
Composite Structures 133 (2015) 621–629
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct
Dynamics of magneto electro elastic curved beams: Quantification of
parametric uncertainties
http://dx.doi.org/10.1016/j.compstruct.2015.07.084
0263-8223/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Universidad Tecnológica Nacional – F.R.B.B., Centro de
Investigaciones en Mecánica Teórica y Aplicada, 11 de Abril 461, Bahía Blanca, BA
B8000LMI, Argentina.

E-mail address: mpiovan@frbb.utn.edu.ar (M.T. Piovan).
M.T. Piovan a,c,⇑, J.F. Olmedo c, R. Sampaio b

a Universidad Tecnológica Nacional – F.R.B.B., Centro de Investigaciones en Mecánica Teórica y Aplicada, 11 de Abril 461, Bahía Blanca, BA B8000LMI, Argentina
b PUC-Rio, Mechanical Engineering Department, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22453-90, Brazil
c Universidad de las Fuerzas Armadas, Departamento de Ciencias de la Energía y Mecánica, Av. Rumiñahui s/n, Sangolqui, Ecuador

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 27 July 2015

Keywords:
MEE structures
Curved beams
Dynamics
Composite materials
Parametric probabilistic approach
Shear deformability
The objective of this paper is the evaluation of uncertainty propagation associated to several parameters
in the dynamics of magneto-electro-elastic (MEE) curved beams. These MEE structures can be employed
as imbedded parts in high performance technological systems to control motions and/or attenuate vibra-
tions, for energy harvesting, etc. Although a lot of research connected with these structures was done for
dynamics and statics, it is remarkable the scarcity of articles analyzing random dynamics of MEE struc-
ture, provided that many models have uncertainties associated to their parameters: loads and/or material
properties, among others. A theory for MEE curved beams is derived and assumed as the deterministic
model. The response is calculated by means of a finite element formulation. The probabilistic model is
constructed appealing to the finite element formulation of the deterministic approach, by adopting ran-
dom variables for the uncertain parameters selected. The probability density functions of the random
variables are derived with the Maximum Entropy Principle. The Monte Carlo method is used to perform
simulations with independent realizations. Studies are carried out in order to evaluate the influence of
Magneto-elastic and/or piezoelectric coupling in the dynamics of MEE curved beams in both contexts:
the deterministic and the stochastic.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The MEE material are a kind of smart composites exhibiting var-
ious coupling effects that can be of useful in many high-tech struc-
tural applications. That is why many investigation on the
mechanics of MEE structures have received considerable attention
of the research community since the last 10 years.

Especial composite materials consisting of piezoelectric and
magnetostrictive components are used in smart structures such
as sensors, actuators, hydrophones, etc. The smart structures pro-
vide remarkable capabilities of sensing and reacting to external
actions and/or disturbances, also satisfying reliability, light weight
and the appropriate performances demanded in high-tech struc-
tural applications [1,2].

In the last fifteen years many researchers developed new mod-
els and technical theories for studying the mechanical response
(statics, dynamics, instability, etc) of the so-called magneto electro
elastic (MEE) structures. An interesting variety of models of MEE
structures has been introduced principally for piezoelectric and
piezomagnetic plates and shells [2,3]. In these articles the static
behavior of multilayered MEE strips and plates was analyzed by
means of 3D formulation and by subjecting the specimens to sim-
pler loads, that is, to sinusoidally distributed magnetic, electric and
mechanic loads. Pan and coworkers [4–6], Wu and Lu [7] and Tsai
et al. [8] among others carried out extensive studies in the dynam-
ics responses of shells and plates appealing to 3D formulations.
There was also a research on MEE shells with simply or doubly
curved profile [9,10].

According to a extensive bibliographical review, it is notorious
the limited quantity of articles related to the study of MEE slender
structures in the context of a beam model or technical theory. The
papers of Milazzo and coworkers [11–13] are, apparently, the very
first in which studies about the dynamics of MEE beams (for
enhanced Bernoulli–Euler and/or Timoshenko theories) have been
carried out. Besides these works are quite recent. However to the
best of authors’ knowledge, articles related to static/dynamic
behavior of MEE curved beams are apparently absent.

On the other hand it should be recognized that many aspects
related to the construction of MEE materials and/or structures
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Fig. 1. Diagram of the Curved MEE beam.
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are connected with a variable source of uncertainty that can sub-
stantially alter the response of the structure. Possible sources of
uncertainty can be found in material properties, boundary condi-
tions, loads [15], the hypotheses of model or the model itself
[16], etc. In order to characterize the uncertain response in dynam-
ics of structures there is a bunch of alternatives that can be col-
lected in two master sets: parametric probabilistic approach
(PPA) [15] and non-parametric probabilistic approach (NPPA)
[16]. In the first case the source of uncertainty are the parameters
of the model in the second case the model as a whole. In the PPA
the uncertain parameters are associated to a random variable
whose probability density function (PDF) is defined according to
given information about them (mean values, standard deviation,
bounds, etc.).

Thus, the scope of this research is directed toward offering some
contributions in the mechanics/dynamics of curved MEE beams
and especially to quantify the propagation of the uncertain in the
dynamic response of curved and also straight MEE beams. In this
context, the present article is arranged according to the following
scheme: As a first step the hypotheses of the constitutive model
are enunciated and the deterministic structural model is pre-
sented, then an equivalent MEE curved beam model is constructed
on the basis of curved beam models previously developed by the
first author [18,19] which are conceived in the context of first order
shear theories. A finite element formulation is proposed and then
employed to carry out calculations of the deterministic model.
Subsequently, the probabilistic model is constructed employing
the previous finite element formulation in which the random vari-
ables are incorporated. The PDF of the random variables (some
elastic, electric properties, elastic foundations, etc) are deduced
by employing the Maximum Entropy Principle [14,17] subjected
to given known information such as expected values and/or COV.
Then the Monte Carlo method is employed to simulate realizations,
the statistical analysis is done and the results presented in the form
of frequency response functions or other graphics of statistical
interest.

2. Formulation of the deterministic model

2.1. Basic hypotheses of the structural model

The Magneto-electro-elastic structure of this article is a thin
curved strip supported on elastic foundation as the one shown in
Fig. 1 with the reference system located in the geometric centroid
of the cross section. The curved beam has a circumferential length
of L ¼ Rb, a radial thickness of h, width of b and a constant radius of
curvature R.

The deterministic model for this study is based on the follow-
ing assumptions: (a) The motion of the curved beam is con-
strained in the curvature plane (XY), (b) Shear flexibility is
considered, (c) the material is supposed to be poled in the radial
direction and it consists of a mixture in given proportions of
BaTiO3 and CoFe2O4, (d) the electric and magnetic fields are deter-
mined through their corresponding potentials which are pre-
scribed on the cylindrical surfaces (i.e. y ¼ R� h=2, or
y ¼ Ri; y ¼ Ro); (e) The radial components of the electric and mag-
netic fields are substantially greater than the circumferential
components (Ex� Ey Hx� Hy), (f) A generic elastic foundation
(characterized with spring coefficients) is assumed, (g) the struc-
tural damping is considered as ’’a posteriori’’ incorporation in the
finite element formulation.

Employing the hypotheses, the displacement field can be
derived [19] as:

uxðx; y; tÞ ¼ uxc � y hz �
uxc

R

� �
uyðx; y; tÞ ¼ uyc

ð1Þ
where uxc and uyc are the circumferential and radial displacements
of the reference point C whereas hz rotation parameter. The repre-
sentative strain components can be written in the following form
[19]:

exx ¼ eD1 � yeD2ð ÞF
cxy ¼ eD3F

ð2Þ

where:

eD1 ¼ u0xc þ
uyc

R
; eD2 ¼ h0z �

u0xc

R
; eD3 ¼ u0yc � hz; F ¼ R

Rþ y
ð3Þ

In Eq. (3), the apostrophes represent derivatives with respect to
the spatial variable x. Moreover, eD1 can be interpreted as the gen-
eralized circumferential strain, eD2 as the generalized bending cur-
vature and eD3 as the generalized shear strain.

The mechanical equilibrium equations of the curved MEE beam
supported on the elastic foundation can be written in the following
form:

� Q 0x þ
M0

z

R
þ k1uxc þM1 €uxc; €uyc; €hz

� �
� P1 xð Þ ¼ 0

� Q 0y þ
Q x

R
þ k2uyc þM2 €uxc; €uyc; €hz

� �
� P2 xð Þ ¼ 0

�M0
z � Qy þ k3hz þM3 €uxc; €uyc; €hz

� �
� P3 xð Þ ¼ 0

ð4Þ

with the corresponding boundary conditions:

� eQ x þ
eMz

R
þ Q x �

Mz

R
¼ 0; or uxc ¼ 0

� eQ y þ Qy ¼ 0; or uyc ¼ 0

� eMz þMz ¼ 0; or hz ¼ 0

ð5Þ

In the previous expressions, Q x is the axial force, Q y is the shear
force Mz is the bending moment, Pi; i ¼ 1;2;3 represent distributed
forces and moments, Mi; i ¼ 1;2;3 are inertial forces, whereaseQ x; eQ y and eMz are prescribed forces at the beam ends. These enti-
ties are defined as:

Q x;Q y;Mz
� �

¼
Z

A
rxx;rxy;�yrxx
� �

dA ð6Þ

M1

M2

M3

8><>:
9>=>; ¼

Jq11 0 Jq13

0 Jq22 0
Jq13 0 Jq33

264
375 €uxc

€uyc

€hz

8><>:
9>=>; ð7Þ

In Eq. (7) Jqik; i; k! 1;2;3 are inertia constants that are described
extensively in Appendix A.
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2.2. Deduction of potentials and constitutive equations

The constitutive equations of a magneto-electro-elastic solid
under the hypothesis of plane stress – assuming ryy � rxx and
employing the hypothesis (d) – can be written in the following
matrix form [23,11,12]:

rxx

rxy

Dx

Dy

Bx

By

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

c�11 0 �e�21 �q�21

0 c�66 0 0
0 e�16 0 0

e�21 0 g22 d22

0 q�16 0 0
q�21 0 d22 l22

2666666664

3777777775
exx

cxy

Ey

Hy

8>>><>>>:
9>>>=>>>; ð8Þ

and rij are the stresses, �ij and cxy are the axial and shear strain
components; Di and Bi are the components of the electric displace-
ment and the magnetic flux, respectively; Ei and Hi are the compo-
nents of the electric field and the magnetic field, respectively; c�ik are
modified elastic coefficients; gij are the dielectric coefficients; lij

are the magnetic permeability coefficients; e�ij are the modified
piezoelectric coefficients; q�ij are the modified piezomagnetic coeffi-
cients and dij are the magnetoelectric coefficients.

It is interesting to note that from Eq. (8), the electric displace-
ment and magnetic flux in x-direction (Dx and Bx, respectively)
depend only on the shear strain cxy. These constitutive expressions
allow the calculation of the electric and the magnetic potentials in
explicit form (see reference [11] for detailed issues).

The electric and magnetic fields are defined in terms of the elec-
tric and magnetic potentials (i.e. E ¼ � �rU and H ¼ � �rW, with �r
as the gradient operator). The equilibrium equations of electrostat-
ics and magnetostatics are [23,13]:

�r � D ¼ 0
�r � B ¼ 0

ð9Þ

where D ¼ Dx;Dy;Dz
� �

;B ¼ Bx; By;Bz
� �

, and �r� is the divergence
operator (in curvilinear coordinates).

Now, employing Eq. (8) together with Eq. (9) and after some
algebraic handling it is possible to arrive to:

U ¼ D1U0 þD2U1 þD3e0D3 þD4eD2

W ¼ B1W0 þ B2W1 þ B3e0D3 þ B4eD2
ð10Þ

where the coefficients Di;Bi, i ¼ 1; . . . ;4 defined extensively in
Appendix B.

According to the definition of the internal forces given in Eq. (6)
and employing Eq. (8) it is possible to derive the following expres-
sion of the internal forces in terms of strain components and elec-
tro/magnetic potentials:

�Q ¼ MCA�eD þMCB �e0D þMCE
�PUW ð11Þ

where:

�Q ¼ Q x;Mz;Q y

� �T
; �eD ¼ eD1; eD2; eD3f gT

�PUW ¼ U0;U1;W0;W1f gT

MCA ¼
JX1 JX2 0
JM1 JM2 0
0 0 JY3

264
375; MCB ¼

0 0 JX4

0 0 JM4

0 0 0

264
375

MCE ¼
JX5 JX6 JX7 JX8

JM5 JM6 JM7 JM8

0 0 0 0

264
375

ð12Þ

besides JXi; JMi; JYi; i ¼ 1; . . . ;8 are constants that depend on the elas-
tic, electric and magnetic properties (extensive expressions can be
followed in Ref. [20]).
2.3. Weak formulation and finite element approach of MEE curved
model

Substituting Eq. (11) in Eq. (4) and incorporating the boundary
conditions given in Eq. (4) it is possible to write the following weak
form of the equilibrium equations of the MEE curved beam model:Z

L
QxdeD1 þ QydeD2 þMzdeD3 þM1duxc þM2duyc þM3dhz
� �

dx

þ
Z

L
k1uxc � P1ð Þduxc þ k2uyc � P2

� 	
duyc � k3hz þ P3ð Þdhz

� �
� Q x �

Mz

R


 �
duxc þ Q yduyc �Mzdhz

� 
����L¼0

x¼0
¼ 0 ð13Þ

The weak variational formulation (13) represents the equilibrium
mechanics of a MEE curved beam. The solution of this formulation
for given problems (dynamics and/or statics) can be tackled by
means of many approaches: Generalized direct variational
approaches, finite elements approaches among many other
alternatives.

A Finite Element formulation can be derived through discretiza-
tion of Eq. (13). The discretization is carried out using isoparamet-
ric elements with five nodes and shape functions of quartic order.

Each kinematic variable uxc � U1;uyc � U2 and hz � U3, can be
interpolated within the element by means of following compact
form [21]:

Ui ¼ Fi
�Ue; i ¼ 1; . . . ;3 ð14Þ

where the matrix F 3� 15½ 	 collects the shape functions f j �xð Þ,
j ¼ 1; . . . ;5, for the isoparametric elements of quartic order. Each
variable Ui; i ¼ 1; . . . ;3 is interpolated with the same shape func-
tions in F. Ue is the vector of kinematic nodal variables.

Now substituting Eq. (14) in Eqs. (3) and (11) and then in Eq.
(13) it is possible to derive the following equation in the elemen-
tary domain:

dUT
e

Z
le

FT DT
D1MCADD1Fledn

� 

Ue þ dUT

e

Z
le

FT DT
D1MCBD0D1Fledn

� 

Ue

þdUT
e

Z
le

FT DT
D1MCE

�PUWledn

� 

þ dUT

e

Z
le

FT MCIFledn

� 

€Ue

þdUT
e

Z
le

FT MCFFledn

� 

Ue � dUT

e

Z
le

FT �Pledn

� 

� dUT

e FT �PBC

� ����le
0
¼ 0

ð15Þ

where le is the length of the element, n ¼ x=le is the internal coordi-
nate, MCA;MCB, MCE and �PUW are defined in Eq. (12), MCIis defined in
Eq. (7), �P is the vector of distributed forces, �FBC is a vector of pre-
scribed forces at the ends of the element, the matrix
MCF ¼ diagðk1; k2; k3Þ is the matrix of elastic foundation constants
and DD1 is a differential operator.

Employing the usual assembly procedures of the finite element
method with the matrix structure of Eq. (15) and incorporating the
’’a posteriori’’ proportional damping (CSD ¼ g1Mþ g2K [19]) one
gets:

K �Wþ CSD
_�WþM €�W ¼ �FM � �Fem: ð16Þ

where K and M are the global matrices of elastic stiffness and mass,

respectively; whereas �W; _�W and €�W are the global vectors of nodal
displacements, velocities and accelerations, finally �FM and �Fem are
the global vectors of forces due to mechanical components strictly
and forces due to electromagnetic loads applied in boundaries
and/or the curved beam span, respectively.



Table 1
Natural Frequencies: comparison of the present model reduced to the case of straight beam.

Bounds Clamped–free Clamped–clamped

Mode Type Present Annigeri Milazzo Type Present Annigeri Milazzo

1 Fle 169 170 169 Fle 1052 1055 1053
2 Fle 1041 1044 1043 Fle 2805 2806 2800
3 Fle 2833 2835 2831 Fle 5277 5267 5250
4 Ext 3867 3902 – Ext 7734 7813 –
5 Fle 5341 5337 5323 Ext 8321 8291 –
6 Fle 8441 8423 8385 Fle 11815 11759 11675
7 Ext 11602 11705 – Fle 15469 15573 15423
8 Fle 12005 11967 11887 Ext 15657 15624 –
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From the previous Eq. (16) two possible issues are analyzed in
the present investigation: transient analysis in the frequency
domain and eigenvalues. Thus, the response in the frequency
domain, after a Fourier transformation of the discrete model given
in Eq. (16) is written as [25]:cW xð Þ ¼ �x2Mþ ixCSD þ K

� ��1bF xð Þ; ð17Þ

where cW and bF are the Fourier transform of the displacement vec-
tor and force vector, respectively; whereas x is the circular fre-
quency measured in [rad/s]. Moreover, Eq. (16) can be reduced to
calculate the dynamic eigenvalues (or natural frequencies) by
neglecting damping and all applied forces and by assuming har-
monic motion:

K �W�x2M �W ¼ �0: ð18Þ

where x is now the eigenvalue for free vibrations. Although Eqs.
(17) and (18) are deduced without the presence of electromagnetic
forces, they contain the coupled MEE nature by means of the consti-
tutive relations given in Eq. (12).

3. Construction of the probabilistic model

The construction of the probabilistic model is connected with
the employment of the finite element formulation of the previ-
ously developed deterministic model, as a mean expected
response. The Maximum Entropy Principle (MEP) is used to derive
the probability density functions (PDF) of the random variables
associated with the uncertain parameters [14]. This particular is
quite sensitive in stochastic analysis and PDF’s should be deduced
according to the given information (normally and sensitively
scarce) about the uncertain parameters. The deterministic model
developed has many parameters that can be uncertain, however
the most relevant could be the material properties and the spring
constants of the elastic foundation.

In the present problem the random variables Vi; i ¼ 1;2;3 . . . 13
are introduced such that they represent the equivalent material
properties (i ¼ 1; . . . ;10) and the elastic foundation parameters
(i ¼ 11;12;13). The expected value of the random variables is
known and it has the nominal value of the parameters in the deter-
ministic model, i.e.: EfVig ¼ Vi; i ¼ 1;2;3 . . . 13. Moreover the ran-
dom variables have bounded supports whose upper and lower
limits can be represented in terms of given information (standard
deviation or coefficient of variation). Provided that there is no
information about the correlation or dependency of material prop-
erties, random variables Vi; i ¼ 1; . . . ;13, according to MEP, are
assumed independent and non correlated [15,17,24].
Consequently, taking into account the previous conditions, the
PDF’s of the random variables can be written as:

pVi
v ið Þ ¼ S½LVi

;UVi 	 v ið Þ
1

2
ffiffiffi
3
p

VidVi

; i ¼ 1; . . . ;13 ð19Þ
where S½LVi
;UVi 	

v ið Þ is the generic support function, whereas LVi
and

UVi
are the lower and upper bounds of the random variable Vi. Vi is

the expect value (or deterministic value) of the ith random variable,
whereas dVi

is its coefficient of variation. The Matlab function uni-

frnd Vi 1� dVi

ffiffiffi
3
p� �

;Vi 1þ dVi

ffiffiffi
3
p� �� �

can be used to generate real-

izations of random variables Vi; i ¼ 1; . . . ;13. Then, using Eq. (19)
in the construction of the matrices of finite element formulation
given in Eq. (17), the stochastic finite element model can be written
as:

cW xð Þ ¼ �x2Mþ ixCRD þK
� ��1bF xð Þ: ð20Þ

Notice that in Eq. (20) the math-blackboard typeface is
employed to indicate stochastic entities.

The Monte Carlo method is used the simulate the stochastic
dynamics, which implies the calculation of a deterministic system
for each independent realization of random variables

Vi; i ¼ 1;2; ::;13. The convergence of the stochastic response cW
can be calculated with the following expression:

conv NMSð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NMS

XNMS

j¼1

Z
X

cWj xð Þ �cW xð Þ
��� ���2

dx

vuut ; ð21Þ

where NMS is the number of Monte Carlo samplings and X is the fre-

quency band of analysis. Clearly, cW is the response of the stochastic

model and cW the response of the mean model or deterministic
model.

4. Studies on mee curved beams

4.1. Validation and comparative studies

In this section a comparison and validation of the deterministic
MEE curved beam model with respect to other approaches is per-
formed. The first example corresponds to a comparison of the pre-
sent MEE curved beam model reduced to the case of straight beam
(i.e. R!1), with respect to the beam model of Milazzo et al. [11]
and the 2D finite element approach of Biju et al. [22], and
Annigeri et al. [23]. The material properties of the MEE composite
with 40% BaTiO3 and 60% CoFe2O4 are taken from the work of
Annigeri et al. [23] and the equivalent constants for the beam for-
mulation are: c�11 ¼ 120:67 GPa, c�66 ¼ 45 GPa;e�21 ¼ 6:52 C=m2;

e�16 ¼ 0, q�21 ¼ 32:66 N=ðAmÞ; q�16 ¼ 180 N=ðAmÞ, g22¼�8:97�10�9

Ns=ðCVÞ;d22 ¼8:85�10�9 F=m;l22¼7:54�10�3 Ns2=C2 and q¼
5600 Kg=m3. These values are nearly the same of those calculated
by Milazzo et al. [11] with a difference in percentage no higher than
0.7%. The dimensions of the beam are L¼0:3 m;h¼0:02 m and
b¼1:0m (in order to compare with the 2D FEM approach [23]).
The boundary conditions are clamped–free or clamped–clamped.
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Fig. 2. Deterministic FRF and Stochastic mean response with different dispersion parameters in all properties.

Table 2
Natural Frequencies of a clamped–free curved MEE beam (considering and neglecting MEE coupling): comparison of the present model with 2D FEM approach (without
piezoelectric effect).

Relations L=R ¼ 1:0 L=R ¼ 0:3

Mode 2D FEM w/o coup With coup 2D FEM w/o coup with coup

1 170 169 173 167 166 170
2 921 921 938 1010 1011 1030
3 2629 2636 2682 2754 2764 2814
4 4358 4349 4363 3928 3923 3924
5 5292 5318 5398 5216 5253 5343
6 8183 8266 8398 8215 8302 8437
7 11488 11585 11664 11574 11602 11611
8 11983 12016 12118 11714 11840 12012
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In Table 1 it is shown the comparison of the first 8 natural fre-
quencies calculated with the present model and the models
derived by Milazzo et al. [11] and Annigeri et al. [23]. It is observed
that the present model can recover both extensional and bending
modes with difference in percentage no higher than 1.0 % with
respect to Annigeri’s results [23] associated to a 2D FEM approach.

In Table 2 the first 8 frequencies of a curved MEE beam are
shown and a comparison between various approaches and effects
is also presented. The curved beam is clamped–free and has the
same length, height and width of the previous example. In fact
the present 1D model is compared with a 2D approach (performed
under a plane-stress state in a general purpose finite element plat-
form). Two alternatives in the 1D model are evaluated: considering
full electromagnetic coupling in beam coefficients (i.e. in JXi and
JMi; i ¼ 1; . . . ;4) or neglecting that effect by imposing e�21 ¼ 0;
e�16 ¼ 0; q�21 ¼ 0; q�16 ¼ 0. It is possible to note that 2D results are
nearly compatible with the case where the full coupling is
neglected with a difference in percentage lower than 1.0 %. On
the other hand, in the case of full MEE coupling in the calculation
of beam sectional properties it is seen an increase of 3.0 to 4.0 % in
the frequencies when compared with the previous two cases.
4.2. Uncertainties in the dynamic response

In this section a study about the propagation of uncertainty
in the frequency response function (FRF) associated to several
parameters is carried out. The example fr the analysis is a
clamped–free curved beam with the same dimensions of the
precedent paragraph and L=R ¼ 0:3. The FRF measure is charac-
terized by HF ¼ uðLÞ=FðLÞ where FðLÞ is a unitary shock force
[15].

Fig. 2 shows the deterministic FRF compared with four stochas-
tic responses. The stochastic responses correspond to cases where
the variability is associated with the material properties (the
parameter of the elastic foundation os assumed constant in this
calculation). There is also another distinction topic: the parameters
related to elastic properties (de), the parameters related to
magneto-electric coupling properties (dme) and the parameters
related to magneto-piezo-electric properties (dpme). Then recalling
Fig. 2, one can see that the three cases, in which the elastic param-
eters (de ¼ 0:05) are lower, manifest nearly the same response.
Nevertheless little pikes can be found in some locations (e.g. after
the second frequency pike as one can see in Fig. 3) in the case when
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the uncertainty in the magneto-electric parameters is extreme, i.e.
dme ¼ 0:55. If the uncertainty, in the parameters associated with
elastic property, is higher the mean stochastic response diverges
substantially from the other three that have the lower variation
in the elastic properties.

In Figs. 4–6 one can see the propagation of uncertainty associ-
ated to several parameters of the structure, i.e. the deterministic
response is shown together with the mean stochastic response
and the 95% confidence interval bounds. Effectively, in Figs. 5
and 6 one can see how sensitive is the response to the variation
of magneto-electric properties identified with a coefficient of vari-
ation dem ¼ 0:55 which is a little bit lower than the possible limit of
the selected random variable (i.e. dem <

ffiffiffi
3
p

, that identifies a 2nd
order random variable). On the other hand, a nearly extreme
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variation in the coupled piezo-electric/piezo magnetic parameters,
identified by dpme ¼ 0:55, is not so sensitive in comparison to the
case of standard variability, that is related to a variation of the
order of dall ¼ dVi

¼ 0:05 in all material parameters.
In Fig. 7 it is shown the effect of uncertainty propagation in the

frequency response due to variation in the elastic foundation coef-
ficients, and maintaining the material properties in their nominal
deterministic values. As one can see an extreme variation of the
coefficients of variations (def � d11 � d12 � d13) does not seem to
be sensitive in the dynamic response of the structure.

5. Conclusions

In this article a new model for studying vibrations in MEE
curved beams has been introduced. The model has been
implemented in the context of finite element methodologies and
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employed to calculate vibration patterns of curved MEE
beams. The model can reproduce results of straight beams with
or without electromagnetic coupling. Also the curved beam model
compares well with 2D approaches (plane stress state) when the
piezoelectric effect is neglected. Some preliminary studies for
quantification of uncertainty due to given parameters of the model
have been carried out. The propagation of uncertainty due to mate-
rial properties proved to be substantially more sensitive than the
one related to the elastic foundation. The uncertainty in the elastic
properties proved to be more sensitive than the other properties.
However this is an extreme case. Nevertheless if the elastic proper-
ties are appropriately known the uncertainty propagation due to
the magnetic-electric properties is more sensitive than the corre-
sponding to the coupled piezo-electric/piezo magnetic properties.
Although in the case of elastic foundations the analysis of uncer-
tainty could be performed through stochastic fields, it should be
the matter of future research based on the present one.
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Appendix A

The inertia constants Jqik; i; k! 1;2;3 are calculated in the fol-
lowing compact form:

Jqik ¼
Z

A
q�gðaÞi

�gðaÞk F
�1dAþ

Z
A
q�gðbÞi

�gðbÞk F
�1dA ð22Þ

in which �ga and �gb are defined as:

�gðaÞ ¼ F�1;0;�y
� �

�gðbÞ ¼ 0;1;0f g
ð23Þ

The MEE beam equivalent constants are defined calculated as:
JX1 ¼
Z

A
c�11FdA; JX2 ¼

Z
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�c�11yF þ e�21

@D4

@y
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e�21; e

�
21; q

�
21; q

�
21

� �
� @
@y
D1;D2;B1;B2f gdA;

JM5; JM6; JM7; JM8f g ¼ �
Z

A
y e�21; e

�
21; q

�
21; q

�
21

� �
� @
@y
D1;D2;B1;B2f gdA

ð26Þ
Appendix B

Coefficients Di, and Bi; i ¼ 1; . . . ;4 are calculated in the subse-
quent form (by means of a Taylor expansion in R):

D1 ¼ B1 ¼
1
2
� y

h


 �
þ
� h

8þ
y2
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R
þ
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12�

y3
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