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Complex patterns in neuronal networks emerge from the cooperative activity of the 
participating neurons, synaptic connectivity and network topology. Several neuron types 
exhibit complex intrinsic dynamics due to the presence of nonlinearities and multiple time 
scales. In this paper we extend previous work on hyperexcitability of neuronal networks, 
a hallmark of epileptic brain seizure generation, which results from the net imbalance 
between excitation and inhibition and the ability of certain neuron types to exhibit abrupt 
transitions between low and high firing frequency regimes as the levels of recurrent 
AMPA excitation change. We examine the effect of different topologies and connection 
delays on the hyperexcitability phenomenon in networks having recurrent synaptic AMPA 
(fast) excitation (in the absence of synaptic inhibition) and demonstrate the emergence of 
additional time scales.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Neuronal networks of the brain display complex spatio-temporal patterns [1]. These patterns result from the cooperative 
activity of the participating neurons, the synaptic connectivity and the network topology [2,3]. The dynamics of individual 
neurons depend primarily on the nature and properties of the participating ionic currents whose combined activity gen-
erates the neuron’s effective intrinsic time scales. Synaptic connectivity can be electrical (gap junctions) or chemical [4]. 
The latter, in turn, can be excitatory or inhibitory and operate at different time scales within a relatively large range. Net-
work topologies depend on the brain area and the level of organization and include ring [5,6] (and references therein) and 
small-world network [7–10] connectivities.

While realistic neuronal networks include both excitation and inhibition, there are several aspects of the network dynam-
ics that can be addressed by first understanding the dynamics of recurrently excited networks [8–13] and then investigating 
how recurrent inhibition affects the resulting patterns [12]. One such aspect is that of the hyperexcitability of neuronal cir-
cuits, which is one of the hallmarks of epileptic brain seizure generation [14,15]. Various hypotheses have been put forward 
to explain the generation of abnormal recurrent excitation including the lack of enough inhibition (dormant interneuron 
hypothesis) [16–24] and aberrant axonal reorganization of principal cells (e.g., mossy fiber sprouting in the dentate gyrus) 
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(recurrent excitation hypothesis) [25–35]. Regardless of whether the net imbalance between excitation and inhibition results 
from decreased inhibition or increased excitation, the study of recurrently excited networks is key to understand how the 
network patterns transition between “normal” to hyperexcitable.

Synaptic excitation constitutes a positive feedback effect, and therefore increasing levels of the maximal AMPA synaptic 
conductance (Gex) are expected to produce an increase in the spike (or firing) frequency fspk at a rate that also increases 
with Gex (Fig. 1-a1). However, synaptic excitation does not operate alone, but its net effect depends on its interaction with 
the intrinsic properties of the postsynaptic cell. As shown by us and other authors [12,13,36,37], this can result in some 
unintuitive effects. In [12] we have investigated the mechanism of hyperexcitability in medial entorhinal cortex layer II 
stellate cells motivated by experimental findings in [23,38]. We used self-excited cells mimicking a population of recurrently 
excited cells synchronized in phase. We showed that the firing frequency is maintained constant or slightly decreases for 
increasing values of the maximal synaptic conductance (Gex) within some relatively large range, above which an abrupt 
increase in firing frequency to a significantly large value occurs (Fig. 1-b1). The firing frequency gradually increases for 
values of Gex above this abrupt transition. The interaction between the decay time of excitation and the effective intrinsic 
time scales generated by the persistent sodium and the hyperpolarization-activated currents is crucial for this phenomenon. 
Synaptic inhibition acts as a switch between the two firing frequency regimes. In [13] we have carried out a thorough 
comparative study of the classes of models that produce these two qualitatively different types of behavior, and we have 
extended our results to minimal, two-cell network models.

The goal of this paper is to extend our results to larger networks. Specifically, we examine whether the gradual and 
abrupt transition between low and high firing frequencies generated by the two classes of models described above persist in 
larger, recurrently excited networks. In addition, we examine the similarities and differences between the patterns generated 
by these two classes of models in these larger networks. Finally, we investigate the role of synaptic delays in stabilizing the 
network activity in the high-frequency regime at lower spike frequencies than those for instantaneous synapses. Synaptic 
delays have been shown to play significant role in the generation of network coherent activity [39–47].

We use two models that are prototypical for the two modes of transitions between low and high firing frequencies: the 
integrate-and-fire (IF) model and the so-called Ih + INap model. The IF model has passive subthreshold dynamics (no active 
ionic currents) and exhibits gradual transitions (Fig. 1-a1). The Ih + INap model has persistent sodium and hyperpolarization-
activated (h-) currents and exhibits abrupt transitions (Fig. 1-b1). For simplicity we focus on networks with ring topologies 
where each cell is only connected to its nearest neighbors. Our results provide the basis for the investigation of networks 
with more complex connectivity patterns and more general model types.

2. Methods

Neurons are modeled using the Hodgkin–Huxley (conductance-based) formalism [48]. The current-balance equation in 
the subthreshold voltage regime is given by

C
dV

dt
= −I L −

∑

j

Iion, j + Iapp, (1)

where V is the membrane potential (mV), t is time (msec), C is the membrane capacitance (μF/cm2), Iapp is the applied 
bias (DC) current (μA/cm2), I L = G L (V − E L) is the leak current, and Iion, j are ionic currents of the form

Iion, j = G j ma
j hb

j (V − E j) (2)

with activation and inactivation gating variables m j and h j respectively, maximal conductances G j (mS/cm2), reversal po-
tentials E j (mV), and constants a ≥ 0 and b ≥ 0. All gating variables x obey a first order differential equation of the form

dx

dt
= x∞(V ) − x

τx(V )
(3)

where x∞(V ) and τx(V ) are the voltage-dependent activation/inactivation curves and time-constants respectively.
The models used in this paper do not contain a biophysical description of the spiking dynamics, which is usually gener-

ated by the interplay of a transient sodium and delayed-rectifier potassium currents [4]. Instead, spikes are added artificially 
once the voltage has reached a threshold value V th . The artificial spikes have the form 60 e−2(t−tspk) for t ∈ [tspk, tspk + �spk)

where tspk is a given spike time and �spk is the spike duration, which was set to be equal to 1 msec. The variables V
and x are reset at t = tspk + �spk to V rst and xrst respectively. In the leaky integrate-and-fire (IF) model V th is part of the 
mechanism for spike generation. In contrast, the persistent sodium/h-current (Ih + INap) model (described below) describes 
the onset of spikes and V th only indicates their occurrence.

For the (IF) model [4] the subthreshold dynamics are described by eq. (1) with Iion = 0. We used the following pa-
rameter values: C = 1, E L = −65, G L = 0.025, V th = −50, V reset = −70. Additional parameter values are provided in the 
corresponding figures.

The Ih + INap model is an adaptation of the reduced model derived in [49] from the fully spiking model introduced 
in [50]. The subthreshold dynamics are described by eqs. (1)–(3) with a persistent sodium current and an h-current given 
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Fig. 1. Spike frequencies ( fspk) for the self-connected IF and Ih + INap models as a function of the maximal synaptic conductance Gex for representative 
values of Iapp (left panels) and synaptic delay tdel (right). (a) IF model. The values of fspk for the uncoupled cell are: 5 Hz (blue), 10 Hz (red) and 15 Hz 
(green). (a1) tdel = 0. (a2) Iapp = 0.42 (red in panel a1). We used the following parameter values C = 1, EL = −65, G L = 0.025 (b) Ih + INap model. The 
values of fspk for the uncoupled cell are: 6 Hz (blue), 10 Hz (red) and 15 Hz (green). (a1) tdel = 0. (a2) Iapp = −1.78 (red in panel a1). The bottom panels 
are magnifications of the top ones. We used the following parameter values C = 1, G L = 0.5, Gh = 1.5, EL = −65, ENa = 55, Eh = −20. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

by INap = G p p (V − ENa) = G p p∞(V ) (V − ENa) and Ih = Gh r (V − Eh) respectively. The voltage-dependent activation/inacti-
vation curves and time constants are given by p∞(V ) = 1/(1 +e−(V +38)/6.5), r∞(V ) = 1/(1 +e(V +79.2)/9.78), and τr(V ) = 100. 
We used the following parameter values: C = 1, Eh = −20, ENa = 55, E L = −65, gL = 0.5, V reset = −80 and rreset = 0. Addi-
tional parameter values are provided in the corresponding figures.

The excitatory synaptic currents [4] (from neuron j to neuron k) considered in this paper are described by

Isyn = G j,k S j(t − tdel) (Vk − Eex) (4)

where Vk is the voltage of the postsynaptic cell, S j(t) is the presynaptic variable, G j,k is the maximal synaptic conductance, 
Eex = 0 is the excitatory reversal potential and tdel is the synaptic delay time. We will use the notation G j,k = Gex when a 
uniform value for G j,k is used.

Synaptic variables S(t) obey a kinetic differential equation of the form

dS

dt
= N(V )

(1 − S)

τr
− S

τd
, (5)

where N(V ) denotes the sigmoid function

N(V ) = 1 + tanh(V /4)

2
(6)

and τr and τd are the rise and decay time constants respectively (msec). In this paper we focus on AMPA synaptic excitation 
with τr = 0.1 and τd = 3.
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Fig. 2. Representative voltage traces for the IF and Ih + INap models before and after recurrent excitation is activated. The vertical gray line indicates the 
connection time. (a) IF model. We used the following parameter values C = 1, EL = −65, G L = 0.025, Iapp = 0.42, tdel = 0. (b) Ih + INap model. We used the 
following parameter values C = 1, G L = 0.5, Gh = 1.5, EL = −65, ENa = 55, Eh = −20, Iapp = −1.78, tdel = 0.

The network population activity is measured using the following definition for the local field potential (LFP)

LFP(t) = 1

N

N∑

k=1

Sk(t). (7)

3. Results

3.1. Abrupt and gradual transitions between firing frequency regimes as the result of increasing levels of synaptic excitation in 
self-connected cells

Here we review previous results on the two qualitatively different modes of transition (gradual and abrupt) between the 
low and high (hyperexcitable) firing frequency regimes as the result of changes in the maximal AMPA synaptic conductance 
Gex in minimal network models consisting of self-connected cells. The IF and Ih + INap models we use in this paper are 
prototypical for these two modes of transition. Our results are presented in Figs. 1-a1 (IF model) and Fig. 1-b1 (Ih + INap
model). In all cases, the natural spike (firing) frequency ( fspk) for the isolated cells (Gex = 0) increases with increasing values 
of Iapp . Representative voltage traces (voltage time courses) for both models are presented in Fig. 2.

For the IF model (Fig. 1-a1), as Gex increases, fspk increases, first slowly and then faster. The Gex– fspk curves are smoother 
the larger Iapp . In contrast, for the Ih + INap model (Fig. 1-b1), as Gex increases, fspk first decreases (see bottom panel) and 
then it “jumps” to a higher value (roughly an order of magnitude higher). The threshold-like value for Gex decreases with 
increasing values of Iapp , but the Gex– fspk curves remain abrupt-like. The voltage traces in Fig. 2-b correspond to values of 
Gex on both sides of, and very close to, the abrupt transition.

For small enough values of Iapp (small enough natural spike frequencies) the Gex– fspk curves in the IF model exhibit fast 
changes in fspk (e.g., blue curve in Fig. 1-a1). However, as shown in [13], there are mechanistic differences between these 
and the abrupt transitions for the Ih + INap model, which are threshold like and present for a large range of values of natural 
frequencies.

3.2. Effects of synaptic delay on the modulation of the firing frequency transitions in self-connected cells

The effects of synaptic delay on neuronal dynamics are typically complex and not straightforward. This complexity is 
reflected in the dependence of fspk on both Iapp and Gex . Figs. 1-a2 and -b2 illustrate this for the self-excited IF and 
Ih + INap cells with natural fspk = 10 Hz (corresponding to the red curves in panels a1 and b1).

The dependence of the Gex– fspk curves on tdel are qualitatively similar for the two models, although the characteristic 
shapes corresponding to the two different modes of transition (gradual and abrupt) persist. For simplicity, below we describe 
this dependence only for the Ih + INap model.
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As tdel increases, the transition value for Gex decreases, implying that the cells become more hyperexcitable. This is 
similar to the effect of increasing Iapp (panel b1), but in contrast to it, fspk jumps to a lower value the larger tdel .

The intersections between the Gex– fspk curves for different values of tdel indicate the existence of inversions in the 
relative magnitudes of fspk for different values of tdel as Gex increases. This implies that tdel has a non-monotonic effect 
on fspk . For instance, for Gex = 0.22 in Fig. 1-b2, an increase in tdel from tdel = 0 (blue curve) to tdel = 1 (red curve) causes 
an increase in fspk , but a further increase to tdel = 5 (green curve) causes a decrease in fspk .

Overall, these results show that synaptic delay contributes to the network hyperexcitability but also to stabilize the firing 
frequency at lower values in the high-frequency regime.

3.3. Synchronized patterns in recurrently connected two-cell networks: in-phase, antiphase and bistability

The network population frequency depends not only on the firing frequency of the individual neurons, but also on the 
network synchronization properties. Here we examine whether the effects described above for self-excited cells persist 
for networks of two-recurrently excited cells and the resulting patterns in the different frequency regimes. As a base-
line case we consider parameter values such that fspk = 10 Hz for the isolated cells (red curves in Figs. 1-a1 and -b1). 
Our results in Fig. 3 show that the IF and Ih + INap models show gradual and abrupt transitions respectively between 
firing frequency regimes as Gex increases. However, in-phase patterns are not always stable. Specifically, depending on 
the values of Gex and tdel , the two-cell networks may exhibit in-phase patterns, antiphase patterns or bistability between 
them.

For the IF model, the network synchronizes in-phase for low enough values of Gex (Fig. 3-a1) and in antiphase for large 
enough values of Gex (Fig. 3-a2). The spike alternation in the antiphase patterns cause fspk to increase faster with increasing 
values of Gex (compare panels a1 and a2) than it would for self-connected networks. An increase in tdel generates bistability 
between in-phase (Fig. 3-a3-i) and antiphase (Fig. 3-a3-ii) patterns. For the latter, the population frequency is slightly higher 
than for in-phase patterns, but not twice as much.

For the Ih + INap model, the network synchronizes in-phase in the low-frequency regime (Figs. 3-b1 and 3-b2-ii) and in 
antiphase in the high-frequency regime (Fig. 3-b2-i). For low enough values of Gex the in-phase low-frequency patterns are 
the only stable patterns. For higher values of Gex bistability arises between an antiphase high-frequency pattern (Fig. 3-b2-i) 
and an in-phase low-frequency pattern (Fig. 3-b2-ii). For larger values of Gex , the antiphase high-frequency patterns are 
the only stable ones (not shown). As for the self-connected cells, the value of fspk is almost independent of Gex in the 
low-frequency regime.

Increasing values of tdel may cause fspk to transition to a high-frequency regime (Fig. 3-b3). As in the self-connected 
cells, the firing frequency in the high-frequency regime is lower than for instantaneous synaptic connections. As in the IF 
model, there is bistability between in-phase (Fig. 3-b3-i) and antiphase (Fig. 3-b3-ii) patterns. However, in contrast to the IF 
model, the population frequency is almost the same. The lower value of fspk as compared to Fig. 3-b2-i is due to the higher 
value of tdel and a slightly lower value of Gex .

Together, these results show that the different modes of transition between firing frequency regimes described for self-
connected cells persist in two-cell networks, but the ability of the cells to synchronize out-of-phase increases the complexity 
of the resulting patterns with potential implications for larger networks.

3.4. Dynamics of networks with ring-type architecture

Here we examine whether the effects described above for two-cell IF and Ih + INap networks persist in networks with 
a larger number of cells and what additional patterns emerge as a consequence of the larger dimensionality of the system. 
We consider networks having 10 cells and we focus on a ring architecture where each neuron is connected to its two 
nearest neighbors. As for the two-cell networks described above, we consider intrinsic parameter values such that the 
isolated cells fire with fspk = 10 Hz. For each model type we used two (or sometimes three) representative values of 
Gex that capture the key modes of behavior of the network dynamics and the differences between the two modes of 
transition.

In order to investigate the generation of stable activity patterns, for each representative set of parameter values we 
considered structured initial conditions (Figs. 4 to 7) where (i) all neurons fire sequentially following the order of their 
index number (neuron 1 fires first, neuron 2 fires second, etc.), and (ii) consecutive spikes in a given event (time window) 
are separated by equal time intervals, which we measure in terms of the phase �φ0 (time interval normalized by the 
natural period). The smaller �φ0, the shorter the IC support in the LFP graphs. Clearly, �φ0 = 0 corresponds to all neurons 
initially synchronized in phase and �φ0 = (N − 1)−1 corresponds to the neurons spanning the full period of the isolated 
cell. In addition to structured initial conditions, in Figs. 8 and 9 we used random initial conditions where the spike time for 
each neuron was drawn from a Gaussian distribution with mean t0 and variance D .

We characterized the outputs in Figs. 4 to 9 by using the so-called raster plots (top panels) for the evolution of the spike 
times of all neurons in the network and the LFP graphs (bottom panels) for the evolution of the population activity using 
eq. (7). In the raster plots each spike time is indicated by a vertical line segment.
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Fig. 3. Representative voltage traces for two-cell IF and Ih + INap network models before and after recurrent excitation is activated. The vertical gray 
line indicates the connection time. (a) IF model. We used the following parameter values C = 1, EL = −65, G L = 0.025, Iapp = 0.42. a1 and a2. tdel = 0. 
a3. tdel = 20. (b) Ih + INap model. We used the following parameter values C = 1, G L = 0.5, Gh = 1.5, EL = −65, ENa = 55, Eh = −20, Iapp = −1.78. b1 and 
b2. tdel = 0. b3. tdel = 20.

3.4.1. IF networks with instantaneous recurrent AMPA excitation
Fig. 4 shows the behavior of IF networks with tdel = 0 for Gex = 0.035 (panels a) and Gex = 0.04 (panels b). For �φ0

small enough and Gex = 0.035 (panels a1 and a2) the network exhibits almost in-phase patterns with all neurons firing in 
very small time windows. A closer look into these patterns shows the presence of an “arrow head shaped” structure. Com-
parison between panels a1 and a2 shows that the population frequency of these patterns depends on the initial conditions. 
It increases with increasing values of �φ0 within some range. For values of �φ0 beyond that range (panel a3) the resulting 
patterns are wave-like, organized in oblique stripes at a much higher frequency for both the individual neurons and the 
population.

For Gex = 0.04 (panels b) there is bistability between the patterns in panels b1 and b2. The steady pattern in panel b1 
(inset) consists of two alternating arrow-head-shaped waves where the neurons are divided into two groups. Each neu-
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Fig. 4. Representative raster plots and LFP graphs for a network of ten IF neurons before and after recurrent excitation is activated. The vertical gray line 
indicates the connection time. a. Gex = 0.035 and tdel = 0. b. Gex = 0.04 and tdel = 0. We used the following parameter values C = 1, EL = −65, G L = 0.025, 
Iapp = 0.42.

ron’s nearest neighbors belong in a different group. All neurons in each group fire in a relatively small time window. The 
population pattern is irregular and consists roughly of two superimposed frequencies. Similar patterns are obtained for 
smaller values of �φ0. However, the smaller �φ0, the longer it takes for the network to reach the steady state pattern. The 
mechanism of desynchronization consists of the transition to a single “arrow head” wave-like pattern as in panel a2 and 
a subsequent transition into the alternating (steady) pattern (see inset). This last transition does not occur for Gex = 0.035
(panel a2), that is why there is a rather big change in the population frequency between panels a2 and b1. The pattern in 
panel b2, corresponding to a larger value of �φ0, consists of wave-like oblique stripes, similar to the pattern in panel a3 
but at a higher population frequency. The increase in firing frequency between panels a3 and b2 is gradual. Note also that 
within the two types of patterns the frequency for both the individual neurons and the population may change depending 
on initial conditions.

3.4.2. Ih + INap networks with instantaneous recurrent AMPA excitation
Fig. 5 shows the behavior of Ih + INap networks for three values of Gex: Gex = 0.08 (panels a), Gex = 0.1 (panels b) 

and Gex = 0.12 (panels c) and tdel = 0. For low enough values of Gex (panels a and b) there is bistability between the 
low-frequency quasi-in-phase patterns (left) and the wave patterns (right). In the wave patterns, each neuron fires at low 
frequencies, but the population frequency is much higher. For higher values of Gex (panels c) there is bistability between 
the high-frequency quasi-antiphase patterns (left) and the wave patterns (right). In both cases the population frequency is 
very high, but for different reasons. The transition from the low- to the high-frequency patterns in the left panels is abrupt 
and corresponds to the abrupt transitions observed for the self-connected cells and two-cell networks discussed above. 
The emergence of the fast time scale is already reflected in the low-frequency bursts in panel b1. For higher values of 
Gex (∈ [0.14, 0.15]) an abrupt transition between the wave and high-frequency patterns occurs (not shown) and bistability 
disappears.

3.4.3. IF networks with delayed recurrent AMPA excitation
We now examine the effects of synaptic delay on the patterns discussed in Section 3.4.1 for tdel = 0. In Fig. 6 we use 

the same parameter values (Gex = 0.035 and Gex = 0.04) as in Fig. 4 with tdel = 10 (panels a and c) and tdel = 20 (panels 
b and d). Overall, synaptic delay decreases both the individual cells and population firing frequency and generates more 
regular patterns.

For tdel = 10 the network patterns are bistable for both Gex = 0.035 (panels a) and Gex = 0.04 (panels b). The network 
synchronizes in phase for very small values of �φ0 (panels a1 and c1) and in antiphase for larger values of �φ0 (panels a2 
and c2). The antiphase patterns consist of alternating clusters. Each cluster consists of half the neurons with their nearest 
neighbors belonging in a different cluster. Within each cluster the neurons are synchronized in phase. Synchronization 
within a cluster is better than for tdel = 0 (compare with Fig. 4-b2). As expected, the firing frequencies of both the individual 
neurons and the population increase with increasing values of Gex . For tdel = 20 the network patterns synchronize in phase 
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Fig. 5. Representative raster plots and LFP graphs for a network of ten Ih + INap neurons before and after recurrent excitation is activated. The vertical 
gray line indicates the connection time. a. Gex = 0.08 and tdel = 0. b. Gex = 0.1 and tdel = 0. c. Gex = 0.12 and tdel = 0. We used the following parameter 
values C = 1, G L = 0.5, Gh = 1.5, EL = −65, ENa = 55, Eh = −20, Iapp = −1.78.

(panels b and d) regardless of their initial conditions. Both the individual neurons and the population frequencies are smaller 
than for tdel = 10.

3.4.4. Ih + INap networks with delayed recurrent AMPA excitation
We now turn to discuss the effect of synaptic delay on the patterns discussed in Section 3.4.2 for the Ih + INap model 

with tdel = 0. Our results are presented in Fig. 7. We use the same parameter values (Gex = 0.08 and Gex = 0.12) as in Fig. 5
with tdel = 10 (panels a and c) and tdel = 20 (panels b and d).

For Gex = 0.08 the network exhibits antiphase cluster patterns for both tdel = 10 (panel a) and tdel = 20 (panel b). Both 
the individual cells and population frequencies are smaller for tdel = 20 (panel b) than for tdel = 10 (panel a). However, 
comparison between these figures and Fig. 5-a show that the firing frequencies for these values of tdel are larger than for 
tdel = 0 for the in-phase patterns (panel a1). In contrast, for the wave patterns (panel a2) the population frequency is larger 
for tdel = 0 than for tdel = 10 and tdel = 20.

For Gex = 0.12 the network exhibits antiphase cluster patterns for tdel = 10 (panel c) and quasi-in-phase patterns for 
tdel = 20 (panel d) with no bistability in either case. As before, the frequencies of both the individual neurons and the 
population are smaller for tdel = 20 than for tdel = 10. Comparison with Fig. 5-c shows that in contrast to when Gex =
0.08, increasing values of tdel decrease the firing frequencies for both the individual oscillators and the population in the 
high-frequency regime. Still, there is an abrupt transition between the low and high frequency regimes.

3.4.5. Pattern selection for noisy initial conditions
In Figs. 8 and 9 we illustrate the patterns obtained for both the IF (Fig. 8) and Ih + INap (Fig. 9) models using noisy initial 

conditions for a representative value of the variance D that creates an intermediate sized IC support. The values of Gex and 
tdel are as in the previous figures. For both models, the patterns obtained are similar to the ones discussed before for the 
structured (not noisy) initial conditions.



JID:TCS AID:10263 /FLA Doctopic: Theory of natural computing [m3G; v1.156; Prn:12/06/2015; 8:53] P.9 (1-12)

C. Schindewolf et al. / Theoretical Computer Science ••• (••••) •••–••• 9
Fig. 6. Representative raster plots and LFP graphs for a network of ten IF neurons before and after recurrent excitation is activated. The vertical gray line 
indicates the connection time. a. Gex = 0.035 and tdel = 10. b. Gex = 0.035 and tdel = 20. c. Gex = 0.04 and tdel = 10. d. Gex = 0.04 and tdel = 20. We used 
the following parameter values C = 1, EL = −65, G L = 0.025, Iapp = 0.42.

Fig. 7. Representative raster plots and LFP graphs for a network of ten Ih + INap neurons before and after recurrent excitation is activated. The vertical 
gray line indicates the connection time. a. Gex = 0.08 and tdel = 10. b. Gex = 0.08 and tdel = 20. c. Gex = 0.1 and tdel = 10. d. Gex = 0.12 and tdel = 20. We 
used the following parameter values C = 1, G L = 0.5, Gh = 1.5, EL = −65, ENa = 55, Eh = −20, Iapp = −1.78.

For the IF model and Gex = 0.035 (Fig. 8-a), an increase in tdel to tdel = 10 desynchronizes the network pattern and 
increases the network frequency (panel a2). A further increase to tdel = 20 regenerates the in-phase network pattern and 
decreases the network frequency. The reduction in the network frequency is due to both a decrease in the individual neurons 
spiking frequency and the generation of in-phase patterns. For Gex = 0.04 (Fig. 8-b), the effects of delay are more significant 
since for tdel = 0 the population frequency is very high compared to Fig. 8-a1.

For the Ih + INap model and Gex = 0.1 (low frequency regime, Fig. 9-a) an increase in tdel to tdel = 10 desynchronizes the 
network pattern and increases the network frequency (panel a2) as in the IF model. However, in contrast to the IF model, 
a further increase to tdel = 20 does not regenerate the in-phase patterns. Despite this, the network frequency decreases 
as a result of a decrease in the firing frequency of the individual cells. For Gex = 0.12 (high frequency regime, Fig. 9-b) 
an increase in tdel decreases the network frequency by reducing the firing frequency of the individual neurons without 
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Fig. 8. Representative raster plots and LFP graphs for a network of ten IF neurons before and after recurrent excitation is activated for random initial 
conditions. The vertical gray line indicates the connection time. a. Gex = 0.035. b. Gex = 0.04. We used the following parameter values C = 1, EL = −65, 
G L = 0.025, Iapp = 0.42 and D = 25.

Fig. 9. Representative raster plots and LFP graphs for a network of ten Ih + INap neurons before and after recurrent excitation is activated for random 
initial conditions. The vertical gray line indicates the connection time. a. Gex = 0.1. b. Gex = 0.12. We used the following parameter values C = 1, G L = 0.5, 
Gh = 1.5, EL = −65, ENa = 55, Eh = −20, Iapp = −1.78 and D = 25.

necessarily generating a regular synchronized pattern (tdel = 10, panel b2) and by regenerating an in-phase synchronized 
pattern (tdel = 20, panel c2).

4. Discussion

In this paper we have extended previous results [12,13] on the mechanisms of transition between low and high firing 
frequencies in recurrently connected networks via AMPA excitation. We have used two types of neuron models: IF and 
Ih + INap . We have previously shown that they exhibit gradual and abrupt transitions between firing frequency regimes 
respectively in self-excited networks mimicking recurrently connected networks synchronized in phase [13].
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The main biophysical difference between the two models lies in the description of the ionic currents present in the 
subthreshold regime. The IF model lacks any active ionic current and displays only passive behavior in the subthreshold 
voltage regime. The Ih + INap model, in contrast, includes a persistent sodium current and an h-current in addition to the 
leak current, and therefore displays more complex subthreshold behavior. From the dynamic point of view, the IF model 
is linear and one-dimensional, while the Ih + INap model is nonlinear, two-dimensional and has a significant time scale 
separation between the voltage and the h-current gating variable [49]. The ability of the Ih + INap model to remain in the 
low firing frequency regime and have a non-increasing firing frequency for a significantly large range of values of Gex results 
from this complex subthreshold dynamic structure [13].

We set out to examine whether the gradual and abrupt transitions observed in minimal recurrently connected network 
models persist in networks with a larger number of cells, what are the patterns that emerge in these models, what are the 
similarities and differences of these patterns for the two different model types, and what are the effects of synaptic delay 
on the network patterns. The relatively simple ring topology we used is appropriate to begin to investigate these questions. 
More research is needed to extend our results to more complex network architectures (e.g., all-to-all, small-world) and 
compare the results using models such as the Ih + INap model with the IF and the Hodgkin–Huxley model used in [7–11].

Our results show that the properties of the minimal Ih + INap network models are communicated to the network level. 
Specifically, Ih + INap network models exhibit abrupt transitions between population frequency regimes, and the population 
frequency remains almost constant for significantly large ranges of values of Gex in the low frequency regime. In the latter, 
neurons are almost synchronized in phase by firing in very small time windows. However, these networks are bistable. 
When the initial spiking distribution is highly spread out, traveling waves develop and the low population frequency regime 
no longer exists. The traveling waves frequency is larger than the population frequency in the low-frequency regime (around 
twice as large), but still roughly the same order of magnitude. This reflects the existence of an additional time scale where 
the individual neurons fire faster than they do in the low-frequency regime but well below their firing frequency in the 
high-frequency regime. This time scale is not present in self-excited cells or two-cell networks, and the underlying mecha-
nism is expected to be strongly dependent on the network connectivity and topology. In the high-frequency regime, neurons 
do not synchronize in-phase but in alternating antiphase patterns.

Our results also show the complex effects of synaptic delay for network dynamics. Even for self-excited networks, in-
creasing values of synaptic delay can cause the abrupt transitions between firing frequency to occur for lower transition 
Gex values, but to a lower frequency value. In addition, for fixed-values of Gex the firing frequency first increases and then 
decreases with increasing values of synaptic delay. This is communicated to the network level in various ways. For the cases 
we studied here, increasing values of synaptic delay cause a decrease in the population frequency by various mechanisms 
that included synchronization in phase and in antiphase. These effects and mechanisms are shared by networks of both 
IF and Ih + INap models. However, here we have considered a very small set of delay values. Differences between the two 
models may have remained uncovered. More generally, although our results are valid for larger parameter sets and seem to 
be independent of the neuron type, more research is needed both to establish the effects of synaptic delay in more complex 
networks and to unravel the underlying mechanisms. We would like to note that while we have observed only bistability, 
the possibility remains open for the existence of additional stable states in both regimes. Some of these stable states may 
lead to similar population frequencies.

The focus of this paper was excitatory networks. Future work should include the effect of inhibitory neurons to test the 
hypothesis that inhibition acts as a switch between the low- and high-frequency regimes, and thus maintains a net balance 
between excitation and inhibition necessary for healthy network activity.

The switching between firing frequency regimes investigated in this paper is expected to have consequences for neuronal 
computations in larger networks. More research is needed to identify these computational properties.
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