).

This approach does not allow for the simultaneous determina-

tion of E and H, but several researchers [33,34] have reported

P/S2 (i.e., H/Er
2) as a useful characterizing parameter, even

when the development of pile-up is considerable [35].

Nanotribology tests
In order to evaluate the frictional behavior of the samples and

their wear resistance, microscale friction tests were performed.

The experimental setup followed the guidelines of the test pro-

cedure proposed by Broitman and Flores [13]. In this method, a

probe is continuously scanning a track in a reciprocal move-

ment, as shown in Figure 2. In our work, a 1 mN load was

applied in a stroke length of 5 µm for 31 cycles to evaluate the

evolution of the friction coefficient, and a load of 3 µN in a

stroke of 10 µm for 12 scanning cycles was used to evaluate the

surface roughness. The obtained topographic information at the

low load is used to calculate the wear rate and roughness evolu-

tion, while the force transducers measure the friction force vari-

ations at the higher applied loads. The method utilizes a

MatLab® script to eliminate the thermal drift. The software

output gives the resulting friction coefficient, track roughness,

and wear rate as a function of the number of cycles of the

probe. The wear volume is estimated considering the projected

area A of the tip as a function of the penetration depth (h):
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A = (2Rh − h2), where R is the tip radius. The volume of the dis-

placed material during each cycle is calculated as the sum of

areas at the different penetration depths of the track. Additional-

ly, the evolution of the average trench roughness (Ra) is calcu-

lated after every cycle as 100 × Ra/R0, where R0 is the average

roughness before the first test cycle. It should be pointed out

that, in this method, the wear is calculated after the elastic

recovery of the surface took place.

Figure 2: Schematics of the used scratch method to measure friction
and wear: (a) pre-scan to get the initial topographical profile; (b) first
cycle of wear; (c) post-scan to get the new topographical profile;
(d) three cycles of wear. The processes (c) and (d) are repeated ten
times. Reprinted with permission from [13], copyright 2015 AIP
Publishing LLC.

For the nanoscratch tests, a conical diamond tip with an apex

radius of 5 μm was employed. The applied normal load was set

at 1000 μN and each reported value corresponds to the average

of at least three valid tests. The theoretical Hertzian contact

pressure was estimated at 10.7 GPa.

In order to evaluate if the scratch tests were generating wear

and not only plastically deforming the surfaces, the elastic

recovery (ER) was calculated for each sample by nanoindenta-

tion using the same tip and normal load as in the scratch tests.

ER is calculated as the ratio between the maximum (ht) and the

residual (hr) height as follows:

(5)

Results and Discussion
Microstructural characterization
SEM micrographs of the specimens after the heat treatments are

shown in Figure 3. It can be seen that in both cases the micro-

structure consisted of a martensitic matrix with precipitated

globular carbides. The application of the cryogenic treatment

generated a strong reduction in the size of carbides and an

increase in the amount of particles, changing the mean carbide

diameter of 0.9 μm for CHT specimens to 0.4 μm in DCT sam-

ples. The volume fraction of carbides was estimated to be

16.8% in CHT specimens, whereas for the DCT ones it was

11.9%. Similar reductions of the carbide size were reported by

Das and co-workers [3,36].

Figure 3: SEM image of a) CHT specimen and b) DCT specimen,
showing a martenstic matrix with precipitated globular carbides.

Nanoindentation tests
A summary of the results from the nanoindentation tests per-

formed with the Berkovich tip is shown in Table 2. It can be

seen that the residual height (hr) was smaller for DCT speci-

mens at all penetration depths, meaning that they had a larger

amount of elastic recovery during unloading also depicted by

the higher values of the hr/ht ratios. The ANOVA test indicated

that these differences were statistically significant. Furthermore,

the ANOVA analysis of the maximum applied load (Pmax) for

each penetration depth has shown no statistically significant

differences for both CHT and DCT specimens. According to

Bolshakov and Pharr [37], the hr/ht ratios are in all cases at the

limit of applicability of the O&P method, i.e., above ca. 0.7 in

materials that develop pile-ups. The maximum penetration

depth has been predefined by the displacement control condi-

tion, and the force required to reach each depth was the same

for both groups of specimens. Hence, the DCT samples must

have a higher elastic limit [38,39].

The aforementioned phenomenon can be seen more clearly

from the analysis of the contact stiffness, as DCT specimens
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Table 2: Summary of nanoindentation results.

penetration
depth (nm)

residual height (nm) maximum force (μN) hr/ht contact stiffness (μN/nm)
CHT DCT CHT DCT CHT DCT CHT DCT

50 34.5 ± 0.9 32.6 ± 1.2 887 ± 51 877 ± 48 0.651 0.690 75.6 ± 1.8 65.1 ± 1.7
100 74.6 ± 1.7 71.8 ± 1.2 2122 ± 137 2153 ± 99 0.719 0.746 108.7 ± 2.3 87.9 ± 2.4
200 153.6 ± 1.9 145.0 ± 2.7 5788 ± 259 5983 ± 276 0.725 0.768 160.9 ± 2.4 126.9 ± 1.8

Table 3: Comparison of the H/Er
2 values obtained by the Oliver & Pharr and Joslin & Oliver methods.

penetration depth (nm)
H/Er

2 (GPa−1 × 10−4)
Oliver & Pharr Joslin & Oliver

CHT DCT CHT DCT

50 2.12 ± 0.10 2.82 ± 0.19 1.98 ± 0.10 2.64 ± 0.18
100 2.45 ± 0.13 3.15 ± 0.16 2.29 ± 0.12 2.95 ± 0.15
200 3.14 ± 0.11 4.92 ± 0.24 2.85 ± 0.14 4.75 ± 0.26

showed significantly smaller values of contact stiffness (S) at all

penetration depths. If we assume that the elastic modulus does

not change with the application of cryogenic treatments, then it

follows from Equation 2 that the true contact area between the

indenter and the specimen has to be smaller in the DCT sam-

ples. This smaller contact area can be accounted by a higher

amount of elastic recovery (as evidenced by the residual height)

and also by the formation of smaller pile-ups.

In order to characterize the resistance of the material to plastic

deformation, the parameter H/Er
2 has been calculated by two

different approaches (Table 3). It can be seen that there is no

significant difference between the methods, which could mean

that pile-up is not so severe, at least at penetration depth of 50

and 100 nm. At 200 nm, pile-up influence shows a marked

increase, as hf/hmax is higher than 0.7. However, the values

from Table 3 are useful for comparison purposes between CHT

and DCT specimens. The values of H/Er
2 for cryogenically

treated specimens were ca. 30% higher than those of the

conventionally treated samples at penetration depths of 50 and

100 nm, independently of the calculation method. At 200 nm,

this difference is 56% when applying the O&P method and 67%

with the J&O method. These results also support the hypothesis

that the cryogenic treatment increased the elastic limit of the

specimens.

The reduction of the carbide volume fraction in DCT speci-

mens can be associated to a higher amount of undissolved car-

bon in the martensitic matrix. In addition, cryogenic treatments

also increase residual stresses in the martensitic matrix, as we

were able to measure in our previous work using X-ray diffrac-

tometry [10]. These residual stresses can be associated to a

higher dislocation density, which in turn has been identified by

Kehoe and Kelly [40] as the main factor affecting the strength

of martensite materials with equal amounts of carbon. Due to

the small scale of the test, the analysis primarily yields informa-

tion regarding the metallic matrix. As carbides are much harder

than martensite, it can be expected that they would sink into the

matrix if they are hit by the diamond tip. As a result, the

measured stiffness will be slightly higher than during indenting

a “pure” matrix. The variations that we observe in the values of

H/Er
2 are then the result of hitting areas where the carbide is

closer or further than in the other points.

With respect to the possible influence of the native oxide films,

stainless steels develop oxide films of ca. 2 nm in thickness

[41,42], thus its influence can be neglected as the penetration

depths are much larger.

Nanoscratch tests
Prior to the execution of the nanoscratch tests, we performed

indentations with the conical indenter (apex radius ca. 100 µm)

at the same normal load (1000 µN) that we used in the wear

cycles. In Figure 4 it can be seen that the elastic recoveries for

all samples was above 85% and that there was no significant

difference between CHT and DCT specimens. These high

values of elastic recovery are useful in order to evaluate

whether we are effectively removing material during the nano-

scratch test or whether we are plastically deforming the surface.

Figure 5 shows the evolution of the wear coefficient during a

complete run of the wear test. It can be seen that cryogenically

treated specimens exhibited marginally lower wear rates during

the initial stage of the tests.
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Figure 5: a) Evolution of wear coefficient during the tests at 1000 μN of applied normal load and b) cumulative wear coefficient.

Figure 4: Elastic recovery values for nanoindentations performed with
a conical indenter (r ≈ 100 µm) at 1000 µN of normal load.

Cryogenically treated specimens had a lower amount of total

wear (Figure 5b), although this difference was only marginal.

Figure 6 shows the evolution of roughness for three complete

test runs of each type of specimens. It can be seen that DCT

specimens had a lower average roughness, and in two runs

roughness reached a steady state after running-in, while for the

CHT specimens, the first two runs showed an increasing trend

and the third one had a marked increase (over 300%) from the

initial roughness and a slight reduction afterwards. These differ-

ences in the roughness evolution could be associated to the

modification of the elastic limit of the cryogenically treated

specimens. Again, the effect of the oxide films can be neglected

as they wear out after two or three cycles.

Figure 6: Evolution of the relative average roughness after each test
cycle.

As a nanoscratch test is essentially an abrasion test using a

single asperity, our results confirm that the increase in hardness

shown by the DCT specimens led to a higher wear resistance

following the classical approach of Rabinowicz [43].

Regarding the evolution of the friction coefficient (CoF),

Figure 7 shows that it slightly diminished towards the end of the

tests, mainly due to wear and deformation of asperities of the

surface of the track (Figure 8) [44]. The level of friction reduc-

tion was between 2 and 5%. Similarly to the behavior of the

wear coefficient, DCT specimens performed better than CHT

samples. This difference was more pronounced during the
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Figure 7: Evolution of the friction coefficient during the nanowear test.

Figure 8: Scanning probe microscopy (SPM) image after 30 cycles of
nanoscratch testing in a DCT specimen. The depth profiles below in
Figure 9 were taken in the longitudinal (L–L) and transversal (T–T)
directions.

initial passes of the test. However, the improvement of the fric-

tion behavior for DCT specimens should be considered

marginal.

The evolution of the wear and friction coefficients (Figure 5 and

Figure 7) shows that DCT specimens exhibit a marginally im-

proved tribological behavior, i.e., less friction and wear than

CHT specimens during the first passes of the diamond tip. We

attribute this behavior mainly to the increased hardness and

elastic limit of the martensitic matrix. Similarly, Xie et al. [45]

has reported that a hardness increase implies a higher elastic

shakedown limit of the material and a reduction of the friction

coefficient.

Figure 8 shows a scanning probe microscopy (SPM) image of a

DCT specimen after a nanoscratch test, where the formation of

the wear track can be clearly seen. Material pile-up is visible at

both sides of the trench, as well as at the entry and exit edges.

The wear scar presents the typical features of an abrasion test

performed in a ductile material.

Figure 9a presents the initial (black line) and the final (red line)

longitudinal profiles of a DCT specimen, showing the forma-

tion of the trench. The total wear volume is the result of the

combined adhesion, ploughing effect and cutting effects during

the sliding process. The final profile of the scar reveals the

probable presence of a subsuperficial carbide (Figure 9a), which

did not wear as much as the metallic matrix due to its higher

hardness. In the transversal profile (Figure 9b), material pile-up

at the edges of the track can be clearly seen, in agreement with

the plastic deformation observed in the nanoindentation tests.

It is interesting to compare the nanoscratch results with those

from macroscopic tests reported by Prieto and Tuckart [11]. In

that work, wear occurred mainly by delamination, driven by

ratcheting, while in this present work wear is mainly abrasive.

In [11], the smaller carbides in DCT specimens delayed the

subsuperficial cracking due to a reduction in the stress concen-

tration effect. Instead, in this present work wear tests were reci-

procal, therefore ratcheting was not operative and the carbides

played a secondary role in the wear response of the material.

This was also a consequence of the scale of the wear tracks,

which we infer were of the order of the distance between

carbides.

The combination of nanoindentation and nanoscratch tests

allowed us to have a better understanding of the role of the

martensitic matrix and its contribution to the wear resistance of

the material. This contribution could not be analyzed in the

macroscopic tests performed in [11] due to the large scale of the

tribological interactions and the type of sliding conditions.
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Figure 9: Depth profiles after a wear test in a DCT specimen in the a) longitudinal and b) transversal directions. The formation of the wear groove and
the pile-ups around the track can be seen, as well as the probable revelation of a subsuperficial carbide.

Conclusion
Considering the results obtained from the study of the mechani-

cal and tribological properties of a cryogenically treated marten-

sitic AISI 420 stainless steel, we conclude that cryogenically

treated specimens show a higher amount of undissolved carbon

in the martensitic matrix, therefore leading to an increased hard-

ness and elastic limit in comparison with the conventionally

treated ones.

The carbide refinement developed in cryogenically treated

specimens had a marginal contribution in preventing abrasive

wear at the small scale of our test. Instead, we propose that the

improved mechanical resistance of the cryogenically treated

martensite was responsible for the reduction in friction and the

marginal decrease in the wear coefficient.
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