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ABSTRACT

Aim To analyse the dependence of phytoplankton species richness on temperature
within the framework of the metabolic theory of ecology (MTE) with explicit
consideration of its assumptions and predictions.

Location Lakes from the Southern Hemisphere – South America (Argentinean
Pampa to Tierra del Fuego) and Antarctica – and Northern Hemisphere – North
America (USA) and Europe (Denmark to Spain).

Methods The MTE proposes that natural logarithm of species richness and the
inverse of temperature are linearly related, with a slope equal to the activation
energy. The MTE assumes that the total community abundance, average body size
and per species average community productivity are independent of the tempera-
ture. These predictions and assumptions are here evaluated using c. 660 phyto-
plankton lake communities and a literature review of 281 experimental measures of
growth rate. Linear, curvilinear and segmented models were contrasted with
empirical trends.

Results Temperature–richness relationships showed a three-phase segmented
form in two of the three continents. Generally, at temperatures above 17 °C and
below 11 °C there was a weak relationship or none. Intermediate temperatures
showed the expected positive association with richness, but with steeper slopes (c.
1) than MTE expectations (c. 0.3). Statistical models including total community
abundance and average body size explained up to 64% of the variance in richness.

Main conclusions In its original formulation the MTE is not a satisfactory
model for large-scale richness patterns in phytoplankton. However, the MTE is able
to better explain richness patterns when the temperature dependence of abun-
dances and body size are explicitly accounted for in the model. These temperature
dependences improve the performance of MTE predictions but question the inter-
pretation of the richness–temperature slope as a measure of activation energy. The
balance among activation energy, abundance and body size produced the observed
segmented pattern in temperature–richness relationships for lake phytoplankton.
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INTRODUCTION

The increase in species richness from the poles to the tropics was

one of the first and best recognized ecological patterns, with a

great number of proposed mechanisms but inconclusive

support (Rohde, 1992; Willig et al., 2003; Mittelbach et al., 2007;

Brown, 2014). Among different formulations, energetic hypoth-

eses are supported by statistical analysis of geographic trends

(Allen et al., 2007; Hessen et al., 2007; Pinel-Alloul et al., 2013).

Almost a decade ago, a quantitative relationship between rich-

ness and temperature was put forward (Allen et al., 2002) in the

framework of what has been called the metabolic theory of
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ecology (hereafter MTE; Brown et al., 2004). The MTE proposes

that the metabolism of individual organisms influences struc-

ture and dynamics at different organizational levels (Brown

et al., 2004). In its original form, the MTE predicts that the

logarithm of species richness (S) will be linearly and negatively

related to the inverse of absolute temperature (1/T; T in kelvin)

as follows (Allen et al., 2002):

ln S E kT I( ) = − +a (1)

where ln is the natural logarithm, Ea is the activation energy for

autotrophic metabolism and k is the Boltzmann constant

(k = 8.62 × 10−5eV K−1). Ea was proposed to be a constant for

large taxonomic groups (Allen et al., 2002; Brown et al., 2004).

However, subsequent empirical estimations reported large vari-

ation in its magnitude (Hawkins et al., 2007), which brings into

question the determinants of Ea as a main focus of research (Dell

et al., 2011). In equation 1, the intercept (I) comprises the fol-

lowing parameters:

I J A b M B= ( ) + < >( ) − < >( )ln ln ln/
0

3 4
T (2)

where J is community abundance in a given area or volume

(A). The second term is the average over the community of

body mass (M) scaled to 3⁄4 with b0 as a normalization con-

stant. The third term represents the average per species energy

use in the community (<BT>). In its original formulation

(Allen et al., 2002), the exponential effect of temperature was

expected to override the effects of the parameters in the inter-

cept (equation 2) if two strong assumptions were met. These

are, temperature invariance of (1) the total community abun-

dance and (2) the average size of organisms. These two

assumptions imply that equation 2 does not depend on tem-

perature. Although the original formulation of the model was

supported by empirical data (Allen et al., 2002), it has been

criticized because of departures from its predictions and

assumptions (Algar et al., 2006; Hawkins et al., 2007;

Cassemiro & Diniz-Filho, 2010).

The deviation from a linear relationship of inverse tempera-

ture and natural logarithm of species richness (Hawkins et al.,

2007; Cassemiro & Diniz-Filho, 2010) led some authors to

suggest the MTE be abandoned. However, considering the set of

explicit and implicit assumptions, a simple test of that bivariate

relationship may not be appropriate (Storch, 2012). Some

efforts towards a far-reaching evaluation of the model were

made, introducing a consideration of model assumptions

(Cassemiro & Diniz-Filho, 2010) and the effects of sampling

area (Wang et al., 2009), numbers of individuals and water avail-

ability (Šímová et al., 2011). In this sense, it was proposed that a

general improvement of metabolic theories should consider the

role of community abundance – formerly assumed constant in

the MTE – as a determinant of species richness (Allen et al.,

2007). This mechanism, known as the ‘more individuals hypoth-

esis’ has long been recognized as a determinant of species rich-

ness (Rohde, 1992). Currently, the concomitant evaluation of

model assumptions and predictions represents a crucial step in

the analysis and construction of a metabolic theory of biodiver-

sity. However, this evaluation demands large amounts of infor-

mation about community richness, size structure, total

abundance and productivity over spatial ranges large enough to

show the action of proposed mechanisms.

Evaluations of large-scale richness patterns in the framework

of the MTE have been predominantly performed on terrestrial

vertebrates (Hawkins et al., 2007; Cassemiro & Diniz-Filho,

2010) or plants (Allen et al., 2002; Wang et al., 2009). Recently,

the evaluation of the biogeography of microbial organisms has

experienced a boost (Martiny et al., 2006) with emphasis on

aquatic microorganisms (Hessen et al., 2007; Schiaffino et al.,

2011; Pinel-Alloul et al., 2013) and on the relevance of under-

standing the biogeographic patterns in traits (Green et al.,

2008). Phytoplankton communities represent an exceptional

model for studying the energetic determinants of community

richness (Stomp et al., 2011). Phytoplankton show high diver-

sity even in small systems, and reports of community structure

typically include measures of productivity, individual cell size

and abundance (or proxies for it, such as chlorophyll a concen-

tration (CHLA)). The main MTE scaling relationships tend to

hold for phytoplankton (Kruk et al., 2010). However, there are

deviations with respect to the expected scaling that were related

to local environmental conditions and to specific organism

traits (Kruk et al., 2012; Litchman, 2012). Lake phytoplankton

are particularly interesting in this context due to the large range

of local conditions, particularly temperature, to which they are

exposed (Kruk et al., 2012). However, in comparison with ter-

restrial or even marine communities, the main predictions of

MTE have hardly been evaluated on lentic systems, there being

some examples where no support to MTE was found (de Castro

& Gaedke, 2008; Marañón, 2008).

Under the framework of the MTE, we hypothesize that envi-

ronmental temperature, via its effect on biological rates and

organism metabolism, determines the number of species when

evaluated across the latitudinal gradient. This hypothesis will be

valid only if community attributes, namely, average body size,

abundance and productivity, remain independent of tempera-

ture. Alternatively, we expect that deviations in the temperature

dependence of community attributes are able to generate sys-

tematic deviations in the relationship between richness and

temperature. In this paper we analysed large-scale phytoplank-

ton richness patterns among 686 lakes from the Southern and

Northern Hemispheres in the framework of the MTE. We found

that the richness–temperature relationship is nonlinear. But by

contrasting these results with previous ones, a three-phase linear

relationship was detected, demonstrating shifts in the relation-

ship between temperature and species richness when examined

across a broad temperature gradient.

METHODS

We compiled three separate data sets of phytoplankton commu-

nity and environmental variables from lakes of South America

and Antarctica, North America and Europe. Then we evaluated

the shape of the relationship between the natural logarithm of
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richness and the inverse of temperature. Finally, we evaluated

the assumptions of the MTE and linked them to observed

patterns.

Data sources

We compiled a large database on species richness and environ-

mental variables for freshwater lake phytoplankton. We gathered

data from four continents in the Southern Hemisphere (South

America and Antarctica, hereafter SAA) and in the Northern

Hemisphere (USA, hereafter NA, and Europe, hereafter EU)

(Fig. 1). We analysed each data set separately to keep the

same standards for sampling design, species identification and

counting.

We used phytoplankton data obtained from 48 freshwater

lakes along a large latitudinal gradient from the Argentinean

Pampa (34° S) to the Antarctic Peninsula (c. 63° S). In shallow

lakes, samples were taken near the surface (c. 30 cm depth) in

open waters, whereas in deep lakes integrated samples were col-

lected within the epilimnetic region of the euphotic zone from

the surface to a depth of 5 m. Temperature was measured in situ

in the first metre of the water column with a Horiba D-54 meter.

This set of samples (hereafter called SAA) was obtained in con-

secutive field trips from 2003 to 2008. In Pampean and

Patagonian lakes samplings were conducted during the austral

spring and in Antarctica during the austral summer (January–

February). Phytoplankton analyses were carried out in all cases

following the same protocol: samples were fixed with 1% acidi-

fied Lugol’s iodine solution and counting was performed using

an inverted microscope following Utermöhl (1958). Individual

algae were considered as the unit, and in the case of colonial or

filamentous species, the average cell numbers per colony or fila-

ment were estimated. The biovolume of individuals was calcu-

lated using geometric approximations according to their shape

and mean dimensions (Hillebrand, 2004). Details of the sam-

pling procedures and phytoplankton analyses corresponding to

the Pampean shallow lakes were published in Allende et al.

(2009) and Izaguirre et al. (2012). In the case of Patagonian and

Antarctic lakes, most phytoplankton data used in this paper are

unpublished, although sampling methodologies have been

reported elsewhere (Schiaffino et al., 2011; Tell et al., 2011).

The NA data set was generated by the Environmental Protec-

tion Agency (EPA) from 1973–75 and included 540 lakes

sampled in the USA (c. 49 to 26.9° N; Fig. 1). Sampling was

performed in spring, summer and autumn and the lakes were

visited one to four times (Taylor et al., 1979). The depth-

integrated water samples were taken from the surface to a depth

of 4.6 m, or from the surface to the depth at which light intensity

fell to 1% of the surface light intensity, whichever was greater, at

the deepest point in each lake and reservoir (Taylor et al., 1979;

Stomp et al., 2011). If the depth of the sampling site was less

than 4.6 m, the sample was taken from just above the sediment

to the surface. Subsamples for phytoplankton counts were pre-

served with Lugol’s solution, and phytoplankton were identified

to species or genus level and enumerated by microscopes at 400×
using a Neubauer counting chamber. Detailed identification of

some diatom species was performed in a phase contrast micro-

scope. The count was stopped when a minimum of 100 fields

had been viewed or when the dominant species had been

observed a minimum of 100 times. Phytoplankton richness was

defined as the total number of phytoplankton species encoun-

tered in each lake over the course of a year. This data set was

previously used to determine large-scale richness patterns in a

different framework (Stomp et al., 2011; data set available in the

referred work). Mean annual water temperature and annual

average CHLA were used in the analysis. Further details on

sampling protocols are available in Stomp et al. (2011) and at

the EPA Legacy and Storage and Retrieval data system (http://

www.epa.gov/storet).

EU lakes were sampled within the framework of the European

Union project BIOMAN (Muylaert et al., 2010) during 2000 and

2001 and included 98 water bodies. They included three geo-

graphic zones from Denmark to Spain (55–36° N; Fig. 1). The

lakes were sampled every month for 6 months throughout the

boreal summer. In each lake, subsurface water samples were

pooled from 8 (in lakes < 5 ha) or 16 (in lakes > 5 ha) randomly

chosen sites within each lake (Muylaert et al., 2010). At the end

of the sampling season, samples from different months were

mixed at equal volumes to yield one composite sample that was

analysed for phytoplankton richness (Muylaert et al., 2010).

Phytoplankton were identified and enumerated using standard

inverted microscopy methods. A different scientist analysed

samples from each European region, but genus lists and identi-

fication were thoroughly compared between the scientists

Figure 1 Lakes sampled (circles) in South America and
Antarctica (SAA), North America (NA) and Europe (EU). Lack of
exact lake positions in Europe precludes their inclusion in the
map. Lakes were sampled in Denmark (55°48′–56°27′ N),
Belgium, Holland (50°48′–52°41′ N) and southern Spain
(36°10′–39°25′ N). These countries are filled in grey.

Phytoplankton large-scale richness and temperature
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involved to avoid bias when comparing richness between

regions (Muylaert et al., 2010). Original identification in the

European region was to genus level. Identification in Denmark

was carried out to species level, and it was found that generic

richness was a good predictor of species richness (linear regres-

sion, slope = 1.16, n = 32, P < 0.001; Fig. 1 in Muylaert et al.,

2010). We converted genus data to species data using that con-

version factor for the European data set. Detailed sampling

protocols can be found in Muylaert et al. (2010). Water tempera-

ture for each lake was calculated as the average during sampling

visits. To keep data set comparable, we only used freshwater lakes

and excluded some brackish and saline shallow lakes from the

southern Spanish region with conductivity values above

2000 μS cm–1.

The predictions and assumptions of the MTE

We evaluated the prediction of a linear relationship of the

inverse of temperature times Boltzmann constant (1/kT) and

the natural logarithm of richness (equation 1) in the three data

sets. We also evaluated the statistical associations between

density of individuals in the community (J/A), mean commu-

nity body size (M) and population maximum growth rate with

the inverse of temperature (1/kT). Average community body size

was only analysed in SAA, for which data were available. For the

variable total community density (J/A), in NA and the EU we

used CHLA as a proxy as both are well correlated (log–log;

Spearman’s r = 0.7, n = 54, P << 0.01 for SAA; see also Reynolds,

1984). For the maximum growth rate (μmax), we searched for

experiments in freshwater phytoplankton aimed to estimate μmax

under non-limiting conditions and covering an ample gradient

of temperatures (> 10 °C) in the same experimental set-up. We

revisited 42 experiments comprising 281 measures of μmax in a

temperature range from 2 to 40 °C, with representative species

from different taxonomic classes and morphology-based func-

tional groups (Kruk et al., 2010; species and data values can be

found in Appendix S1 in Supporting Information).

Three different statistical models were considered: a linear

model (Allen et al., 2002), a quadratic polynomial model

(Hawkins et al., 2007) and a piecewise relationship model

(Muggeo, 2003). In a regression model in which the effect of the

predictor variable on the response variable changes abruptly at an

unknown value, the relationship between the response and the

explanatory variable is said to be segmented, broken-line, or

piecewise linear (Muggeo, 2003). Compared with other nonlin-

ear regressions, such as splines or polynomials, piecewise regres-

sion benefits from interpretable parameters, slopes and

breakpoints, having direct and biological meaning (Muggeo,

2003).

Piecewise segmented regression models allow us to objec-

tively determine the range of explanatory variables with differ-

ent response behaviours. According to Muggeo (2003) a

segmented relationship between the mean response μ = E[Y]

and the variable Z, for observation i = 1, 2, . . . , n can be mod-

elled by adding in the linear predictor the following terms:

β β ψ1 2z zi i+ −( )+ (3)

where (zi − ψ)+ = (zi − ψ) × I(zi > ψ) and I(·) is the indicator

function equal to one when the statement is true. According to

such parameterization, β1 is the left slope, β2 is the difference in

slopes and ψ is the breakpoint (Muggeo, 2003). The method

only depends on equation 3 and it can be applied to any general

lineal model (GLM) including additional linear covariates

(Muggeo, 2003). Muggeo (2003) showed that the nonlinear term

(equation 3) has an approximate intrinsic linear representation

which, to some extent, allows the translation of the problem into

the standard linear framework: given an initial guess for the

breakpoint (ψ′) the method attempts to estimate model (3) by

iteratively fitting the linear model with a linear predictor

β β ψ γ ψ1 2z z I zi i i+ −( ) + > ′( )+
− (4)

where I(·)− = −I(·) and γ is the parameter which may be under-

stood as a re-parameterization of ψ and therefore accounts for

the breakpoint estimation (Muggeo, 2003). At each iteration, a

standard linear model is fitted, and the breakpoint value is

updated via ψ′ = ψ′ + γ′/β′2; note that γ measures the gap, at the

current estimate of ψ, between the two fitted straight lines

coming from model (4) (Muggeo, 2008). Due to its computa-

tional facility, the algorithm is able to perform multiple break-

point estimation in a very efficient way as implemented in R

using the segmented package (Muggeo, 2008). For a detailed

description of the piecewise regression fitting method we refer

to Muggeo (2003) and for examples of biological applications to

Segura et al. (2013) or Toms & Lesperance (2008).

Model selection was made on the basis of the Akaike infor-

mation criteria (AIC; Burnham & Anderson, 2002), explained

variance (R2) and parameter significance (P < 0.05). When

using the AIC criterion, the best model is that with the

lowest AIC value; models with ΔAIC values less than 2

(ΔAIC = AICi – AICbest) are considered competitive models and

those with values greater than six are considered inferior

(Burnham & Anderson, 2002). When models were competitive

(ΔAIC < 2), explained variance and parameter significance were

used to select the better model. If the slope’s 95% confidence

interval of the relationship between any variable and 1/kT over-

lapped zero it was assumed that the variable was temperature

invariant. The statistical models evaluated allow the description

of a wide range of ecological relationships including the

expected patterns from MTE, as well as both gradual and abrupt

deviations from theoretical assumptions and predictions.

RESULTS

Species richness and temperature ranges were similar among

SAA, NA and EU data sets (Table 1). SAA presented the coldest

temperatures (0 °C) and the widest latitudinal (c. 29°) and tem-

perature ranges (c. 27 °C). In turn, NA and EU data sets pre-

sented larger ranges in CHLA than SAA.

The relationship between the natural logarithm of phyto-

plankton richness and the inverse of temperature (1/kT) was

negative in all three datasets, as predicted by the MTE (Fig. 2).

Linear models were significant (P < 0.05) and presented Ea
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within the expected ranges according to the MTE (range −0.28

to −0.70; Table 2) but with moderate to low explained variance

(R2 = 0.13–0.42). Nonlinear models (quadratic or piecewise)

showed better congruence with data according to the AIC cri-

terion (Table 2). Within each data set, piecewise regression

models frequently presented higher explained variance and

lower AIC than quadratic models, except for EU where the AIC

difference between piecewise and quadratic model was less than

one (Table 2).

Segmented regression models identified two breakpoints in

SAA and NA data sets and one in the EU data set (Fig. 2).

Segmented models showed similarities among data sets. First,

all data sets showed a middle temperature region with a

negative slope close to unity (average slope for the three

continents ± SD = −1.08 ± 0.07). At warm temperatures

(SAA > 15 °C, NA > 20 °C and EU > 17 °C) there was a shift in

the relationship towards a positive slope in SAA, and flat slopes

(95% CI overlapping zero) in NA and EU. In the lower tempera-

ture range (SAA < 10 °C and NA < 12 °C) the relationship was

not significant (NA) or negative but with a flatter slope than in

the middle region (SAA). In summary, the relationship of rich-

ness and temperature presented two extreme zones where the

effect of temperature was small and a central region with sig-

nificant temperature effects.

In the SAA data set the inclusion of total community density

(J/A) and average body size (<M3/4>) in the segmented regres-

sion improved model fit (Table 3). The multivariate segmented

model including J/A in the SAA data set explained up to 64% of

variance. In the NA and EU data sets, systematic effects of total

community density (where CHLA was used as a surrogate for

J/A) along the temperature gradient were detected. In NA, the

best model explaining richness was a multiple regression with

two breakpoints in the inverse of temperature and the covariate

ln(CHLA) (Table 3). In EU, the better model was segmented

with respect to the inverse of temperature and included

ln(CHLA) (Table 3). In EU the nonlinear models with

ln(CHLA) as the covariate were similar in AIC (ΔAIC < 1) and

similar in the explained variance (R2
seg = 0.40 and R2

quad = 0.39)

but quadratic model parameters were non-significant

(P > 0.05). For all three data sets, best models included the

inverse of temperature and community abundance (or CHLA)

as important explanatory variables (Table 3), and in SAA and

NA the structure of the models was markedly nonlinear. All

fitted model statistics and goodness of fit measures are detailed

in Appendix S2.

Figure 2 Large-scale patterns of freshwater phytoplankton
richness and temperature from 48 South American and Antarctic
lakes (SAA), 540 lakes from North America (NA) and 74
European lakes (EU). Differences in the Akaike information
criterion (ΔAIC) between linear (dashed line) and segmented
models (continuous line) is shown. Segmented models explained
the data better than linear and quadratic models. Diamonds with
horizontal bars represent the breakpoint estimate and 95% CI
respectively. Detailed information on competing models can be
found in Appendix S2.

Table 1 Description of lake variables for the three data sets used. Median [minimum–maximum] are presented.

Number

of lakes

Latitudinal

range

Temperature

(°C)

Species

richness

Chlorophyll

a (μg l−1) Depth (m)

South America and Antarctica (SAA) 48 34–63° S 8.7 [0–27] 24 [8–60] 1 [0–101] 4 [< 1–200]

North America (NA) 540 26–49° N 18.8 [7–28] 27 [3–84] 10 [0–691] 6 [< 1–307]*

Europe (EU) 74 36–55° N 17.0 [13–25] 21 [6–53] 22 [1–175] 1 [< 1–7]

*There was only one lake deeper than 70 m. The 95% quantile was 25 m and more than 70% of the lakes were less than 9 m deep.

Phytoplankton large-scale richness and temperature
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We then analysed the relationship of the attributes of the

community (abundance, body size and population growth rate)

with temperature. In SAA and NA, community density varied

significantly along the temperature gradient. SAA presented a

significant negative relationship between log density (organisms

ml−1) and the inverse of temperature [ln(J/A) = 47.8 −
0.98(1/kT); n = 46; P << 0.01]. For NA lakes we found a piecewise

relationship between temperature and ln(CHLA) with negative

slopes for temperatures lower than 18 °C (slope = −1.397, 95%

CI −1.83 to −0.97) and no relationship for higher temperatures

(slope = 0.168, 95% CI −0.178 to 0.514) (Fig. 3). In EU lakes,

1/kT and CHLA were not related (slope = 0.23, 95% CI −0.47

to 0.95). The average organism size in SAA lakes decreased

with temperature (Fig. 4). The linear [ln(<M3/4>) = 23.8 −
0.46(1/kT); d.f. = 43; R2 = 0.36; P < 0.01; Fig. 4] and the seg-

mented model were equally well fitted (ΔAIC < 1) but the latter

explained a slightly higher amount of variance. The segmented

model indicated no relationship for temperatures above 10 °C

(slope = −0.15; 95% CI −0.63 to 0.30) and a negative slope

(−0.826, 95% CI −1.29 to −0.36) for colder temperatures. Finally,

the relationship between experimental maximum population

growth rate and the inverse of temperature suggested the

Table 2 Temperature–richness models for the South American–Antarctic, North American and European freshwater lake plankton data
sets.

Linear Quadratic Segmented

South America-Antarctic (SAA) ln(R) = −0.28X + 14.87 ln(R) = −0.13X2 + 10.2X – 199 ln(R) = 0.47X – 14.97 If X < 40.27

ln(R) = −1.00X If 40.27 > X > 40.99

ln(R) = −0.33X If X > 40.99

Goodness of fit R2 = 0.42; d.f. = 45 R2 = 0.52; d.f. = 44 R2 = 0.62; d.f. = 41

ΔAIC = 12.4 ΔAIC = 5.6 ΔAIC = 0

North America (NA) ln(R) = −0.7X + 31 ln(R) = −0.25X2 + 19.39X – 369 ln(R) = −0.07X + 6.29 If X < 39.55

ln(R) = −1.12X If 39.55 > X > 40.65

ln(R) = −0.18X If X > 40.65

Goodness of fit R2 = 0.36; d.f. = 537 R2 = 0.38; d.f. = 536 R2 = 0.40; d.f. = 533

ΔAIC = 31.05 ΔAIC = 14.07 ΔAIC = 0

Europe (EU) ln(R) = −0.51X + 23.16 ln(R) = −0.66X2 + 52.22X – 1026 ln(R) = −0.03X + 1.99 If X < 39.88

ln(R) = −1.13X If X > 39.88

Goodness of fit R2 = 0.14; d.f. = 72 R2 = 0.19; d.f. = 71 R2 = 0.21; d.f. = 70

ΔAIC = 2.9 ΔAIC = 0 ΔAIC = 0.8

The natural logarithm of richness is evaluated with respect to the inverse of temperature (in kelvin) times Boltzmann constant (X = 1/kT). The slope of
the linear model is an estimate of the activation energy (Ea; Allen et al., 2002). The difference in AIC (ΔAIC) with respect to the best model within a
geographic region (row) is shown.

Table 3 Selected models on the temperature dependence (X = 1/kT) of species richness (R), total community density (J/A) and average
body size (M) in phytoplankton communities from South America and the Antarctic, North America and Europe.

Zone, model and response variable Equation R2 d.f.

South America Antarctic (SAA) ln(R) = 0.49X + 0.07(J/A) + 0.03 ln(M3/4) − 16.6 If X < 40.31 0.65 37

Segmented model ln(R) = −0.91X + 0.07(J/A) + 0.03 ln(M3/4) If 40.31 < X < 40.97

Species richness (R) ln(R) = −0.20X + 0.07(J/A) + 0.03 ln(M3/4) If X > 40.97

Density (J/A) ln(J/A) = −0.98X + 47.79 0.27 46

Body size (M) ln(M) = −0.16X + 11.28 If X < 40.91 0.42 41

ln(M) = −0.83X If X > 40.91

North America (NA) ln(R) = −0.16X + 0.22 ln(CHLA) − 3.32 If X < 39.33 0.52 532

Segmented model ln(R) = −0.83X + 0.22 ln(CHLA) If 39.33 < X < 40.69

Species richness (R) ln(R) = −0.043X + 0.22 ln(CHLA) If X > 40.69

Density (CHLA) ln(CHLA) = 0.17X − 4.03 If X < 39.86 0.12 536

ln(CHLA) = −1.40X If X > 39.86

Europe (EU)

Segmented model ln(R) = −0.18X + 0.20 ln(CHLA) + 9.77 If X < 39.94 0.39 69

Species richness (R) ln(R) = −1.13X + 0.20 ln(CHLA) If X > 39.94

Density (CHLA) No significant model; Spearman correlation r = 0.08; P-value 0.50 72

All models for richness included total community density or its surrogate chlorophyll a (CHLA) as a significant covariate. Explained variance (R2) and
degrees of freedom (d.f.) are shown. Detailed descriptions and associated statistics of these and competing models are given in Appendix S2.
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existence of two linear relationships with a breakpoint at c. 28 °C

(Fig. 5). At low to medium temperatures (2–28 °C), estimated Ea

was 0.497 (95% CI −0.62 to −0.38). At higher temperatures

(28–40 °C) we found a significant decline of Ea (Ea = −0.89; 95%

CI = −0.38 to −1.39; Fig. 5). The quadratic model presented a

similar AIC but explained a lower amount of variance. All fitted

model statistics and goodness of fit measures are detailed in

Appendix S2.

DISCUSSION

The large-scale pattern of species richness and its causal mecha-

nisms were evaluated in the framework of the MTE for

phytoplankton communities from SAA, NA and EU lakes. The

expected negative relationship between the inverse of tempera-

ture and the natural logarithm of richness was found. However,

segmented models were better in describing the pattern, and

total community abundance was an important explanatory vari-

able improving the fit in all geographic zones. Expected

temperature–richness associations under the MTE were not

observed at extreme temperatures, where weak patterns or pat-

terns opposite to those expected were revealed. In lakes from the

middle range, temperature effect was more pronounced (slope c.

1) than expected by the MTE (slope c. 0.3). This suggests that

departures from MTE assumptions related to temperature

Figure 3 Effect of temperature on Chlorophyll a concentration
used as surrogate for organism density (J/A) in data sets from
South America and Antarctica (SAA), North America (NA) and
Europe (EU) . Lines represent the best fitted model (see the main
text for parameter values).

Figure 4 Decrease of average organism body size towards cold
temperatures in South America and Antarctic lakes (SAA). Linear
(continuous) and segmented (dashed) models are shown. See text
and Appendix S2 for model parameters.

Figure 5 Piecewise segmented relationship (continuous line)
between maximum growth rate (μmax) and temperature in
freshwater phytoplankton. The shift implies a change in the
activation energy at high temperatures (28 °C). Linear model
(dashed line) and the difference in the Akaike information
criterion (ΔAIC) between both models is shown.
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dependence of Ea, size structure or abundance have an impor-

tant influence on trends in species richness. The latter two were

suggested in the original formulation of the model (Allen et al.,

2002) and in its revised version (Allen et al., 2007) but were

rarely considered in later evaluations (Algar et al., 2006; Allen

et al., 2007; Hessen et al., 2007; Cassemiro & Diniz-Filho, 2010;

Pinel-Alloul et al., 2013). We showed that when abundance and

average body size are explicitly incorporated, a better under-

standing of the richness–temperature relationships at a global

scale is gained. Similar results have been reached in a different

framework (Stomp et al., 2011).

The negative relationship between the inverse of temperature

and the natural logarithm of species richness was evident in all

the analysed datasets, suggesting generalities in temperature

dependence of species richness (Allen et al., 2002; Hessen et al.,

2007; Fuhrman et al., 2008). Deviations from the linear relation-

ship were previously detected for several taxa using polynomial

or similar models, suggesting departures from MTE predictions

at all temperatures (Algar et al., 2006; Hawkins et al., 2007).

While a description of nonlinearity in such relationships is not

new, the segmented regression improves the biological interpre-

tation of parameters, as the regression slopes can be interpreted

as estimates of Ea. The present results systematically point to the

occurrence of ranges of temperatures with constant Ea. Further,

a higher Ea than former expectations was found at intermediate

temperatures, which appears to conform qualitatively to MTE

predictions. Similarly, it should be noted that our findings of

systematic variation in Ea within a broad range of temperatures

(Fig. 5) is in accordance with recent empirical syntheses (Dell

et al., 2011).

The present results showed that the slope of log richness

versus 1/kT is an estimation of Ea only if the original assump-

tions of the MTE are met. The concomitant negative trend in

abundance, body size and growth rate, each one with a putative

effect on richness, no longer supports the former interpretation

of the regression slope of log richness versus 1/kT as an estimate

of Ea. According to the original formulation, the effect of tem-

perature evaluated in ample gradients should overwhelm any

effect caused by total community abundance or size structure

because of its exponential nature (Allen et al., 2002). Phyto-

plankton communities can present changes of orders of magni-

tude in abundance or average size associated with resource

availability, hydrological washout, sedimentation and trophic

interactions (Kruk et al., 2010). Thus, the expected positive

effect of temperature on richness can be attenuated because of a

decrease in total community density (J/A) or average size (<M3/

4>; see equation 2) caused for example by increased grazing

pressure towards tropical zones or by Bergmann’s rule and the

temperature–size rule (Angilletta, 2009). This effect, coupled

with the observed shift in Ea at high temperatures (Knies &

Kingsolver, 2010), may explain the negative deviation from MTE

expectations at warm temperatures.

Our results suggest strong deviations from MTE predictions

in extreme temperature ranges. These deviations were recog-

nized in previous works (Hawkins et al., 2007; Hessen et al.,

2007; Cassemiro & Diniz-Filho, 2010) and can be observed in

the results for the original formulation of the model (Allen et al.,

2002). However, a segmented regression model allows a novel

pattern to be disentangled, as it showed that the relationship of

richness with temperature is mild at the extremes. Deviations

from MTE predictions at extreme temperatures could be

expected in light of the range of physiological processes operat-

ing at extreme temperatures (Karasov & Martínez del Rio, 2007;

Angilletta, 2009; Knies & Kingsolver, 2010). Further, the break-

point observed in community abundance for NA (Fig. 3) and in

maximum population growth rate from independent experi-

ments (Fig. 5), could be directly related to the discrete transi-

tions detected for richness (Fig. 2). Also, the accelerated decrease

of individual body size at temperatures colder than 9 °C in SAA

(Fig. 4) could help to explain the change in the slope of log

richness versus 1/kT relationship. Finally, a reduction in average

productivity per species (<BT>) in cold lakes could also account

for the observed deviation in cold environments. Unfortunately

there are no data on total community production for any of

these data sets to evaluate this hypothesis. This hypothesized

reduction in productivity could be related to extreme tempera-

tures and nutrient stress (Markager et al., 1999). The thermal

buffering effect of water can generate differences in the extreme

temperatures among lakes in the same latitudinal band caused

by lake morphology and mixing processes that should be

accounted for when analysing latitudinal richness patterns. In

this work, we used in situ measured temperatures, and thus we

avoided that effect. As stated in our working hypothesis, the

effect of environmental temperature on the metabolism of

ectothermal organisms will influence community richness pat-

terns. Temperature range in aquatic ecosystems is less pro-

nounced than in terrestrial ones, which can lead to systematic

differences between ecosystem types. We cannot discard this

effect, but given the inverse relationship of water column strati-

fication and nutrient supply it is suggested that it is nutrient

limitation rather than the thermal buffering effect that is

responsible for the contrasting large-scale richness patterns

between terrestrial and aquatic ecosystems.

It is worth noting that despite significant differences in the

sampling schemes, geographic locations and biotas among SAA,

NA and EU, the richness–temperature relationships were

similar. In this sense, the use of segmented regressions could

change the empirical suggestion of additional mechanisms

operating along the whole set of temperatures (e.g. changes in

mutation rates; Allen et al., 2007), to a view in which specific

mechanisms within the MTE dominate at different ranges of

environmental conditions (e.g. Arim et al., 2007). The biodiver-

sity patterns found for lake phytoplankton suggest that the MTE

could be improved by the relaxation of its main assumptions.

Our analysis indicates that the combined effect of temperature

(T), density (J/A), body size structure (<M3/4>) and productivity

(BT) determine the expected richness in a lake, and that the

balance among them can change systematically among geo-

graphic zones. The balance among T, J/A, M3/4 and BT gives raise

to the observed segmented pattern in lake phytoplankton

temperature–richness relationships and provides a plausible

explanation of the variability in the temperature–richness

A. M. Segura et al.
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relationship observed for other taxa (e.g. Algar et al., 2006;

Hawkins et al., 2007; Hessen et al., 2007; Pinel-Alloul et al.,

2013). These results reinforce the paradigm of multiple mecha-

nisms interacting to directly or indirectly shape biodiversity pat-

terns (Stomp et al., 2011). Temperature affects richness by

increasing biological metabolism, mutation rates and thus

increasing speciation rates. This was summarized as ‘the red

queen runs faster when she is hot’ (Brown, 2014). However, in

deep lakes, higher temperatures also imply a strong stratification

and a decrease in the nutrient supply to the illuminated zone,

which decreases total community density and species richness.

This is in accordance with the differential effect of temperature

and CHLA in species richness found in a previous analysis

(Stomp et al., 2011). This independent trend in abundance and

temperature is rarely observed in other ecosystems, making

aquatic systems excellent models for disentangling the mecha-

nisms that determine species richness. Another consequence of

high stratification and low nutrient concentration is the domi-

nance of smaller organisms, which in turn could lead to higher

richness as more small species can partition the same amount of

resources as a few larger ones (Brown et al., 2004). Its is remark-

able that the community attributes that have long been recog-

nized as determinants of richness, namely abundance of

organisms, body size and energy use, were already formally

incorporated into the original MTE model but with the assump-

tion that they were not dependent on temperature. We showed

here that when the temperature dependence of community

attributes is explicitly considered, a better description of the

richness–temperature relationships at a global scale is obtained,

and a putative domain of operation of the MTE is visualized.
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