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Abstract

In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on
test particle acceleration and compare how this evolving system affects particle energization by current sheet
interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static
electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the
dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle
trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the
strong electric field gradients that take place between structures and generate (among other effects) an efficient
particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic
field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-
dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of
the particles and a reduction in particle energization.
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1. Introduction

The production of energetic particles in the Earth–Sun
enviroment and in the interstellar medium prompts a question:
what are the mechanisms behind the generation of their
nonthermally charged particle population (Parker & Tidman
1958)? In all of these systems the flows are turbulent, as the
turbulent plasma state is observed in almost all astrophysical
and space physics systems. Acceleration of charged particles by
turbulence in the solar corona is also one of the candidates for
explaining coronal heating, as well as the origin of solar wind
energetic particles observed at in situ measurements and at
ground-based observatories (McComas et al. 2007).

As a result, many authors have studied and reported charged
particle acceleration by plasma turbulence (Matthaeus
et al. 1984a; Lazarian et al. 2012). In general, turbulence
covers a huge range of spatio-temporal scales, from low-
frequency events well described by fluid plasma models (such
as magnetohydrodynamics (MHD), and Hall-MHD) to very-
high-frequency scales related to electron dynamics, which are
well described by purely kinetic approaches.

In order to capture at least a fraction of the range of scales
involved in plasma turbulence, test particle simulations in
MHD flows have been used as a way to understand how the
macroscopic behavior of a plasma could itself generate plasma
heating and particle energization. This problem has been
treated in different ways, which can be divided into two broad
approaches. The first one consists of modeling the turbulence
as a random collection of waves (Chandran 2003; Chandran &
Maron 2004; Cho & Lazarian 2006; Lynn et al. 2013), a
representation that cannot retain the coherent structures’
formation and evolution, and which in particular can play a
crucial role in particle energization (Matthaeus et al. 1984a;
Tessein et al. 2015). In the second approach, the turbulence is
generated as a result of the normal evolution of the MHD fluid
equations (Dmitruk et al. 2004; Dmitruk & Matthaeus 2006a;
Lehe et al. 2009; Dalena et al. 2014; Teaca et al. 2014; Weidl
et al. 2015), and as such it self-consistently includes the

evolution of coherent structures. However, test particle studies
have been mostly carried out using static fields obtained from
the direct numerical simulation of the MHD equations (i.e., the
system is evolved in time to reach a turbulent regime, and then
a frozen-in-time snapshot of electric and magnetic fields is used
to compute particle acceleration). The problem with this
method is that it ignores the evolution of the coherent
structures, and does not allow for the presence of waves.
Although there are some works that deal with the influence

of dynamic MHD turbulence on test particles (Lehe et al. 2009;
Teaca et al. 2014), those papers do not present a complete
analysis of the dynamical field effects, which is in principle our
main goal in this paper. Besides, the comparision between
static and dynamic cases allows us to determine the most
relevant mechanisms for particle heating, such as, e.g., particle-
wave resonance or the interaction with well-developed
coherent structures in the turbulent flow.
The first aim of this paper is to look at the effect of

dynamical turbulence evolution on particle energization. To
this end, we performed different direct numerical simulations
of MHD turbulence, together with solving the equations for test
particles with a gyroradius of the order of the MHD dissipation
scale, first in static and then in dynamic electromagretic fields,
and for different values of a mean external magnetic field, B0.
We found a reduction of particle energization in the dynamical
case, and also that this reduction is the result of particle
trapping by the dynamically evolving field lines. This trapping
reduces the exposure time of the particles to regions of strong
electric field gradients that take place at the interface between
current sheets, and are an essential ingredient for efficient
particle energization. In spite of this reduction, the results
validate previously reported particle acceleration mechanisms
in MHD turbulence (Matthaeus et al. 1984a; Dmitruk
et al. 2004; Dalena et al. 2014; Teaca et al. 2014; Gonzalez
et al. 2016) and show the importance of coherent structures in
particle acceleration phenomena.
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The second aim of this paper is to quantify the role of the
mean external field, B0, in coherent structure formation and
particle acceleration, as, in many cases in space physics, the
particle acceleration takes place in the presence of a guide field.
To do this, we performed a set of simulations varying the guide
field from an isotropic case (B 00 = ) up to a strong anisotropic
case with a mean field B 80 = (in units of the fluctuating
magnetic field, b). We show that the anisotropy induced by the
mean magnetic field produces large coherent structures as the
mean field increases. Consequently, for large magnetic field,
the particles remain magnetized, that is, attached closely to
magnetic field lines, and then cannot move across the current
sheets, decreasing the possibility of them remaining in the
aforementioned regions where the electric field gradients are
strong. The particle propagation along the magnetic field lines
then suppresses the acceleration due to perpendicular electric
field gradients between current sheet structures.

Before proceeding we should remark on the relevance of this
study, and others, on different particle species. For a given
particle momentum and charge, the magnetic field strength
controls the gyroradius, rL. This scale must be compared to the
length scales that characterize the turbulence, notably the outer
or energy containing scale, cl , and the scale that terminates the
inertial range, usually the Kolmogorov scale, lh, in magneto-
fluids. Usually in plasmas we substitute for lh the larger of the
ion inertial scale, di,, and the thermal proton gyroradius, ir , as
the larger of these two scales characterizes the termination of
the inertial range (“k 5 3- ”; Leamon et al. 1998; Chen
et al. 2014). High-rigidity particles with r 1L cl > are
typically at very high energies and have characteristic and
relatively simple transport properties (e.g., Bieber et al. 1994;
Subedi et al. 2017). Particles with rL lying in the inertial range

r dc L il > > (or ir ) exhibit resonant scattering (Jokipii 1966;
Bieber et al. 1994; Subedi et al. 2017) and therefore one
generally finds that their magnetic moments (Dalena
et al. 2014) are not well preserved in time. For the present
purposes, these can be called “medium energy” particles.

Still lower rigidity particles with r d 1L i < or r 1L ir < do
not experience strong resonant scattering, and may preserve
their magnetic moments for longer times. Furthermore, plasma
turbulences such as the solar wind, current sheets, vortex
structures, and other coherent structures associated with
dissipative scale intermittency are typically found with sizes
of the order ofdi. Therefore, roughly speaking, smaller
gyroradius particles (low rigidity) will not experience robust
pitch angle scattering, and these same particles can remain
“trapped” within current sheets or other small-scale coherent
structures (Khabarova et al. 2016) for long enough periods of
time that they may experience significant energization
(Ambrosiano et al. 1988). Such particles include electrons,
for many parameters of interest. Many studies (e.g., Matthaeus
et al. 1984b; Dmitruk et al. 2004; Oka et al. 2010; Dahlin
et al. 2014; Guo et al. 2014; Li et al. 2015) have provided
theoretical insight concerning the diverse effects such as
trapping, multiple magnetic islands, first- and second-order
Fermi processes (Ambrosiano et al. 1988; Drake et al.
2005, 2006), etc., that may influence the energization of these
low-rigidity, relatively low-energy particles.

For the medium energy particles, a different regime is
realized because the pertinent physical effects change when the
particle gyroradii of interest exceeds the typical inner scale, di
or ir , or a few times this scale. (Secondary magnetic islands and

flux ropes associated with reconnection, as well as the
dominant current channels in turbulence, and the “break point”
in the magnetic power spectrum, are often found to be a few
times the inner scale.) Particles with these higher rigidities must
have different properties because they can experience pitch
angle scattering, and they sample somewhat larger scale
electromagnetic structures. However, these particles cannot
be easily trapped in current channels and small secondary
magnetic structures that are the size of the inner scale of
turbulence. Such particles typically include the suprathermal
proton population (with speeds larger than the thermal or
Alfvén speeds). Given the differences in these properties, it
would not be surprising to find that the detailed mechanisms of
energization differ for these medium energy protons. Indeed,
there is little reason to expect that the mechanisms proposed
above for lower-rigidity electrons will remain relevant for the
larger gyroradii suprathermal protons. It is the further
elucidation of the mechanisms that energize the latter class of
protons that is the subject of the present paper.
The organization of this paper is as follows. In Section 2, we

describe the model used in our investigations, the equations and
properties of turbulent MHD fields, and the test particle model
including the parameters that relate particles and fields. In
Section 3.1, we present a comparision between the static and
dynamic cases for an isotropic flow with B 00 = , and for an
anisotropic flow with B 20 = . In Section 3.2, we discuss the
effect of the mean magnetic field on coherent structures and
particle acceleration. Finally, in Section 4, we discuss our
findings and present our conclusions.

2. Models

The macroscopic description of the plasma adopted here is
modeled by the following three-dimensional compressible
MHD equations: the continuity (density) equation, the equation
of motion, the magnetic field induction equation, and the
equation of state. These are given, respectively, by
Equations (1)–(4)), which involve fluctuations of the velocity
field u, magnetic field B, and density ρ. We assume a large-
scale background magnetic field, B0, in the z-direction, so that
the total magnetic field is B B b0= + with B B z0 0= ˆ,
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In these equations, p is the pressure, ν is the viscosity, η is the
magnetic diffusivity, J B=  ´ is the current density, F is an
external mechanical force, and e is an external electromotive
force. We assume a polytropic equation of state p p0 0r r= g( ) ,
with 5 3g = , where p0 and 0r are, respectively, the equilibrium
(reference) pressure, and density. The Hall current is not taken
into account in Equation (3), but will be (nominally) included
later on in the particle motion equations through the generalized
Ohm’s law for the electric field. The reason for this is because the
dynamics of the u and B fields described by Equations (1)–(4),
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and of the particles we will consider, is not notably affected by
the presence of the Hall term, provided that the Hall scale (see
below) is close to the dissipation scale (see Dmitruk &
Matthaeus 2006a, 2006b).

The magnetic and velocity fields here are expressed in
Alfvén speed units based on field fluctuations. This Alfvén
speed based on field fluctuations is defined as
v b 40

2
0pr= á ñ . A characteristic plasma velocity can also

be given by the parallel Alfvén wave velocity along the mean
magnetic field, v B 4 ;A 0 0pr= this is proportional to the
amplitude of the guide field. The ratio of fluid equilibrium
pressure, p0, to magnetic pressure, B0

2, the so-called β of the
plasma, is p B MB10 0

2
0

2b = = ( ) . The sonic Mach number
M v Cs0= relates the mean velocity field with the sound
speed C ps 0 0g r= . We use the isotropic MHD turbulence
correlation length, L, as a characteristic length (also
called the energy containing scale), defined as L =
L E k k dk E k dkbox ò ò( ( ) ) ( ) , where E(k) is the energy
spectral density at wavenumber k, and Lbox is the linear size
of the domain. The unit timescale, t0, also called the eddy
turnover time, is derived from the unit length and from the
fluctuation in Alfvén speed t L v0 0= .

The MHD equations are solved numerically using a Fourier
pseudospectral method with periodic boundary conditions in a
normalized cube of size L 2 ;box p= this scheme ensures exact
energy conservation for the continuous-time spatially discrete
equations in the ideal ( 0n h= = ) and not forced (F 0e= = )
case (Mininni et al. 2011). The discrete time integration is done
with a high-order Runge–Kutta method, and a resolution of
2563 Fourier modes is used. For the kinematic Reynolds
number R v L0 n= and the magnetic Reynolds number
R v Lm 0 h= , we take R R 1000m= = , which are limited here
by the available spatial resolution. The Mach number in our
simulations is M=0.25, so we consider a weak compres-
sible case.

In Gonzalez et al. (2016), we reported the effect of the
compressibility of the flow on particle acceleration. In that study,
we considered decaying turbulence from an initial perturbation,
and after the turbulence was fully developed, the test particles
were injected into the system and evolved in a frozen-in-time
snapshot of the turbulent electromagnetic field. In this paper, we
are interested in studying the effect of dynamically evolving
turbulence; in order to mantain energy fluctuating around a mean
value (i.e., to reach a turbulent steady state), we must force the
system externally using the mechanical and electromotive forces,
F and e, in Equations (2) and (3). To this end, we started the
system from initially null magnetic and velocity fields and forced
it into a quasi-stationary turbulent MHD state. The forcing
scheme that we employed (for both F and e) in all of the
simulations shown here is based on that presented in Pouquet &
Patterson (1978). On average, the forcing introduces zero
mechanical and magnetic helicity, and zero cross-correlation
between velocity and magnetic field fluctuations. We used slowly
evolving random-phase forcings in the Fourier k-shells with

k3 4  , with a correlation time t0t = . In other words, in
each eddy turnover time new random (and uncorrelated) forcing
functions F and e were generated, and each forcing was linearly
interpolated in time from the previous random state to the new
one in a time, t0. In this way, we prevented the introduction of
sudden changes in the field that may arise when delta-correlated

in time forcing is used, and which may affect the evolution of test
particles.
Each random snapshot of the forcing functions was

generated as follows. For a forcing f (which may be either
F or e), we generated the first two random fields in Fourier
space,

v k v kA k e A k e, , 5j
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where j 1, 2, 3= are the field Cartesian components, kjf ( )
and kjy ( ) are random phases, and the amplitude is A k 1=( ) if

k3 4  , and 0 otherwise. Two normalized incompressible
fields are then constructed as
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We introduce a correlation between these fields making use of
an auxiliary quantity

f fsin cos , 7f
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where α can take any value between 0 and 4p . Finally, the
forcing function f is given by
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with f0 the forcing amplitude. Note that α controls how much
correlated is f with its curl (in fact, this correlation is
proportional to sin 2a). Thus, using 0a = gives a random
forcing function that does not inject helicity on the average.
This allows us to study cases in which there is no inverse
cascade (as the presence of helicity in the three-dimensional
flow can result in the growth of large-scale structures as a result
of the inverse cascade of magnetic helicity, see Mininni 2011),
which will be important to understand the role of the growth of
correlation lengths as the flow becomes two-dimensional in
particle acceleration for large values of B0.
When a stationary turbulent state was reached and a broad

range of scales were excited, the test particles were injected and
then both fields and particles were simultaneously evolved (for
frozen-in-time simulations, one snapshot of the fields was
extracted, and only test particles were evolved). In the turbulent
regime, the fluid contains energy from the outer scale L to the
Kolmogorov dissipation scale ld d

3 1 4n= ( ) , where d is
the average rate of energy dissipation; then we can define the
Kolmogorov dissipation wavenumber as k l2d dp= .
We must now introduce the equations for the test particles,

and associate the particle parameters with the relevant flow
parameters. Test particle dynamics is described by the
nonrelativistic equation of motion:

v
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The electric field E can be obtained from the generalized
Ohm’s law, which can be made dimensionless using a
characteristic electric field E v B c0 0 0= , and results in
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The dimensionless parameter α relates particles and MHD field
parameters:

Z
m

m

L
, 11

p

ii

a
r

= ( )

where iir is the proton inertial length given by

m c e 4ii p 0r pr= ( ), m is the mass of the particle, mp is the
mass of the proton, and Z is the atomic number (we will
consider m mp= and Z=1). The inverse 1 a represents the
nominal gyroradius, in units of L and for particles with velocity
v0, and gives a measure of the range of scales involved in the
system (from the outer scale of turbulence to the particle
gyroradius). One could expect a value 104a > specially for
space physics and astrophysical plasmas, which represent a
huge computational challenge due to numerical limitations.

Once the turbulent state was reached, 10,000 test particles
were randomly distributed in the computational box and the
equation of motion for particles and the MHD electromagnetic
fields were evolved. Equation (9) for each particle was evolved
in time using a fourth-order Runge–Kutta method, and cubic
splines were used to extrapolate the values of the terms in
Equation (10) from the three-dimensional MHD grid to the
position of the particles. Particles were initialized with a
Gaussian velocity distribution function, with a root mean
square (rms) value of the order of the Alfvén velocity. It is well
known that the particle gyroradius has a significant influence
on the particle acceleration mechanisms, and our aim in this
paper is to explore the dynamical effect of MHD turbulence on
acceleration of large gyroradius particles, of the order of the
turbulent dissipation length. Thus, we set lii dr = . We will
loosely call these particles “protons” as their gyroradius is at
the end of the inertial range of our MHD simulations (Dmitruk
et al. 2004).

The second and third terms in Equation (10) are the Hall
effect and the electron pressure gradient respectively. Those
two terms can be important at small scales, starting at the
proton gyroradius, but they give small contributions to the fluid
equations through the curl of E (i.e., single-fluid compressible
MHD is still appropriate at large scales). However, one must
include them in the equation of motion of the particles to have a
consistent description of particles in the compressible MHD
case (Kulsrud 1983), and to have consistency with kinetic
descriptions of plasmas such as those in Wan et al. (2015).

The dimensionless coefficient ò in Equation (10) is the Hall
parameter:

L
. 12ii

r
= ( )

The Hall parameter relates the ion inertial length scale with the
energy containing scale. Thus, for consistency with the test
particle definition (see Equation (11)), we set the value of the
Hall parameter 1 a= in our simulations. In the MHD
description it is assumed that plasma protons and electrons are
in thermal equilibrium, i.e., their pressures are pe=pi. Then
p p 2e = with p p pe i= + the total pressure. For particles with

1 a = and lii dr = (as is the case studied here), we showed
in Gonzalez et al. (2016) that the second and third terms on
the rhs of Equation (10) give a small contribution to the
acceleration. As mentioned above, we will, however, preserve
these terms for consistency. In the case of small particle

gyroradii (such as particles with the mass of electrons), which
was previusly reported for frozen-in-time fields in Gonzalez
et al. (2016), those terms become dominant. We will leave for a
future study the effect of dynamical electromagentic fields over
these kinds of particles.

3. Results

3.1. Dynamic versusStatic MHD Fields

In this section, we compare the particle behavior for static
and dynamic MHD fields in two different scenarios: with and
without an external mean magnetic field. Table 1 presents the
parameters of the flow and of the particles for the simulations in
this section.
In Figure 1, we show the kinetic and magnetic energy for the

time-evolving simulations with B 00 = and B 20 = . As already
mentioned, the MHD fields are initially started from a null state
and a forcing is applied from the beginning of the simulation to
obtain a quasi-stationary state (reached after about t12 0~ ), and
from that time the particles evolve simultaneously with the
fields (marked as t= 0 in the figure). Note that the system is
indeed in a turbulent steady state, with the energy fluctuating
around a mean value. As a reference, once the particles are
added to this flow at t=0, it takes about five turnover times for
the particles to cross the entire simulation box (periodic
boundary conditions are used for both the fluid and the
particles, and thus the most energetic particles can re-enter the
box and travel larger distances).
The mean square desplacement Dr as a function of time is

shown in Figure 2, for the simulations with B 00 = and with
B 20 = , for both the static and dynamic cases. Here (and in the
velocity shown in Figure 3) particles feel a sudden displace-
ment and acceleration at early times because they first follow a
“ballistic” regime, then reach a sub-diffusive stage, which is the
regime of interest for our work; the early time transient seems
to be slightly different in the static and dynamic cases. Again,
by “static case,” we refer to the case in which a snapshot of the
fields is frozen in time and the particles are evolved using those
electric and magnetic fields (as done in previous studies, see,
e.g., Dmitruk et al. 2004; Dmitruk & Matthaeus 2006a; Dalena
et al. 2014). In the “dynamic case” the equations of motion of
the particles are evolved in time together with the MHD
equations, and thus the particles are affected by the time
evolution of the structures in the flow. At late times, a small
difference is observed between these two cases, with a slightly
larger mean displacement in the static case. Additionally, the
displacement of the test particles in the z-direction in the
simulation with B 20 = changes significantly (when compared
with the case with B 00 = ), as a result of the test particles
following the direction of the mean magnetic field. While in the

Table 1
Parameters of the Simulations Discussed in Section 3.1

Run B0 M β Lá ñ kdá ñ α

1 0 0.25 6.12 2.31 92 40
2 2 0.25 2.79 1.76 96 52.63

Note.B0 is the amplitude of the guide field, M is the sonic mach number, β is
the plasma “beta,” Lá ñ is the average energy containing scale for the flow
during the steady-state period, kdá ñ is the average Kolmogorov Dissipation
wavenumber, and α is the nominal particle gyroradius.
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run with B 00 = the dispersion is isotropic (i.e., the mean
displacement is the same within statistical errors for the x, y,
and z directions), in the run with B 20 = much larger
displacements are observed in the z-direction.

In Figure 3, we show the mean square velocity as function of
time, v v vT

2 2 2= +^  , i.e., the sum of the squared parallel and
perpendicular components of the test particle velocities,
averaged over all test particles. Results for the isotropic and
the anisotropic cases are shown, comparing also the static and
dynamic cases. A smaller mean velocity at late times is
observed in the dynamic case, especially for the case
with B 20 = .

The progessive increment in the mean square velocity is
largely due to the result of the interaction of the particles with
the electric fields near the current sheets found along the
particle trajectory, as was described in a previous paper
(Gonzalez et al. 2016). In the isotropic case, the structures are
randomly distributed in the box and there is no privileged

Figure 1. Mean energy of MHD variables as a function of time, (top) for a
simulation with no mean magnetic field mean field simulation (B 00 = ) and
(bottom) for a simulation with B 20 = . The vertical dashed line denotes the
particle injection time in the simulations, at the time labeled as t=0.

Figure 2. Mean square displacement of protons as a function of time in box
units, for the static (solid line) and dynamic (dashed line) simulations. (Top)
Simulation without mean magnetic field (B 00 = ), and (bottom) simulation
with a mean magnetic field B 20 = . The horizontal solid line indicates the size
of the simulation box.
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direction; as a result, the current sheets are not aligned and are
instead randomly oriented. This situation and the lack of a large
magnetic field make the particles interact with several different
structures along its path and to be exposed regions with strong
electric field gradients for long times. The smaller final
rmsvelocity in the dynamic case is the result of the time
evolution of the dynamic flow that reduces the exposure time to
the strong fields, which are an essential component for efficient
particle acceleration as shown below.

Figure 4 presents the time series of particle perpendicular
kinetic energy and mass density along particle trajectory, for
three of the most energetic particles as they move across the
simulation box. Also, reversals in the current density seen by
the particles are indicated by vertical dashed lines. This figure
is useful to identify acceleration mechanisms in the turbulent
flow. First, note the presence of fast oscillations (with the
frequency of Alfvén waves at the smallest resolved scales) in
the dynamic case. These oscillations are absent in the static
case because the fields are frozen in time. However,, particles
in this case gain more perpendicular kinetic energy. Second,
note an anti-correlation between density gradients and accel-
eration (i.e., between time derivatives of density and perpend-
icular kinetic energy). This behavior is caused by particles
crossing compression and expansion regions that make the
particles decelerate and accelerate. Thus density gradients play
a role in acceleration. However, in the static case, density
variations are smaller, while particle energization is signifi-
cantly larger. The third important piece of information in the
figure is the reversals in current density, with the vertical
dashed lines indicating a particle crossing through current
sheets. In the static case, frequent trapping between these
structures results in energization. In the dynamic case, reversals
in the current are more frequent, and current crossing and
particle energization are less correlated, an indication that
exposure of the particles to regions with strong electric field
gradients located between current sheets is decreased.
In Figure 5, we show the probability density funtion (PDF)

of particle energy for the isotropic and anisotropic cases (and
for both the static and dynamic cases). In the isotropic case, the
distributions for static and dynamic fields are very similar.
Although differences in the tails have no statistical significance,
there is a larger probability in the core of the distribution (i.e.,
for low squared velocities) in the dynamic case, which can be
understood as we already noted in the dynamic case where the
acceleration of particles is slightly less efficient. Moreover, in
the anisotropic case, these differences become somewhat larger
(although still small in absolute terms). Thus, in general, in the
dynamic case, there is a larger probability of finding particles
with small energy than in the static case.
To further untangle the relation between current sheet

reversals and the exposure time to electric field gradients
between current sheets, Figure 6 shows a scatter plot of the
perpendicular particle energy versusthe current density seen by
particles along their trajectories for static and dynamic
electromagentic fields. To discriminate particles with low and
high energy, we separate the population in four decades as
indicated by the vertical dashed lines in the bottom of Figure 5
(particles with the lowest energies are in region R1, and with
the highest energies in region R4).
In Figure 6, it is observed that the most energetic particles

are concentrated in regions with current densities near zero, i.e.,
in regions where jz changes sign. On the contrary, the current
seen by particles with low energy is more dispersed. The
concentration of high energy particles near j 0z » is more
marked in the static than in the dynamic case, for which
energization is also significantly larger (note the values of the
squared perpendicular velocities). The scatter plot of the
temporal derivative of the electric field versusthe perpend-
icular particle energy (not shown) exhibits the same behavior,
with the most energetic particles around dE dt 0»^ (where
the time derivative is in respect of the time of flight of the

Figure 3. Mean square velocity of protons as a function of time for the static
(solid line) and dynamic (dashed line) cases. (Top) Simulation without mean
magnetic field (B 00 = ) and (bottom) with mean magnetic field (B 20 = ).
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particle, and is therefore proportional to the gradient observed
by the particle). This confirms that particles are more
accelerated when they are exposed for longer times to electric
field gradients between current sheets.

As discussed above, exploration of the particles trajectories
indicates that the fact that particles are more accelerated in the
static case than in the dynamic case is the result of the
correlation between particles and structures, and the longer
exposure time with electric fields between coherent structures
(i.e., particles can move from one current sheet to another, and
cross strong electric field gradients in their paths with sufficient
transit time to be accelerated). Meanwhile, in the dynamic case,
the particles are trapped in the field lines and particles are
advected by the flow. This advection reduces the particles’
exposure to the regions with strong gradients. Besides, it is
important to note that there is not a single acceleration
mechanism acting in a turbulent flow (as shown in Figure 4,
e.g., there is a correlation also with density gradients and
shock-like structures, and fast waves are also present).

With these results in mind, in the next section, we explore
the effect of the mean magnetic field on particle acceleration in
the dynamically evolving turbulent electromagentic fields. To
this end, we analyze particle energization varying the guide
field from zero up to a strong case with B 80 = .

3.2. Effect of B0

The aim of this section is to show the effect of the mean
magnetic field B0 on the flow features, and on the resulting
particle acceleration. It is well known that MHD flows with an
imposed strong magnetic field suffer a transition form a three-
dimensional (3D) state toward a two-dimensional (2D) state
(Alexakis 2011; Sujovolsky & Mininni 2016). The relevance
of this anisotropy has been discussed by many authors in
recent years, especially in the context of the solar wind
problem. This transition from a 3D to a 2D state is
accompanied by the transfer of energy toward modes with
small parallel wavenumbers (i.e., by the increase of the
correlation length of the structures in the direction of the mean
field Alexakis 2011), and is associated with the development
of the conditions that would establish an inverse cascade of
the squared vector potential if the flow becomes 2D (Mininni
et al. 2005; Wareing & Hollerbach 2010). Both effects
(though in different ways) result in the growth in size of the
structures in the flow. We thus now look for the effect of the
resulting anisotropic field and increased correlation lengths on
test particle acceleration. In Table 2, we show the parameters
of the simulations presented in this section. In the table, it can
be noted that the plasma beta is not equal to one, especially
for the isotropic case. It is important to remark that the proton

Figure 4. Particles’ perpendicular kinetic energy and local density during the flyby of three of the most energetic particles in the simulations with a mean magnetic
field B 20 = : (top) simulation with dynamic fields, and (bottom) simulation with static fields. The gray vertical dashed lines show the times when the current density
( jz) seen by the particle is reversed.
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gyroradius and the proton inertial length are not rigorously
equal in those simulations.

In Figure 7, we show the rmsvelocity of the particles as a
function of time for all the simulations with different values of
the mean magnetic field. It is observed that as the mean field
increases, the particle velocity at the end of the simulation is
reduced, and the acceleration process is thus diminished. The
reduction of the rmsvelocity with increasing mean magnetic
field is an effect of the growth in the size of the structures; as

current sheets become elongated (in the direction of the mean
field resulting from the anisotropy), and wider (in the direction
perpendicular to the mean field resulting from the flow two-
dimensionalization), the particles get trapped in the structures
(i.e., the particles are magnetized) and cannot easily be exposed
for longer times to the accelerating electric fields gradients in
the vicinity of current sheets.
As observed before, in the isotropic case (B 00 = ) particles

find structures distributed in all directions, and thus the final
velocity is greater than in all the other cases with non-zero
mean magnetic fields. This is because the perpendicular energy
gained by the the particle is decreased more substantially in the
presence of a strong mean magnetic field, confirming the
argument about the effect of the anisotropy mentioned above.
In Figure 8, we show the mean square magnetic moment for

protons as a function of time for all the simulations with
different values of the mean magnetic field. The magnetic
moment W B2m = ^ , with W⊥ the perpendicular energy of the
particle, is one of the adiabatic invariants of charged particle
dynamics in magnetic fields. Thus, it has important con-
sequences on the dynamics of particles and determines how
magnetized is a particle, that is, how much attached a particle is
to a magnetic field line. Variations of the magnetic moment
with turbulence parameters was studied in some detail by
Dalena et al. (2012). It is observed that the mean square
magnetic moment of protons increases faster in time as the

Figure 5. Probability density function of proton energies for the static and
dynamic cases: (top) simulation without mean magnetic field (B 00 = ) and
(bottom) simulation with mean magnetic field (B 20 = ).

Figure 6. (Color online) Scatter plot of perpendicular particle energy vs.
current density along particle trajectories. The different (color) shadings in the
dots represent the energy range (from R1 to R4) of the particles in the PDF in
the bottom of Figure 5: from left to right, the (color) shadings correspond to
low to high energies. (Top) Simulation with static fields and (bottom)
simulation with dynamic fields.

Table 2
Parameters of the Simulations with Varying B0, Discussed in Section 3.2

B0 v2á ñ b2á ñ β Lá ñ kdá ñ α

0 0.91 2.61 6.12 2.41 92 40
2 1.29 1.74 2.79 1.78 96 52.63
4 1.12 1.28 0.93 2.28 86 40
8 1.22 1.13 0.24 2.28 92.3 43.48

Note.B0 is the amplitude of the guide field, v2á ñ and b2á ñ are, respectively, the
mean kinetic and magnetic energies in the turbulent steady state (for a fluid with
mass density 1r = ), β is the plasma “beta,” Lá ñ is the average energy containing
scale for the flow during the turbulent steady state period, kdá ñ is the average
kolmogorov dissipation wavenumber, and α is the nominal particle gyroradius.
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mean magnetic field is decreased. This means that protons
become more demagnetized for lower values of the mean
magnetic field. On the other hand, as the mean magnetic field is
increased, the onset of magnetic moment conservation can be
observed. This means that particles become closer to being
magnetized (i.e., attached to the field lines). Then, in those
cases, particles propagate along the mean field direction and the
perpendicular crossing through different current sheet struc-
tures becomes supressed.

The PDFs of the values of the electric field Cartesian
components also help us to understand this scenario. They are
shown in Figure 9. The parallel (z-component) of the electric
field takes larger values in the isotropic case than in the
anisotropic cases. As already mentioned, this is because current
sheets in the former case are oriented in all directions. As B0 is
increased, the parallel (z-component) of the electric field
becomes weaker. The perpendicular (x-component) of the
electric field shows the opposite behavior: electric field values
are larger as the mean magnetic field increases. This is caused
mainly by the first term in Equation (10) (the term containing

Figure 7. Mean square total velocity of protons as a function of time for
different simulations, changing the mean magnetic field value B0.

Figure 8. Mean square magnetic moment of protons as a function of time for
different simulations, changing the mean magnetic field value B0.

Figure 9. Probability distribution function of the electric field in all
simulations. (Top) The parallel (z-component) of the electric field Ez, and
(bottom) the perpendicular (x-component) of the electric field Ex.
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the mean magnetic field value). In spite of this, particle
energization does not follow the same tendency because, as is
noticed, the particles cannot leave the current’s structures and
then cannot interact with strong electric field gradients in
regions nearby the current sheet interfaces. That is, what is
relevant for perpendicular particle energization is not the
absolute value of the electric field but rather the exposure time
of particles to strong gradients of that electric field.

To confirm this scenario, in Figure 10, we show the x–y
cross-section of the perpendicular component of the electric
field Ex, and the x–z cross-section of Ex for all the simulations
discussed in this section (from left to right, we show the cases
with B 00 = up to the strongest case with B 80 = ). The
trajectory of three of the most energetic particles are shown as
well with solid lines and marks (using pluses, circles, and
crosses for each particle).

Note the particle behavior and the importance of the
structure size on particle energization. In the isotropic case, it
is observed that the structures are distributed in all directions,
and there are no differences between both cross-sections of the
electric field. In contrast, the cases with non-zero mean
magnetic fields show the structures aligned with the mean
field as clearly seen in the bottom panels of Figure 10. As the
mean magnetic field increases, the flow becomes more
anisotropic and for the strongest mean field the variations in
the z-direction are small.

The x–y cross-sections also give us an idea of the size of the
structures. It is observed that as the mean magnetic field
increases, the width of the structures also increases, and a
transition from a flow with randomly distributed structures with
a width of the order of the dissipation scale can be seen for the

isotropic case, moving toward a flow with wider structures in
the cases with a non-zero mean magnetic field.
The trajectories of the particles show the importance of the

structure size. While trajectories reminiscent of stochastic
motion are observed at the isotropic case, where the particle
passes through many structures finding strong electric field
gradient regions along its path, as the mean magnetic field
increases, the particle trajectories become more elongated
and particles cannot go across structures. For the B 40 =
and B 80 = cases, the trajectories show that particles drift
across a few structures, almost staying around a single one
and no longer allowing the particle to stay in strong electric
field gradient regions. This is the reason why particles do not
gain as much energy as in the isotropic case, as the random
hopping from one structure to the next is, at least in the static
case, the most efficient acceleration mechanism as observed
in Gonzalez et al. (2016).

4. Discussion

In this paper, we studied the effect of dynamically evolving
MHD turbulence on test particle acceleration. To this end, we
numerically solved the MHD equations, and solved the
equations for test particles either together with the flow
evolution, or in frozen-in-time fields obtained from snapshots
of the electromagnetic fields in the MHD simulations. This case
of “static MHD turbulence” has been used before to investigate
particle energization phenomena (Dmitruk et al. 2004; Dalena
et al. 2014; Gonzalez et al. 2016). We found some differences
between both models, with a slight reduction of particle
acceleration in the dynamical case. This result was obtained for
“protons,” or test particles with gyroradii of the order of the

Figure 10. (Top row) x–y cross-section of the perpendicular (x-component) electric field (Ex) in the simulation box, for different values of B0. (Bottom row) x–z cross-
section of the perpendicular (x-component) electric field (Ex). In both rows, from left to right, the following simulations are shown: B 00 = , B 20 = , B 40 = , and
B 80 = respectively. The black signs and lines show the trajectories of three of the most energetic protons in each simulation.
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flow dissipation scale, which is the case we specifically
analyzed here. The cause for the small reduction in the
acceleration rate is particle trapping in dynamic field lines,
which makes it more difficult for particles to stay long enough
in regions of strong electric field gradients located at the
interface between structures whereby particles are accelerated.

The study was motivated by the fact that several of the
previous works done on particle acceleration considered static
MHD turbulence. Even though there are some previous papers
that have dealt with the dynamic problem (Cho & Lazarian
2006; Teaca et al. 2014; Weidl et al. 2015; Hussein &
Shalchi 2016), most of those studies consider incompressible
flow models. Also, a detailed comparison between static and
dynamic fields and their effect of particle acceleration was
lacking.

This paper is most closely related with Lehe et al. (2009) due
to the compressible turbulence and dynamic model that both
used. In that paper, the authors conclude that the particle
heating is due to the cyclotron resonance with Alfvén waves in
the system when the wave frequencies are of the order of the
particle gyrofrecuency. In this paper, we have shown that
perpendicular proton heating is very similar for the dynamic
and static cases, which means that we can obtain the same
results with or without waves in the system. This is very
important because it confirms the importance of coherent
structures in particle energization. The authors also discussed
the relevance of the results in the context of solar wind and
solar corona, and they claim that the results cannot be directly
applied to those astrophysical systems, mainly because of the
limitation in numerical resolution and scale separation one can
obtain using numerical methods. We agree with the authors
about the need to extrapolate these results to a higher numerical
resolution, which could result in an asymptotic study that is
more closely related to the corona and the solar wind.

Additionally, we investigated the effect of anistropy caused
by the mean magnetic field on the resulting particle accelera-
tion, for which an adverse effect on particle energization was
observed. The transition from a three-dimensional to a two-
dimensional MHD state, which can also be accompanied by an
inverse energy cascade for very strong magnetic guide fields,
causes an increase in the structure sizes, impacting the
reduction of the particle acceleration because test particles are
trapped in wider current channels and exhibit an almost
magnetized state with conservation of magnetic moment.

Considering the results reported in Gonzalez et al. (2016),
where we showed that the flow compressibility affects particle
energization, in this work, we made sure that no important
variations on the turbulent Mach number were present between
different runs. To this end, we also considered forced
simulations (instead of freely decaying ones), to be able to
study particle acceleration in a turbulent steady state with a
well defined mean Mach number. To prevent effects associated
with a possible inverse cascade of magnetic helicity, or of
cross-correlations between the velocity and magnetic fields, we
implemented a forcing mechanism that guarantees no net
injection of kinetic helicity, magnetic helicity, or cross-helicity.

In the same way, the model we use in this paper for the test
particles includes electron pressure effects and the Hall current in
the generalized Ohm’s law for particle motion computation. It is
noted that we have not included those terms in the induction
equation, based on the assumption that we can neglect them at
large fluid scales (Dmitruk & Matthaeus 2006a, 2006b). While,

in a previous study, we found that retaining those effects can
have an important contribution to the energization of particles
with small gyroradius (Gonzalez et al. 2016; compared with the
width of the current sheets), for particles with gyroradius of the
order of the MHD dissipation scale (called “protons” here), these
effects are not as important. However, these terms (albeit they
give a small contribution), and other acceleration mechanisms,
coexist in the turbulent flow with the observed acceleration as
particles jump from one current sheet to another. This is the case
of the particle interaction with compression regions (as, e.g.,
shock structures), which also results in particle acceleration. We
have shown a correlation between changes in density and
changes in particle energy, which seem to be more important in
the dynamic case.
While we have found a difference in effectiveness of

different mechanisms in energizing small gyroradius particles
(electrons) and larger gyroradius particles (protons), as in
Dmitruk et al. (2004), it is worthwhile to recall that in the test
particle simulations of Dalena et al. (2014) were carried out for
a long enough time to observe the transition between these two
regimes for a single particle species. This requires following
the most energetic particles for thousands of gyroperiods. The
reported mechanism for the second-stage higher rigidity
energization in that (static) numerical experiment is completely
compatible with what we found here and described above. In
an initial epoch, low rigidity acceleration is due to trapping in
magnetic structures and is predominantly parallel acceleration.
In this regime, numerous theoretical treatments mentioned in
the introduction are relevant (Matthaeus et al. 1984b; Dmitruk
et al. 2004; Drake et al. 2005, 2006; Oka et al. 2010; Dahlin
et al. 2014; Guo et al. 2014; Li et al. 2015) and have provided
physical insight concerning the several processes that con-
tribute to this energization. For the larger gyroradius case, to
which the present study is relevant, different analyses become
relevant (Dmitruk et al. 2004; Chandran et al. 2010). In
particular, in the present results, relevant to suprathermal
protons, changes in the magnetic moment become important,
and the perpendicular electric field plays a central role, both of
which stand in contrast to the low rigidity electron case.
It is important to mention that there are also more complete

frameworks (e.g., Zank et al. 2014; le Roux et al. 2015) that
include at least several of the dynamical mechanisms that are
relevant here, such as interactions with secondary islands and
anti-reconnection electric fields, and magnetic flux rearrange-
ments (and associated electric fields) due to island contraction
and merging. These theoretical frameworks are quite flexible
and can accommodate a wide range of modeled physical
effects, including pitch angle scattering.
In order to make connections with those above referenced

works, which are based on transport formalism, it is noted that
here we have studied the dynamics of particles having gyroradii
comparable to the boundary layer regions near the edge of flux
tube, likely near reconnection sites. Such particles are not
readily trapped within the current sheets or the smaller
numerous secondary islands that form nearby, because these
structures have scales of the order of the ion inertial scale or the
thermal proton gyroradius. Such particles encounter steep
perpendicular electric field gradients, magnetic compressions,
and multiple current sheets, which are associated with flux tube
interactions (and flux pileup). This type of process, as studied
here, is also fairly local, as seen in Figure 10, and therefore
does not require a transport equation approach that describes
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many such interactions. Eventually, it would be very useful to
have a transport formulation to treat the multiple-encounter
version of the case that we study, analogous to the framework
described in Zank et al. (2014) and le Roux et al. (2015), but
that would clearly lie well beyond the scope of our study.

In general, the results support and reaffirm the importance of
coherent structures on particle acceleration and their possible
relevance for the solar wind. This latter problem has been
analyzed using different approaches, from spacecraft data
measurements (Tessein et al. 2015) to different numerical
schemes covering fluid and kinetic descriptions (Ambrosiano
et al. 1988; Drake et al. 2006; Greco et al. 2008; Karimabadi
et al. 2013; Servidio et al. 2014; Wan et al. 2015). The coherent
structures in these cases appear by the interaction and pileup of
magnetic flux tubes, and those regions provide the possibility
of generating strong field gradients, where particles can
experience substantial energization. Also, numerical simula-
tions with a complete kinetic description (Wan et al. 2015)
have shown a correlation between regions of energy dissipation
and regions near strong current density enhancements (of the
order of particle scales, especially at the ion inertial lengh). The
extended model used for the particles, including Hall and
electron pressure effects, allow for better comparison with these
kind of models. This is left for future work, through direct
comparision between kinetic, hybrid simulations, and test
particles.
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