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a b s t r a c t

Mycobacterium tuberculosis (Mtb) and Yersinia pestis (Yp) produce siderophores with scaffolds of nonrib-
osomal peptide–polyketide origin. Compounds with structural similarities to these siderophores were
synthesized and evaluated as antimicrobials against Mtb and Yp under iron-limiting conditions mimick-
ing the iron scarcity these pathogens encounter in the host and under standard iron-rich conditions. Sev-
eral new antimicrobials were identified, including some with increased potency in the iron-limiting
condition. Our study illustrates the possibility of screening compound libraries in both iron-rich and
iron-limiting conditions to identify antimicrobials that may selectively target iron scarcity-adapted bac-
teria and highlights the usefulness of building combinatorial libraries of compounds having scaffolds
with structural similarities to siderophores to feed into antimicrobial screening programs.

Published by Elsevier Ltd.
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Mycobacterium tuberculosis (Mtb), the causative agent of tuber-
culosis, and Yersinia pestis (Yp), the etiologic agent of plague, are
bacterial pathogens with serious impacts on global public health.
Multidrug-resistant (MDR) tuberculosis is an emerging pandemic,
and the more recent emergence of extensively drug-resistant
(XDR) tuberculosis poses a new global threat.1 Plague is a re-
emerging disease for which the documented occurrence of MDR
Yp strains and self-transferable Yp plasmids conferring antibiotic
resistance raises concerns about future plague control.2 These grim
scenarios underscore the need for expanding the anti-tuberculosis
and anti-plague drug armamentarium.

Many bacteria utilize secreted, small (<1000 Da) Fe3+-chelating
compounds (compds) (Kd < 10�25 M) called siderophores to
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scavenge Fe from their microenvironments and transport it into
the cell.3 The Mtb siderophore (mycobactin/carboxymycobactin)
and the Yp siderophore (yersiniabactin) are based on substituted
Figure 1. Structures of M. tuberculosis and Y. pestis siderophores.
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scaffolds of nonribosomal peptide–polyketide origin (Fig. 1).4 Stud-
ies in cellular and animal models of infection have established the
relevance of the mycobactin/carboxymycobactin and yersiniabac-
tin siderophore systems in these pathogens.5 The siderophores
are believed to facilitate iron scavenging inside the host, where free
iron is scarce (10�25 to 10�15 M) and the pathogens experience and
must adapt to iron-limiting conditions.6 These observations sug-
gest that the Mtb and Yp siderophore systems represent potential
in vivo conditionally essential target candidates for the develop-
ment of alternative therapeutics against tuberculosis and plague.7

We hypothesize that screening compds with structural features
resembling Mtb and Yp siderophores for growth inhibitory activity
against these pathogens may lead to the discovery of novel antimi-
crobial scaffolds. Such novel antimicrobials could illuminate
alternative paths to drug development and/or be useful as small-
molecule tools to assist in the elucidation of new target candidates
for drug development. Compds with structural features resembling
Mtb and Yp siderophores may impair the siderophore systems
(e.g., by inhibiting siderophore biosynthesis or transport) and halt
Table 1
3.5-Diarvl-substituted pyrazoline (DAP) derivatives (1–22)

Compound R R0 R

1 –H –OH –H
2 –OH –H –H

3 –H –OH

4 –OH –H

5 –H –OH

6 –OH –H

7 –H –OH

8 –OH –H

9 –H –OH

10 –H –CH3

11 –H –OH

12 –OH –H

13 –H –OH

14 –OH –H

15 –H –Oh

16 –OH –H

17 –H –OH

18 –OH –H

19 –H –OH

20 –OH –H

21 –H –OH

22 –OH –H
bacterial growth in the host’s iron-limiting environments. Alterna-
tively, these compds might gain access to the intracellular environ-
ment using siderophore transport systems and inhibit essential
functions unrelated to iron acquisition. Consistent with these
views, we have recently demonstrated potent antimicrobial activ-
ity against Mtb and Yp for novel diaryl-carbothioamide-pyrazoline
derivatives with structural features resembling the hydroxy-
phenyl-oxazoline/thiazoline-containing half of Mtb and Yp
siderophores.8

In an effort to identify additional novel inhibitors of Mtb and Yp
growth, we synthesized and evaluated the antimicrobial activity of
new 3,5-diaryl-substituted pyrazoline (DAP) derivatives (compds
1–22,9a Table 1). In addition, we synthesized and tested the activity
of a group of (2E)-2-benzylidene-N-hydroxyhydrazine carbo(ox/
thio/oximid)-amide (BHHC) derivatives (compds 23–32,9b Table 2)
with hydroxyphenyl-cap functionalities resembling that of the sid-
erophores. The compds were tested for growth inhibitory activity
against Mtb and Yp in iron-limiting media, which mimic the
iron-scarcity condition that the pathogens encounter in the host,
and in standard iron-rich media.10a We also assessed selected
compds for mode of action (bactericidal or bacteriostatic) in iron-
limiting media and for cytotoxicity toward mammalian cells.10b

Testing against Mtb revealed that 17 compds (1, 2, 5, 8–15, 24,
27–31) had IC50s and MICs (3–222 lM range, Table 3) within the
concentration series tested in the iron-limiting medium, GASTD.
Of these 17 compds, 15 (1, 2, 5, 9–12, 14, 15, 24, 27–31) also had
determinable IC50s and MICs (2–132 lM range) in the iron-rich
medium, GASTD+Fe. Examination of IC50GASTD+Fe/IC50GASTD and
MICGASTD+Fe/MICGASTD ratios revealed that the inhibitors had no
noteworthy increased potency in the iron-limiting medium within
the concentration series tested. This suggests that interference
with iron acquisition, or any other bacterial process differentially
required for growth under the iron-limiting condition, is not a
property that significantly contributes to the compds’ antimicro-
bial activity against Mtb. Interestingly, 14 is 5-fold more potent
against Mtb cultured in GASTD+Fe, as judged by MIC values. This
phenomenon might suggest that the mechanism(s) of action of
14 against Mtb might be potentiated by an elevated production
of cytotoxic hydroxyl radicals originated through increased levels
Table 2
(2E)-2-Benzylidene-N-hydroxyhydrazine carbo(ox/thio/oximid)-amide (BHHC) deriv-
atives (23–32)

Compound R R1 R2 R3

23 –H –OH –H @O
24 –OH –H –H @O
25 –H –OH –CH, @O
26 –OH –H –CH3 @O
27 –H –OH –H @S
28 –OH –H –H @S
29 –H –OH –CH3 @S
30 –H –OH –H –NH
31 –OH –H –H –NH

32



Table 3
Antimicrobial activity against M. tuberculosis

Compound IC50
a (lM) Ratio MIC90

b (lM) Ratio Mode of actionc

GASTD+Fe GASTD GASTD+Fe GASTD

DAP series
1 18 25 1 59 66 1 BC (2 �MIC)
2 37 46 1 125 125 1 BC (I �MIC)
3 >16 >31 nd >16 >32 nd nd
4 >8 >8 nd >8 >8 nd nd
5 64 77 1 104 208 0.5 BC (2 �MIC)
6 >32 >63 nd >63 >63 nd nd
7 >32 54 nd >31 >63 nd nd
8 40 42 1 >31 125 nd BC (1 �MIC)
9 50 53 1 125 125 1 BC (2 �MIC)
10 7 7 1 16 16 1 BC (2 �MIC)
11 23 44 1 66 66 1 BC (2 �MIC)d

12 26 31 1 76 125 1 BC (2 �MIC)d

13 32 37 1 >125 125 >l BC (2 �MIC)
14 22 47 0.5 31 125 0.2 BC (2 �MIC)
15 8 8 1 16 16 1 BC (2 �MIC)
16 >4 >8 nd >4 >8 nd nd
17 98 84 1 >500 >500 nd nd
18 >16 >63 nd >63 >63 nd nd
19 >16 >63 nd >31 >63 nd nd
20 >3I >63 nd >31 >63 nd nd
21 >31 >63 nd >31 >63 nd nd
22 >3I >63 nd >31 >63 nd nd
BHHC series
23 >16 >16 nd >16 >16 nd nd
24 40 97 0.4 97 146 1 BC (2 �MIC)
25 >8 >8 nd >8 >8 nd nd
26 >500 >500 nd >500 >500 nd nd
27 2 3 1 6 7 1 BC (4 �MIC)
28 33 31 1 59 59 1 BC (2 �MIC)
29 4 4 1 9 10 1 BC (2 �MIC)
30 15 11 1 26 222 1 BC (2 �MIC)
31 43 43 1 132 222 1 BC (2 �MIC)
32 >8 20 nd >8 >31 nd nd
Isoniazid 0.09 0.07 1 0.2 0.2 1 BC (2 �MIC)

a IC50 values were calculated from sigmoidal curves fitted to triplicate sets of dose–response data.
b MIC90 values are means of triplicates. Ratio, GASTD+Fe/GASTD. All values >l, <l, >0.5, and 60.5 were rounded to the nearest whole number, to 1, and to one significant

digit, respectively.
c Mode of action was evaluated in GASTD in duplicate. The concentration at which each compound was tested for mode of action is indicated between parentheses.
d Some bactericidal activity detected, yet below the 99% killing criterion set for defining bactericidal mode of action. BS, bacteriostatic; BC, bactericidal; nd, not determined.
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of Fenton reaction in the iron-rich medium. Such a potentiation
would be in line with recent findings of Collins and co-workers
regarding antibiotic-induced cell death.16 Alternatively, 14 might
inhibit an oxidative stress protection function(s) more critically
needed in the iron-rich medium. Testing for cytotoxicity at the
MIC against Mtb (125 lM) revealed that 14 had no significant cyto-
toxicity at short cell–compd contact time (4 h), yet cell viability
was reduced by 70% relative to untreated controls after prolonged
contact time (24 h) (Supplementary data, Fig. S1).

Among the active DAP derivatives, 10 and 15 were the most po-
tent against Mtb (IC50 = 7–4 lM, MIC = 16 lM, Table 3). Of these
two compds, only 10 displayed significant cytotoxicity at the MIC
against Mtb (16 lM). Compd 10 had a modest impact on cell via-
bility, which was reduced only by 24% after 24 h of cell–compd
contact (Supplementary data, Fig. S1). Encouragingly, these and
most other inhibitors in the DAP derivatives series examined for
mode of action against Mtb were bactericidal (>99% killing relative
to inoculum) at concentrations of 1–2 �MICGASTD (Table 1). This
finding is significant since bactericidal activity is a desirable prop-
erty in any early lead compd evaluated for antibacterial drug
development programs. It is worth noting that the only two comp-
ds (11 and 12) defined as bacteriostatic in Table 1 showed signifi-
cant bactericidal activity, yet below the 99% killing criterion set in
this study for defining bactericidal mode of action. Among the
compds of the BHHC derivatives series with defined IC50 and MIC
values, 27 and 29 were the most active against Mtb (IC50 =
2–4 lM, MIC = 6–10 lM, Table 3). These two compds displayed
no significant cytotoxicity in mammalian cells at their respective
MIC values determined against Mtb (Supplementary data,
Fig. S1). Gratifyingly, 27, 29 and other active compds in this series
displayed bactericidal mode of action against Mtb at concentra-
tions of 1.7–4 �MICGASTD (Table 3).

Testing against Yp revealed that 14 compds (1, 2, 7–9, 11, 13,
14, 19, 27–29, 31, 32; Table 1) reached IC50s (0.04–181 lM range,
Table 4) within the concentration series tested in the iron-limiting
medium, PMHD. Nine of these compds (1, 11, 13, 14, 27–29, 31, 32)
also reached MICs (0.2–388 lM range) in PMHD. Only 29 and 30
had determinable activity in the iron-rich medium, PMHD+Fe
(29: IC50 = 156 lM, MIC = 233 lM; 30: IC50 = 305 lM). Interest-
ingly, examination of the IC50PMHD+Fe/IC50PMHD ratios revealed a
number of inhibitors (7, 11, 13, 14, 19, 27, 29, 31, 32) with in-
creased potency (>3-fold) against Yp cultured under iron scarcity.
Compd 32, with >100-fold and >20-fold higher potency in PMHD
based on IC50 and MIC values, respectively, stood out in this group.
The higher potency of these compds in the iron-limiting medium
raises the possibility that interference with an iron acquisition
function, or other function more critically required for growth un-
der the iron-limiting condition, is a property that significantly con-
tributes to the compds’ antimicrobial activity against Yp. One of
the possible mechanisms of action of these compds could be
related to iron-binding properties. An iron-binding ability strong
enough to outcompete the powerful iron chelating capacity of



Table 4
Antimicrobial activity against Y. pestis

Compound IC50
a (lM) Ratio MIC90

b (lM) Ratio Mode of actionc

PMHD+Fe PMHD PMHD+Fe PMHD

DAP series
1 >8 9 nd >8 31 nd BC (1 �MIC)
2 >31 20 >2 >31 >31 nd nd
3 >31 >31 nd >31 >31 nd nd
4 >16 >16 nd >16 >16 nd nd
5 >250 >250 nd >250 >250 nd ml
6 >31 >31 nd >31 >31 nd nd
7 >31 8 >4 >3l >31 nd nd
8 >31 13 >2 >31 >31 nd nd
9 >63 181 nd >63 >250 nd nd
10 >31 >62 nd >31 >63 nd nd
11 >63 7 >9 >63 42 >l BC (1 �MIC)
12 >63 >125 nd >63 >125 nd nd
13 >16 4 >4 >16 16 >1 BC (2 �MIC)
14 >63 5 >13 >63 21 >3 BC (2 �MIC)
15 >16 >16 nd >16 >16 nd nd
16 >8 >8 nd >8 >8 nd nd
17 >63 >31 nd >63 >31 nd nd
18 >16 >31 nd >16 >3l nd nd
19 >31 8 >4 >31 >31 nd nd
20 >31 >16 nd >31 >16 nd nd
21 >16 >31 nd >16 >31 nd nd
22 >16 >31 nd >16 >31 nd nd

BHHC series
23 >4 >16 nd >4 >16 nd nd
24 >250 >250 nd >250 >250 nd nd
25 >2 >4 nd >2 >4 nd nd
26 >500 >500 nd >500 >500 nd nd
27 >59 4 >15 >59 15 >4 BC (2 �MIC)
28 >233 137 >2 >233 388 nd BC (1 �MIC)
29 156 61 >3 233 116 2 BC (2 �MIC)
30 305 70 4 >500 250 >2 BC (2 �MIC)
31 >500 >500 nd >500 >500 nd nd
32 >4 0.04 >100 >4 0.2 >20 BC (2 �MIC)
Streptomycin 1 1 1 2 1 2 BC (2 �MIC)

a IC50 values were calculated from sigmoidal curves fitted to triplicate sets of dose response data.
b MIC90 values are means of triplicates. Ratio, PMHD+Fe/PMHD. All values >1, <l, >0.5, and60.5 were rounded to the nearest whole number, to 1 and to one significant digit,

respectively.
c Mode of action was evaluated in PMHD in duplicate The concentration at which each compound was tested for mode of action is indicated between parentheses. nd, not

determined; US, bacteriostatic; BC, bactericidal.
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the bacterial siderophore could lead to sequestration of the traces
of iron in the iron-limiting medium, thus reducing further iron
bioavailability and producing a stronger antimicrobial activity un-
der the iron-scarcity condition. Alternatively, it is possible that
these compds gain intracellular access using the iron-scarcity-
unregulated yersiniabactin’s uptake system,5e therefore reducing
IC50 and MIC values in PMHD.

Compds 13 (IC50PMHD = 4 lM, MICPMHD = 16 lM) and 14
(IC50PMHD = 5 lM, MICPMHD = 21 lM) were the most potent among
the active DAP derivatives with detectable activity against Yp
(Table 4). These two compds displayed no significant cytotoxicity
when they were evaluated at their respective MIC values deter-
mined against Yp (Supplementary data, Fig. S1). Testing of these
and two other active DAP derivatives (1, 11) for mode of action
against Yp revealed that the four compds were bacteriostatic at
concentrations of 1–2 �MICPMHD (Table 4). Among the BHHC
derivatives with defined IC50 and MIC values in at least one condi-
tion (iron limiting or iron rich), 32 stood out due to its remarkable
potency (IC50PMHD = 0.04 lM, MICPMHD = 0.2 lM) against Yp cul-
tured under iron scarcity. Encouragingly, 32 displayed no signifi-
cant cytotoxicity when evaluated in cytotoxicity assays at the
MIC determined against Yp (Supplementary data, Fig. S1). Notably,
the activity of 32 was significantly higher than that of streptomy-
cin (IC50 and MIC �1 lM), a bactericidal drug used to treat plague
and included herein as an anti-Yp activity reference. Five compds
(27-29, 31, 32) of the BHHC derivatives series were tested for mode
of action against Yp in PMHD at concentrations of 1–2 �MICPMHD.
Under the conditions tested, 29 displayed bactericidal activity,
whereas 27, 28, 31, and 32 were bacteriostatic.

In sum, 20 of 32 compds synthesized and evaluated herein have
detectable antimicrobial against Mtb and/or Yp in at least one con-
dition, iron scarcity or iron sufficient. To our knowledge, these are
novel scaffolds not previously shown to have antimicrobial proper-
ties. Most active compds identified herein have comparable po-
tency in the low and high iron conditions. This finding suggests
that their pharmacological targets are likely to be essential bacte-
rial functions required under both these conditions. In line with
our aforementioned hypothesis, however, some of our compds
have higher potency under the iron-limiting condition. Under this
condition, bacteria depend on siderophores for efficient iron scav-
enging and engage an adaptive response to tailor their physiology
to iron scarcity, thus exposing novel potential in vivo conditional
target candidates.7a Some of these antimicrobials may impair sid-
erophore system functioning as discussed above, a property that
would result in bacteriostatic activity conditional to environmental
iron scarcity (e.g., as seen with 27 and 32 against Yp). Overall, our
study illustrates the possibility of screening compd libraries in
both iron-sufficient and iron-limiting conditions to identify anti-
microbials that may selectively target iron scarcity-adapted bacte-
ria and highlights the usefulness of building combinatorial libraries
of compds having scaffolds with structural similarities to
siderophores to feed antimicrobial screening programs.
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