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Effect of concurrent geometry and roughness in interacting surfaces
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We study the interaction energy between two surfaces, one of them flat, the other describable as the composition
of a small-amplitude roughness and a slightly curved, smooth surface. The roughness, represented by a spatially
random variable, involves Fourier wavelengths shorter than the (local) curvature radii of the smooth component
of the surface. After averaging the interaction energy over the roughness distribution, we obtain an expression
which only depends on the smooth component. We then approximate that functional by means of a derivative
expansion, calculating explicitly the leading- and next-to-leading-order terms in that approximation scheme. We
analyze the resulting interplay between shape and roughness corrections for some specific roughness models in
the cases of electrostatic and Casimir interactions.
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I. INTRODUCTION

The computation of interaction forces between close
surfaces has been a subject of interest in many areas of
physics, like colloidal and macromolecular phenomena, nu-
clear physics, electrostatics, and van der Waals and Casimir
interactions.

For the case of two surfaces which are “smooth,” namely,
that have curvature radii much larger than the typical distance
between them, there is a time-honored analytical tool to
compute the total interaction force, the so-called proximity
force approximation (PFA) [1]. This tool has, as its main
virtue, that of delivering an answer in a rather straightforward
fashion, usually in the form of an ordinary integral. Besides, it
only demands two ingredients, the first being the knowledge
of the force that would result in the same system if the two
surfaces were infinite parallel plates (the simplest possible
geometry). The second ingredient is the actual geometry of
the two surfaces, i.e., part of the definition of the problem
itself.

As it may be inferred from the previous remarks, the
PFA satisfies a kind of “universality,” since the approach
is essentially geometric. In fact, the underlying microscopic
mechanism responsible for the force is only required at the
stage of determining the force between parallel plates, the rest
being dictated solely by the geometry of the surfaces. In other
words, the PFA cannot distinguish (except for a global factor)
between interactions which give place to the same force law
between parallel plates.

Although it was originally presumed that the PFA should
work reasonably well for close and gently curved surfaces, it
has generally been assumed to be an uncontrolled approxima-
tion. Therefrom stemmed its major drawback: the absence of a
procedure to asses its accuracy, since, for instance, a procedure
to evaluate next-to-leading-order (NTLO) corrections was
lacking. In an attempt to deal with that limitation, in recent
years we proposed, tested, and applied a new approximation
scheme, the so-called derivative expansion (DE). Although
originally introduced within the scope of the Casimir effect, for
the calculation of the interaction energy between two smooth
surfaces [2], this approximation has been shown to be a natural

extension of the PFA, and it has proven to be useful in rather
different situations, not just for Casimir effect calculations [3].
The DE provides a systematic way of justifying the PFA
and, under some circumstances, also of evaluating the NTLO
corrections. One of the features that make the DE appealing
is that the corrections are also geometric in nature, as in the
PFA, and the result for the interaction can also be expressed as
an integral. On the other hand the main difference is, naturally
enough, that knowledge of the interaction for the case of
parallel plates is not sufficient to determine the NTLO.

Although the DE approach may be, and in fact has been,
extended along many different directions [4–6], we shall
consider here a generalization that may appear, at first sight,
to be unnatural, since it corresponds to rough (in opposition
to smooth) surfaces. However, we have in mind applying the
DE to the smooth surfaces on top of which a rough component
exists.

The influence of roughness on the interaction between
surfaces has been studied in different contexts, mostly for
cases where it has the form of a ripple on top of otherwise
plane surfaces. This is a problem which arises, for example,
in the electrostatic interaction framework, when calculating
the capacitance of two (quasi) flat electrodes, to show that
it increases in the presence of roughness [7]. There is
also an observable influence of roughness [8] and periodic
corrugations [9–11] in Casimir forces. In situations where
the amplitude of roughness is much smaller than the distance
between surfaces, the effect of roughness can be dealt with
perturbatively [12–14], taking as zeroth order the interaction
resulting for the smooth flat surfaces (defined to be the spatial
averages of the rough ones).

There have been some attempts to analyze the concomitant
effect of shape and roughness corrections on the interaction
between surfaces. For instance, the particular case in which
the asperities of the surface contain occasional high peaks and
deep troughs, in addition to small scale roughness, has been
considered in Ref. [15]. The theoretical approach consisted
in a perturbative evaluation of the small scale roughness
combined with PFA for the large scale peaks and troughs. A
related situation has been considered in Ref. [16]. The system
considered there consists in surfaces whose local separation is
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the sum of a slowly varying component due to overall shape,
and a rapid part due to modulation. The calculations were
performed using the PFA, and the approximations performed
are tantamount to considering a two-step PFA, in which the
effect of the rapid modulation is first considered for parallel
plates, and the resulting interaction per unit area is used in
a second step to take into account the slow changes in the
overall shape. A similar geometry was considered in Ref. [11],
both from the theoretical and experimental points of view.
The effect of the modulation was computed using the DE,
and then the slowly varying shape was computed using PFA.
Interestingly enough, the experimental results confirm the
NTLO corrections computed using the DE.

The aim of this paper is to compute the shape and roughness
corrections systematically, looking for the existence of com-
bined effects between them, beyond the PFA. Specifically, we
will consider systems in which the geometry can be specified
by defining just two surfaces: one of them, to be denoted by
L, is assumed to be a plane, which (by a proper choice of
orthogonal Cartesian coordinates) corresponds to the equation
x3 = 0 (we use x1, x2, and x3 to denote such a choice). In
terms of the same set of coordinates the other surface, R, can
be defined as follows:

x3 = !(x!), x! ≡ (x1,x2). (1)

An important difference between this and previously consid-
ered applications of the DE is that the function !(x!) will not
be regarded as necessarily smooth; rather, we characterize it
by the property that it can be decomposed as the sum of two
terms:

!(x!) = ψ(x!) + ξ (x!), (2)

where ψ(x!) is a smooth function, while ξ (x!) takes into
account the “rough” component of the surface.

We cannot apply the DE to nonsmooth surfaces, but we
will first average the interaction energy over the roughness
ξ (x!), and afterwards take into account the nontrivial geometry,
characterized by the smooth function ψ(x!), this time by
a legitimate use of the DE. Going beyond the leading
order (PFA), we will be able to asses the relative weight
of the roughness and shape corrections, including in the
theoretical description the combined effect of both (with minor
modifications, the same idea can be applied to the case of a
periodic corrugation of small amplitude on top of a smooth
surface).

A crucial assumption in our approach will be that the
interaction energy between surfaces is a functional of !(x!)
(this is not to say that it only depends on !, as it can at the
same time be a function of parameters defining the model).

The simplest realization is the case when the physical
properties of the media do not depend on their shapes. A
potential caveat for this assumption is that, when the scale of
the roughness is small enough, the electromagnetic properties
of a media may depend on its shape. To mention an example,
in order to reproduce the scattering of electromagnetic waves
off small metal spheres with diameters of a few nanometers,
the relaxation parameter in the Drude model has to be chosen
dependent on the separation between spheres, because of the
electron tunneling between spheres when the distance is a
fraction of a nanometer [17]. This fact has been also pointed

out in the context of Casimir physics in Ref. [14], where the
modification of the permittivity due to surface plasmons at
the rough surface was taken into account. For such situations,
one should incorporate the shape-dependent electromagnetic
properties in the calculation of the interaction energy, a rather
difficult task that is beyond the scope of the present work. In
the end, the interaction energy will still be a (rather involved)
functional of the shape, and a function of the parameters in the
model.

This paper is organized as follows: in Sec. II we derive
general expressions for the leading-order and NTLO terms, for
the DE of the functional representing the interaction energy
between the two surfaces, up to the first nontrivial order in
the correlation function $. Section III contains a discussion
of some general properties of the novel DE that contains the
effect of roughness. Then in Sec. IV, we apply our general
results to the case of the electrostatic interaction between two
metallic surfaces at fixed electrostatic potentials. Section V
deals with the DE for the interaction energy in the case of the
Dirichlet and Neumann Casimir effects. Finally, in Sec. VI we
present our conclusions.

II. DERIVATIVE EXPANSION FOR
THE INTERACTION ENERGY

A. Averaging out the roughness

The roughness function ξ (x!), introduced in Eq. (2), will
be regarded as a random variable with null average:

〈ξ (x!)〉 = 0, (3)

where 〈. . .〉 denotes statistical average. Condition (3) can
always be achieved, by a constant shift in ψ . For n spatial
arguments, x(i1)

! , . . . ,x(in)
! , statistical averages are defined by

the functional integral:

〈
ξ
(
x(i1)

!
)
. . . . . . ξ

(
x(in)

!
)〉

=
∫
Dξ ξ

(
x(i1)

!
)
. . . ξ

(
x(in)

!
)
e−W [ξ ]

∫
Dξ e−W [ξ ]

,

(4)

where W [ξ ] denotes a (real) not necessarily quadratic
functional of the roughness function ξ (x!), determining the
statistical weight of the different configurations.

Since we assume roughness to be small, to the first
nontrivial order in its amplitude, we shall only need the
two-point autocorrelation function $:

$(x!,y!) ≡ 〈ξ (x!)ξ (y!)〉, (5)

since autocorrelation functions involving more than two ξ ’s
are of higher order in the amplitude. Note that, because of
Eq. (3), $(x!,y!) is a connected function of its arguments. In
the quadratic W [ξ ] case,

W [ξ ] = 1
2

∫

x!,y!
ξ (x!)M(x!,y!)ξ (y!), (6)

where M is a positive-definite kernel. In this case, one has

$(x!,y!) = M−1(x!,y!). (7)

At this point, we introduce an extra requirement, involving
both$ andψ , the smooth component of!: the autocorrelation
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length l, determined by $, must be much smaller than the
curvature radius of the smooth surface defined by ψ . Then,
whenever the autocorrelation function differs appreciably from
zero, the smooth surface can be regarded as approximately flat.
In geometrical terms, the relevant pairs of arguments of $ lie
on the same tangent plane to each point of the R surface.
Hence, we only need to know the function $, as an ingredient
in the forthcoming calculations, for both arguments lying on
the same plane surface, where it is translation-invariant (we
assume the surfaces R and L to be homogeneous). Thus, we
approximate $(x!,y!) as follows:

$(x!,y!) % $(x! − y!) = $(|x! − y!|), (8)

where the last equality follows from the (assumed) local
isotropy of the curved surface.

The interaction between the two surfaces is a functional,
F [!]. However, we are not interested in the detailed depen-
dence on !, since that function contains the random, rapidly
varying component, ξ . Our first step is then to average out the
dependence on ξ over its statistical distribution, obtaining a
functional Feff , depending on ψ , the smooth part of !:

Feff[ψ] ≡ 〈F [ψ + ξ ]〉. (9)

On the other hand, since the amplitude of ξ is assumed to be
small, we shall functionally expand F in powers of ξ :

Feff[ψ] = 〈F [ψ] +
∫

x!
F

(1)
ψ (x!)ξ (x!)

+ 1
2

∫

x!,y!
F

(2)
ψ (x!,y!)ξ (x!)ξ (y!)

+ 1
3!

∫

x!,y!,z!
F

(3)
ψ (x!,y!,z!) ξ (x!)ξ (y!)ξ (z!)〉+ · · ·

= Feff,0[ψ] + Feff,2[ψ] + Feff,3[ψ] + · · · , (10)

where the subindex k in Feff,k denotes kth order in ξ , the
roughness amplitude, and we have introduced the notation

F
(n)
ψ (x(1)

! , . . . ,x(n)
! ) ≡ δnF [χ ]

δχ (x(1)
! ) . . . δχ(x(n)

! )

∣∣∣∣
χ=ψ

. (11)

Clearly,

Feff,0[ψ] = F [ψ] (12)

and

Feff,2[ψ] = 1
2

∫

x!,y!
F

(2)
ψ (x!,y!)$(y! − x!). (13)

Regarding the third and higher orders, in general they will
require the knowledge of n-point correlation functions of the
rugosity. An important exception is the Gaussian (quadratic)
weight case, where only even numbers of fields yield nonvan-
ishing contributions.

In Eq. (10), we will focus on the first two terms: the first,
Feff,0[ψ], is identical to the functional F in the absence of
roughness, and the second, Feff,2, contains the first nontrivial
correction due to the small-amplitude roughness. That small
amplitude assumption justifies the inclusion of just the first
order in $ or, equivalently, the leading nontrivial order in the
roughness amplitude. Let us now proceed to perform the DE,

to the second order in derivatives, for those two terms Feff,0
and Feff,2.

B. Derivative expansion for Feff

The averaged functional Feff , when expanded in derivatives
up to the second order, should fall into an expression having
the form [3]

Feff[ψ] % FP[ψ] + FD[ψ], (14)

where FP[ψ], the term without derivatives, is just the PFA
approximation to Feff :

FP[ψ] =
∫

d2x! V (ψ(x!)) (15)

and FD denotes the term with two derivatives:

FD[ψ] =
∫

d2x! Z(ψ)|∇ψ |2. (16)

On the other hand, since Feff has been expanded in powers
of the roughness, we shall have like expansions for V and Z;
namely,

V = V0 + V2 + · · · , Z = Z0 + Z2 + · · · , (17)

and consequently

FP = FP,0 + FP,2 + · · · , FD = FD,0 + FD,2. (18)

Here, the first terms in the expansion are independent of the
roughness, and therefore they can be obtained by applying the
DE to the functional Feff,0 ≡ F . Thus, the function V0 can be
determined, for example, from the value of F for the special
case of the parallel plates geometry:

V0(a) = F [a]
S

, (19)

where S denotes the area of the L plate (this factor cancels
out a similar one which appears in the numerator because of
translation invariance on the plane when the plates are flat and
parallel).

On the other hand, Z0 can be determined from the
knowledge of F (2)[ψ] for ψ = a [2,3]:

Z0(a) = 1
4 ['k! f̃

(2)(k!)]k!→0 (20)

with 'k! ≡ ∂2

∂k2
1

+ ∂2

∂k2
2
, the Laplacian with respect to the

momenta parallel to the x3 = const planes. Here, f̃ (n) is
obtained from F̃ (n)

a (k(1)
! ,...,k(n)

! ), the Fourier transform of
F (n)

a , by a procedure which we detail now. Since they are
expansion coefficients defined around the translation-invariant
configuration x3 = a, F̃ (n)

a must be proportional to the delta
function of momentum conservation corresponding to each
order. Thus,

F̃ (n)
a (k(1)

! , . . . ,k(n)
! ) = (2π )2 δ(k(1)

! + · · · + k(n)
! )

× γ̃ (n)(k(1)
! , . . . ,k(n)

! ), (21)

where γ̃ (n) is the completely symmetric function of its
arguments. However, the presence of the delta function means
that it can be completely determined by a function of just n − 1
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arguments. To make that explicit, we introduce the kernels f̃ (n),
as follows:

f̃ (n)(k(1)
! , . . . ,k(n−1)

! ) ≡ γ̃ (n)

(

k(1)
! , . . . ,k(n−1)

! , −
n−1∑

i=1

k(i)
!

)

,

(22)

among which we have the particular one appearing in the
calculation of Z0: f̃ (2)(k!) ≡ γ̃ (2)(k!, −k!). The function
Z0(ψ) is then determined by the relation Z0(ψ) = Z0(a)|a→ψ .

Let us now consider the DE for Feff,2, the leading correction
due to roughness: the function V2 is, again, conveniently
obtained by evaluating Feff,2 for the case of parallel plates.
Thus,

V2(a) = Feff,2[a]
S

. (23)

Recalling Eq. (13), we may give a more explicit formula for
V2. Indeed, from the relation

Feff,2[a] = 1
2

∫

x!,y!
F (2)

a (x!,y!)$(y! − x!), (24)

and noting that

F (2)
a (x!,y!) =

∫
d2p!
(2π )2

eip!·(x!−y!)f̃ (2)(p!), (25)

we get

V2(a) = 1
2

∫
d2p!
(2π )2

f̃ (2)(p!) $̃(p!), (26)

where $̃ is the Fourier transform of the autocorrelation
function $.

Finally, we obtain an explicit expression for Z2. A rather
straightforward approach would be to apply the analog of
Eq. (20), which was used for the functional F , now to the
functional Feff,2, as defined in Eq. (13). Thus we see that

Z2(a) = 1
4

[
'k! f̃

(2)
2 (k!)

]
k!→0, (27)

where now f̃
(2)
2 is evaluated from the functional expansion of

Feff,2 in powers of η, to the second order in η. However, since
Feff,2 is defined in terms of the second functional derivative
of F , it is evident that f̃

(2)
2 will involve the fourth-order

derivatives of F . Indeed, we obtain

Z2(a) = 1
8

∫
d2p!
(2π )2

['k! f̃
(4)(p!, −p!,k!)]k!→0 $̃(p!), (28)

with

f̃ (4)(k!,p!,q!) = γ̃ (4)(k!,p!,q!, −k! − p! − q!). (29)

Thus, we have shown that the coefficients of the DE to
second order for the leading correction in an expansion in
powers of the roughness requires a fourth-order functional
derivative of F . In other words, to evaluate the second-order
correction to the DE, to the leading order in the roughness, we
need the result for the fourth-order term in the expansion of
F [a + η] in powers of η.

Before presenting the results that follow from the ap-
plication of the general formulas to particular cases, we
shall consider some of their general properties, based on

dimensional analysis, combined with assumptions about the
autocorrelation function $ and about the curved surface.

III. GENERAL PROPERTIES

We note that, for a given interaction F , it will not be
possible in general to find exact analytical expressions for FP
and FD, except for particular situations, or under under some
simplifying assumptions. Since the interaction is determined,
the two objects to play with are the autocorrelation function
and the geometry.

On the other hand, having in mind cases where the geometry
(ψ) is also given, it would be interesting to have a general
formula for the DE, depending on an arbitrary $, but where
the geometry has been “integrated out”; namely, it appears
only by means of the parameters characterizing the function
ψ . For the term without derivatives, this can be achieved
by using the so-called “height distribution function.” This
representation can be obtained, for example, by introducing
a “1” inside the integral over x! in Eq. (15), written as follows:
1 =

∫ ∞
0 da δ(a − ψ(x‖)) (we assume ψ > 0 everywhere).

Thus,

FP[ψ] =
∫ ∞

0
da V (a) σP(a) (30)

where

σP(a) =
∫

d2x! δ(a − ψ(x‖)). (31)

We see that the geometry, for this term, is encoded in σP,
while the part dependent on the interaction and the roughness
is contained in V (a). More explicitly,

FP[ψ] = 1
2

∫
d2p!
(2π )2

$̃(p!)
∫ ∞

0
da f̃ (2)(p!) σP(a). (32)

For the term with two derivatives, a similar procedure to
the one applied above yields

FD[ψ] =
∫ ∞

0
da Z(a) σD(a) (33)

with

σD(a) =
∫

d2x! δ(a − ψ(x‖))|∇ψ(x!)|2, (34)

where now the geometry of the curved plate appears in the
σD function, similar to the height distribution function, but
weighted with the square of the gradient of ψ . Thus,

FD[ψ] = 1
8

∫
d2p!
(2π )2

$̃(p!)
∫ ∞

0
da

× ['k! f̃
(4)(p!, −p!,k!)]k!→0 σD(a). (35)

To simplify the forthcoming discussion, we use dimensional
analysis whenever possible. To that end, we note that the mass
dimensions of the objects appearing in the general formulas
can be determined as soon as we assume that F is an energy;
thus we have [F ] = [M], $̃ = [M]−4, [f̃ (2)] = [M]5, and
[f̃ (4)] = [M]7. Therefore, the momentum-space Laplacian of
[f̃ (4)] has dimensions [M]5. We then rewrite V and Z using
dimensionless objects. For the PFA contribution, there is not
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much to be said for V0(a) beyond expression (19); thus,

V0(a) = a−3
(

a3F [a]
S

)
(36)

while for V2, which is given by a momentum integral, we
introduce a dimensionless momentum l!, attained by the
rescaling p! = l!/a:

V2(a) = a−3 1
2

∫
d2l!

(2π )2
g̃(2)(l!) ω̃(l!), (37)

where we have introduced the dimensionless functions:

g̃(2)(l!) = a5 f̃ (2)(l!/a), ω̃(l!) = a−4 $̃(l!/a). (38)

Thus, to the order we are considering here, we have

V (a) = a−3
[
a3F [a]

S
+ 1

2

∫
d2l!

(2π )2
g̃(2)(l!) ω̃(l!)

]
. (39)

Regarding Z2, which involves $̃ and f̃ (4), a similar rescaling
yields

Z2(a) = a−3 1
8

∫
d2l!

(2π )2
h̃(2)(l!) ω̃(l!), (40)

where

h̃(2)(l!) = a5 ['k!/af̃
(4)(l!/a, −l!/a,k!/a)]k!→0. (41)

Let us consider some exact properties and results that can
be obtained about the contributions due to V2 and Z2, as
well as about the interplay between roughness and geometry
under some simplifying assumptions about the autocorrelation
function. Although the resulting models will not necessarily
correspond to realistic situations, they have the advantage that
some insight about the interplay between the different causes
may be elucidated more clearly.

A. Sharp cutoff model

This model corresponds to the autocorrelation function:

$̃(p!) = 4πε2

p2
max − p2

min
θ (|p!| − pmin) θ (pmax − |p!|), (42)

where pmax ! pmin ! 0, and ε is a constant with the dimen-
sions of a length, which is a measure of the amplitude of the
roughness (its rms value). The constants pmax and pmin play
the role of UV and IR cutoffs, respectively. Equivalently, they
determine the minimum and maximum correlation distances
and, to satisfy the requirements used in our construction, one
should demand that p−1

min is smaller than the curvature radius.
We expect this kind of model to have qualitatively similar
features to models where the correlation functions have a
well-defined bandwidth in Fourier space.

In this model, we see that the second-order contribution to
the PFA approximation becomes

FP,2 =
∫

d2x!V2 = ε2

p2
max − p2

min

∫ ∞

0
da

σP(a)
a7

×
∫ apmax

apmin

dx xg̃(2)(x). (43)

On the other hand, for the term with two derivatives, deter-
mined by Z2, the equivalent expression is

FD,2 =
∫

d2x!Z2|∇ψ |2

= ε2

4
(
p2

max − p2
min

)
∫ ∞

0
da

σD(a)
a7

∫ apmax

apmin

dx x h̃(2)(x).

(44)

B. δ-like "̃

This case corresponds to a limit of the sharp cutoff model,
such that the two cutoffs collapse to a common value q.
Thus, the momentum-space autocorrelation function has the
following form:

$̃(p!) = 2πε2 δ(|p!| − q)
|p!|

, (45)

where, again, ε is a length, which may be interpreted as
a measure of the amplitude of the roughness, while q!
determines its momentum scale. Thus,

∫
d2x!V2 = ε2

2

∫ ∞

0
da σP(a) f̃ (2)(q)

= ε2

2

∫ ∞

0
da

σP(a)
a5

g̃(2)(qa) (46)

and
∫

d2x!Z2|∇ψ |2 = ε2

8

∫ ∞

0
da σD(a) g̃(2)(q)

= ε2

8

∫ ∞

0
da

σD(a)
a5

h̃(2)(qa). (47)

C. Momentum-independent correlation function

Finally, this situation corresponds to a case where the
IR cutoff tends to zero and the UV one tends to infinity.
Equivalently, there is a vanishing correlation length. Thus,

$̃(k!) = $̃0 ≡ const, (48)

where $̃0 has the dimensions of (length)4. Note that this value
of $̃0 may be thought of as a particular limit of the two
cutoff case, such that the product of ε by pmax − pmin remains
constant.

Then we see that

V2(a) = $̃0

2a7

∫
d2l!

(2π )2
g̃(2)(l!) (49)

and

Z2(a) = $̃0

8a7

∫
d2l!

(2π )2
h̃(2)(l!). (50)

For the particular case of interactions which do not introduce
any dimensionful quantity into the problem (except a), like in
the Casimir effect for a scalar field with Dirichlet or Neumann
conditions, or even the case of the electromagnetic field, the
dimensionless kernels which appear integrated above are just
numbers. Thus, in those cases we shall have, regarding the
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dependence with a,

V2(a) ∝ 1
a7

, Z2(a) ∝ 1
a7

. (51)

An important remark is that no boundary condition is perfect
for all momenta; therefore one should also expect a UV cutoff
to exist in g̃2 and h̃2. Thus, the momentum integrals above
shall have cutoffs (in principle, unrelated to the ones of the
autocorrelation function). This should be kept in mind, in
particular, when the integrals over l! are UV divergent. In this
situation, the behavior in Eq. (51) should be reliable when a is
much larger than the inverse of the UV cutoff. For small values
of a, however, one should expect a smoother behavior than that
of Eq. (51). Moreover, and as already mentioned in the Intro-
duction, the roughness itself may influence the electromagnetic
response of the materials. When this is the case this information
should be encoded into the functions g̃2 and h̃2. Therefore,
there is an additional limitation to the validity of Eq. (51):
the roughness scale should not be small enough to introduce
appreciable modifications to the conductivity of the material.

Finally, in order to gain some insight, and because it is
representative of many relevant situations, we evaluate the
geometrical factors σP and σD explicitly for the case of two
particular surfaces which produce relatively simple results.

The first case we consider has revolution symmetry around
the x3 axis and is defined by the function ψ = d + b|x!|κ ,
where d, b, and κ are positive constants. We obtain

σP(a) =
{

0 if a < d

2π
bκ

(
a−d

b

) 2
κ
−1 if a ! d

(52)

and

σD(a) =
{

0 if a < d

2πκ(a − d) if a ! d
. (53)

The other case corresponds to a sphere of radius R and its
distance of closest approach to the flat surface d; we find

σP(a) =
{

2πR
(
1 − a

R
+ d

R

)
if d " a " R + d

0 otherwise
(54)

and

σD(a) =
{

2π (a − d)
(

1 + 1
1− a

R
+ d

R

)
if d " a " R + d −

√
R2 − ρ2

M

0 otherwise
(55)

where ρM < R is a spatial cutoff, required for the term with
two derivatives to discard contributions where the approxima-
tion is not valid (since the derivative of ψ diverges).

In the next sections, we apply the previous general expres-
sions for the DE corresponding to Feff,2 to two interesting
cases: the electrostatic interaction of two metallic surfaces
held at fixed electrostatic potentials (Sec. IV), and the Casimir
interaction between two Dirichlet or Neumann surfaces acting
on a quantum massless real scalar field (Sec. V).

IV. RESULTS FOR THE ELECTROSTATIC CASE

In this section, we apply the general results for the
interaction energy between surfaces to the particular case of
the electrostatic interaction between two perfect conductors
held at a potential difference V . The electrostatic energy will
be denoted by U and is given by

U [!] = ε0V
2

2

∫
d2x!

∫ !

0
dx3|∇φ|2, (56)

where φ(x!,x3) is the electrostatic potential, that satisfies the
Laplace equation between plates, subjected to the boundary
conditions φ(x!,0) = 0 and φ(x!,!) = V . As described in
previous sections, in order to obtain the derivative expansion
for Ueff[ψ] = 〈U [ψ + ξ ]〉 it is necessary to compute the
fourth-order functional derivative of U at ! = a. Therefore
we write

! = a + η(x!) (57)

and expand the electrostatic energy up to the fourth order
in η. In a previous work [18], we performed this calculation

up to second order. We will follow a similar approach here,
extending the results to the fourth-order case.

After a long but straightforward calculation, sketched in the
Appendix, the expansion of the electrostatic energy reads

U [a + η] =
∑

n!0

U (n)[a + η] (58)

with

U (0) = ε0V
2

2a

∫
d2x!, U (1) = −ε0V

2

2a2

∫
d2x!η,

U (2) = ε0V
2

2a2

∫
d2k!
(2π )2

k! coth(k!a)η̃(k!)η̃(−k!),

U (3) = 1
3!

∫
d2k!
(2π )2

d2p!
(2π )2

f̃ (3)(k!,p!) η̃(k!)η̃(p!)η̃(−k! − p!),

U (4) = 1
4!

∫
d2k!
(2π )2

d2p!
(2π )2

d2q!
(2π )2

f̃ (4)(k!,p!,q!) η̃(k!)

× η̃(p!)η̃(q!)η̃(−k! − p! − q!). (59)

The explicit expressions for the functions f̃ (n) are

f̃ (3)(k!,p!) = −3ε0V
2

a2
[k!· p!+ k!p! coth(k!a) coth(p!a)],

f̃ (4)(k!,p!,q!) = 2ε0V
2

a2
{[h(k!,p!,q!) + h(k!,q!,p!)

+h(p!,k!,q!) + h(p!,q!,k!)

+h(q!,p!,k!) + h(q!,k!,p!)]}, (60)
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with

h(k!,p!,q!) = q! coth(q!a)(2q2
! − k! · q!) + p!q!|k!

+ p!| coth(p!a) coth(q!a) coth(|k! + p!|a).

(61)

As a partial check of our results, we can evaluate the
electrostatic energy for a constant perturbation

η(x!) = η0 ⇒ η̃(k!) = η0(2π )2δ(k!) (62)

to obtain

U ≈ ε0V
2

2
S
a

(
1 − η0

a
+ η2

0

a2
− η3

0

a3
+ η4

0

a4

)
, (63)

which is the expansion of the exact result ε0V
2S/[2(a + η0)]

up to fourth order in the perturbation.
From the expression for U (2) given in Eq. (59) one can read

the explicit form for f̃ (2)(k!). Using Eq. (26) we obtain

V2(a) = ε0V
2

2πa5

∫ ∞

0
dl! l2

! $̃(l‖/a) coth l! . (64)

The function Z2 can be obtained combining the expression
for U (4) in Eq. (59) with Eq. (28). The result is

Z2(a) = 2ε0V
2

πa5

∫
dl! l!$̃(l!/a)B(l!) (65)

where

B(l!) = 1 + (l! coth l! + l2
! coth2 l!)

{
1
6

+ 1
8l!

[
coth l!

+ l!
sinh2 l!

(2l! coth l! − 3)
]}

. (66)

Sphere-plane geometry

Let us now consider the sphere-plane geometry, assuming
a sharp cutoff model for the roughness. It is easy to obtain
analytic results for sufficiently large values of pmaxd. Indeed,
inserting Eq. (42) into Eq. (64) we obtain

V2(a) % 2
3a2

ε0V
2ε2pmax, (67)

where we have assumed that the integral in Eq. (64) is
dominated by large values of the momentum. A similar
analysis can be done for Z2(a). Inserting Eq. (42) into Eq. (65)
we get

Z2(a) % 1
3a

ε0V
2ε2p2

max. (68)

The roughness correction to the interaction energy in
this geometry can be computed using the height distribution
functions introduced in the previous section:

UP,2 =
∫ ∞

0
σP(a)V2(a), UD,2 =

∫ ∞

0
σD(a)Z2(a). (69)

Taking the derivative of the interaction energy with respect to
the sphere-plane distance d one can obtain the corresponding

corrections to the force, that will be denoted by FP,2 and FD,2,
respectively. The results are

FP,2 = − 4
3d2

πRε0V
2ε2pmax

(
1 − d

R

)
,

FD,2 = 4
3
πε0V

2ε2p2
max log(d/R), (70)

where we have made an expansion for small values of d/R.
On the other hand, the corresponding result for smooth

sphere-plane surfaces is given by [18,19]

FP,0 + FD,0 = −πε0V
2R

d
− π

3
ε0V

2 log(d/R). (71)

The ratio between the leading orders χP = FP,2/FP,0 is
proportional to ε2pmax/d, while the ratio of the second-order
results χD = FD,2/FD,0 does not depend on the distance, and
is proportional to ε2p2

max. Note that in the large pmax limit the
effect of roughness grows with the UV cutoff. This somewhat
surprising result is also valid for periodic modulations (the
corrections to PFA are larger for smaller periods), and can
be interpreted as due to an increase of the effective area of
interaction. Note, however, that there should be an upper bound
for the values of pmax, corresponding to the point where the
assumption that roughness does not influence the conductivity
of the material becomes invalid.

We have numerically evaluated the effect of the roughness
on the electrostatic force for the sphere-plane geometry, for
the sharp cutoff model. The result is shown in Fig. 1, where
the plot shows the ratio χP between the force at second order
and the one at zeroth order in the roughness. As expected,
the effect of the roughness is more relevant at short distances.
The plot shows a 1/d behavior for small d, compatible with
the previous analytic results for large values of pmax.

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.6

δ

χ P

 

 

FIG. 1. (Color online) Ratio between the electrostatic force at
second order in the roughness and the corresponding force at
zeroth order (χP = FP,2

FP,0
), as a function of the distance δ = d/R,

for the sphere-plane geometry. Parameters are pmaxR = 10 000,
pminR = 100, and ε/R = 0.001.
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V. RESULTS FOR THE CASIMIR EFFECT

A. Dirichlet boundary conditions

In the Dirichlet Casimir effect there is no dimensional
parameter in the problem coming from the expansion of F ,
except from a. In particular, this means that both g̃(2) and h̃(2)

are dimensionless functions of l!.
We consider here the calculation of the function V2, the

effective potential term in the DE to the second order in the
amplitude. To that end, we need the f̃ (2) kernel. This object
has already been calculated [2], and the result may be put as
follows: f̃ (2)(k!) = [f̃ (2)(k!)]|k0→0, where [6]

f̃ (2)(k!) = −2
∫

d3p!
(2π )3

|p!| |p! + k!|
(1 − e−2a|p!|)(e2a|p!+k!| − 1)

(72)

where we have used the notation l! ≡ (l0,l1,l2), and |l!| ≡√
l2
0 + l2! , for any three-vector l!.
Thus, in this case, the function g̃(2)(l!) is a dimensionless

function independent of any dimensional parameter and, in
practice, it may be obtained as follows:

g̃(2)(l!) = [f̃ (2)(l!)]|a→1, (73)

which may be written explicitly as follows (x = |l!|) [20]:

g̃(2)(x) = x3Li2(e−2x)
48π2

+ x2Li3(e−2x)
24π2

+ xLi4(e−2x)
16π2

+ Li5(e−2x)
16π2

+ π2Li2(1 − e−2x)
240x

+
Li6(e−2x) − π6

945

32π2x
− x4 log(1 − e−2x)

120π2
+ π2x

240
,

(74)

where Lin(x) denote the Polylogarithm functions.
In Fig. 2 we show the numerical evaluation of Eq. (43) for

the Dirichlet Casimir energy for the sphere-plane geometry,
using the sharp cutoff model for the roughness. In this figure
we plot the ratio between the second and zeroth order in the
roughness FP,2/FP,0 as a function of the minimal distance

0.05 0.1 0.15 0.2

−1.2

−1

−0.8

−0.6

−0.4

−0.2

δ

F P
,2
 / 

F P
,0

 

 

FIG. 2. (Color online) Ratio between the Dirichlet Casimir en-
ergy at second order in the roughness and zeroth order as a function
of the distance δ = d/R, for the sphere-plane geometry. Parameters
are pmaxR = 10 000, pminR = 100, and ε/R = 0.001.

0.05 0.1 0.15 0.2
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

δ

F P
,2
/F

P
,0

 

 

FIG. 3. (Color online) Ratio between the Neumann Casimir en-
ergy at second and zeroth order in the roughness as a function of
the distance δ = d/R, for the sphere-plane geometry. Parameters are
pmaxR = 10 000, pminR = 100, and ε/R = 0.001.

between the sphere and the plane. The 1/d behavior is similar
to the one of the electrostatic case, and can be derived
analytically for large values of pmax taking into account the
large x limit of g̃(2)(x).

The calculation of the function Z2 (which we do not address
here) would require the perturbative results of the Casimir
energy up to the fourth order in the amplitude [21].

B. Neumann boundary conditions

In the Neumann Casimir effect, the function f̃ (2) is given
by [6]

f̃ (2)(k!) = −2
∫

d3p!
(2π )3

[p! · (p! + k!)]2

|p!| |p! + k!|

× 1
1 − e−2a|p!|

1
e2a|p!+k!| − 1

(75)

and therefore [20]

g̃(2)(x) = − 1
24

(
x2

2π2
+ 1

)
xLi2(e−2x) +

(
x2

48π2
− 1

16

)

× Li3(e−2x) + 5xLi4(e−2x)
32π2

+ 7Li5(e−2x)
32π2

+ π2Li2(1 − e−2x)
240x

+
−π2Li4(e−2x) + 7Li6(e−2x )

2 + π6

135

32π2x

− x4 log(1 − e−2x)
120π2

+ π2x

720
. (76)

In Fig. 3 we show the numerical result of evaluating Eq. (43) for
the Neumann Casimir energy for the sphere-plane geometry,
using the sharp cutoff model for the roughness. Once again,
the effect of the roughness becomes relevant at short distances.
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VI. CONCLUSIONS

We have found general expressions for the DE of the
interaction energy between two surfaces, including the first
nontrivial correction due to roughness, assumed to exist on
top of an otherwise smooth surface facing a plane. We stress
that our results are also valid for periodic corrugations of small
amplitude.

The procedure we have followed to compute the interaction
energy between surfaces is conceptually very simple. Due to
the roughness or corrugation, the functional that describes
the interaction energy between surfaces does not admit an
expansion in derivatives. However, after averaging over the
small scale fluctuations, the resulting functional only depends
on the shape of the smooth surfaces (the spatial averages of the
rough ones), and therefore it makes sense to compute it using
a DE. The leading-order correction FP,2 can be thought of as
the usual PFA applied to the effective interaction that takes
into account the roughness on parallel plates, while the next-
to-leading-order term improves that by adding corrections
depending on the derivatives of the function which defines
the curved surface.

Note that, although the roughness is assumed to be de-
scribed as a random variable, its statistical properties become
inextricably mixed with the geometry of the surface, even at
the first nontrivial order in the amplitude. At this order, the
two-point correlation function is all the information that one
needs to know. It should be clear that the general results could
be applied the other way around; namely, one could attempt to
determine the characteristics of the roughness of a surface by
performing force measurements.

We have applied the general results to the case of the interac-
tion between a rough sphere and a plane, both for electrostatic
and Casimir interactions. We have considered the particular
case in which roughness can be described by a simple
correlation function which is constant between the bandwidth
set up by two momentum space cutoffs. Of course the
results can be extended to more realistic correlation functions,
including roughness described by self-affine fractal scaling.

The results of this paper could also be generalized in
other directions, like for instance to the case of two curved
surfaces having roughness and finite conductivity. The case
of nonperfect conductors is of utmost relevance to compute
realistic roughness corrections, in order to take into account
the eventual influence of the shape of the surface on the
conductivity of the material.
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APPENDIX

In this Appendix we provide some details of the derivation
of the expansion of the electrostatic energy up to the fourth
order in η. The electrostatic potential φ(x!,x3) satisfies
the Laplace equation, subjected to the boundary conditions

φ(x!,0) = 0 and φ(x!,!) = V . We expand the boundary
condition on the curved surface in powers of η,

V = φ(x!,a) + η(x!)∂3φ(x!,a) + η2(x!)
2

∂2
3φ(x!,a)

+ η3(x!)
6

∂3
3φ(x!,a) + · · · , (A1)

and look for solutions of the form

φ(x!,x3) =
∑

n!0

φ(n)(x!,x3), (A2)

where φ(n)(x!,x3) is O(ηn) and satisfies the Laplace equation
for each n. The boundary conditions are φ(n)(x!,0) = 0 and

φ(0)(x!,a) = V,

φ(1)(x!,a) = −η(x!)∂3φ
(0)(x!,a),

φ(2)(x!,a) = −η(x!)∂3φ
(1)(x!,a) − η2(x!)

2
∂2

3φ
(0)(x!,a),

φ(3)(x!,a) = −η(x!)∂3φ
(2)(x!,a) − η2(x!)

2
∂2

3φ
(1)(x!,a),

(A3)

as can be readily checked by inserting the expansion Eq. (A2)
into Eq. (A1).

The leading-order solution is of course φ(0) = V x3/a.
Taking into account the boundary condition at x3 = 0 we have,
for n ! 1,

φ(n)(x!,x3) =
∫

d2k!
(2π )2

eik!·x!A(n)(k!) sinh(k!x3), (A4)

where the functions A(n)(k!) are determined by the boundary
conditions at x3 = a:

A(1)(k!) = −V

a

η̃(k!)
sinh(k!a)

,

A(2)(k!) = V

a sinh(k!a)

∫
d2p!
(2π )2

p! coth(p!a)

× η̃(k! + p!)η̃(−p!),

A(3)(k!) = V

a sinh(k!a)

∫
d2p!
(2π )2

d2p!
(2π )2

η̃(k! + q!)η̃(p! − q!)

× η̃(−p!)
[
p!q! coth(p!a) coth(q!a)

− 1
2
|q! − p!|2

]
. (A5)

Inserting Eqs. (A4) and (A2) into Eq. (56) it is possible to
obtain an expansion of the electrostatic energy in powers of
η. It is important to take into account not only the expansion
of the potential but also the η dependence of the upper limit
of integration in Eq. (56). An explicit calculation leads to
Eqs. (59)–(61).
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