
Control Engineering Practice 45 (2015) 123–132
Contents lists available at ScienceDirect
Control Engineering Practice
http://d
0967-06

n Corr
de San
journal homepage: www.elsevier.com/locate/conengprac
Linear interpolation based controller design for trajectory tracking
under uncertainties: Application to mobile robots

Gustavo Scaglia a,b,n, Emanuel Serrano a, Andrés Rosales b, Pedro Albertos b,c

a Instituto de Ingeniería Quím ica, Universidad Nacional de San Juan, Av. Libertador San Martín Oeste 1109, San Juan J5400ARL, Argentina
b Departamento de Automatización y Control Industrial, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Quito, Ecuador
c Departamento de Ingeniería de Sistemas y Automática, Universidad Politécnica de Valencia, España
a r t i c l e i n f o

Article history:
Received 9 April 2015
Received in revised form
31 August 2015
Accepted 20 September 2015

Keywords:
Tracking control
Difference equations
Uncertainties
Non-linear multivariable control
Mobile robot
x.doi.org/10.1016/j.conengprac.2015.09.010
61/& 2015 Elsevier Ltd. All rights reserved.

esponding author at: Instituto de Ingeniería Q
Juan, Av. Libertador San Martín Oeste 1109, Sa
a b s t r a c t

The problem of trajectory tracking control in mobile robots under uncertainties is addressed in this
paper. Following the results of mobile robots trajectory tracking reported in (Scaglia et al., 2010), the
problem of model errors is focused and the zero convergence of tracking errors under polynomial un-
certainties is demonstrated. A simple scheme is obtained, which can be easily implemented. Simulation
and experimental results are presented and discussed, showing the good performance of the controller.
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1. Introduction

This paper addresses the problem of trajectory tracking control
in mobile robots under uncertainties. The use of trajectory tracking
for mobile robots is justified in structured working spaces as well
as in partially structured workspaces, where unexpected obstacles
can be found during the navigation. In the first case, the reference
trajectory can be set from a global trajectory planner. In the second
case, the algorithms used to avoid obstacles usually re-plan the
trajectory in order to avoid a collision generating a new reference
trajectory from this point on. In general, the objective is to find the
control actions that make the mobile robot to reach a Cartesian
position (xref, yref) with a pre-established orientation θ at each
sampling period. These combined actions result in tracking the
desired trajectory of the mobile robot.

Several tracking controllers designed by using a linearized
model have been reported. In Oriolo, Luca & Vendittelli (2002), a
dynamic feedback linearization technique is used to control a
mobile robot platform. Usually, the desired trajectory is obtained
by using a reference virtual robot; therefore, all the kinematic
constraints are implicitly considered by the desired trajectory. The
control inputs are mostly obtained by a combination of feedfor-
ward inputs, calculated from the desired trajectory, and the feed-
back control law. In Klancar & Skrjanc (2007), a model-predictive
uím ica, Universidad Nacional
n Juan J5400ARL, Argentina.
trajectory-tracking control applied to a mobile robot is presented.
Linearized tracking-error dynamics is used to predict the system
future behavior and a control law is derived from a quadratic cost
function penalizing the system tracking error and the control ef-
fort. In Blažič (2011), a kinematic model is proposed where the
transformation between the robot posture and the system state is
bijective. The authors show that the global asymptotic stability of
the system is achieved if the reference velocities satisfy the con-
dition of persistent excitation.

In Scaglia, Quintero, Mut & Di Sciascio (2009), a novel trajec-
tory-tracking controller has been presented. The originality of this
control approach is based on the application of linear algebra for
trajectory tracking, where the control actions are obtained by
solving a system of linear equations. The methodology developed
for tracking the desired trajectory (xref , yref) is based on de-
termining the trajectories of the remaining state variables, thus
the tracking error tends to zero. These states are determined by
analyzing the conditions so that the system of linear equations has
exact solution. In order to achieve this objective, only two control
variables are available: the linear velocity (V) and the angular
velocity (W) of the robot, Fig. 1. This design technique has been
applied successfully in several systems (Scaglia et al., 2009; Ro-
sales, Scaglia, Mut & Di Sciascio, 2011; Rosales, Scaglia, Mut & Di
Sciascio, 2009; Serrano, Scaglia, Godoy, Mut & Ortiz, 2013).

The authors in Scaglia, Rosales, Quintero, Mut & Agarwal
(2010), present a novel linear interpolation based methodology to
design control algorithms for trajectory tracking of mobile ve-
hicles. In that work, it is assumed that the evolution of the system
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Fig. 1. Geometric description of the mobile robot.
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can be approximated by a linear interpolation at each sampling
time. A novel approach for trajectory tracking of a mobile-robots
formation by using linear algebra theory and numerical methods is
presented in Rosales et al. (2011). Using this strategy, the forma-
tion of mobile robots is able to change its configuration (shape and
size) and follow different trajectories in a precise way, minimizing
the tracking and formation errors. To face up to sudden velocity
changes and to improve the performance of the system, Rosales
et al. (2009) proposed working with the dynamic model of the
mobile robot.

This paper provides a positive answer to the challenging pro-
blem of designing controllers for trajectory tracking in multi-
variable nonlinear systems with additive uncertainty. This pro-
blem has attracted the interest of many researchers and several
solutions are reported in the literature (see for instance, Lee, Lin,
Lim & Lee (2009), Farooq, Hasan, Hanif, Amer & Asad (2014), Wang
(2012), Scaglia et al. (2009), and many others). The proposed
controllers are rather complicated and require high computation
cost.

The controller is derived by using the discrete state space model
equations. This simple approach suggests that knowing the value of
the desired state, a value for the control action forcing the system to
move from its current state to the desired one can be computed. A
system of linear equations needs to be solved to compute the
control actions to carry the current outputs to the desired values.
The main contribution of this work is the extension of the proposed
methodology, based upon easily understandable concepts and
without requiring complex calculations to attain the control signal,
to design the tracking control of a mobile with uncertainties in the
model. The methodology proposed here yields trajectory tracking
controllers with low computational cost, small tracking error and
low control effort. Additionally, our controller shows to be robust
under disturbances in the control actions. Due to its mathematical
formulation, our approach can also be implemented embedded (it
does not compute higher order derivatives, exponentiation or
complex trigonometric functions). Another contribution of this pa-
per is the application of Monte Carlo (MC) based sampling experi-
ment in the simulations. The controller parameters can be com-
puted to minimize a cost index, here being determined by the
Monte Carlo (MC) experiment, and the theoretical results are vali-
dated by simulations and experimentation.

It is noteworthy that due to the above mentioned character-
istics, the computing power required to perform the mathematical
operations is low. Thence it is possible to implement the algorithm
in any controller with low computing capacity. Furthermore, the
developed algorithm is easier to implement in a real system be-
cause the use of discrete equations allows direct adaptation to any
computer system or programmable device running sequential in-
structions at a programmable clock speed. Thus, other than the
simplicity of the controller, one great advantage of this approach is
the use of discrete-time equations, simplifying its implementation
on a computer system. The proof of the zero-convergence of the
tracking error under uncertainty is another main contribution of
this work.

The paper is organized as follows: in the next sections, some
results from previous works are summarized to make this
paper self-contained. In Section 2, the kinematical model of the
mobile robot is presented, and the controller design methodology
is shown in Section 3. In Section 4, the controller parameters are
tuned by the MC experiment and theoretical results are validated
with simulation results of the control algorithm. Three experi-
mental results using a mobile robot Pioneer 3AT are presented in
Section 5. Finally, the conclusions and some topics that will be
addressed in future contributions are outlined in Section 6.
2. Kinematic model of the mobile robot and controller design

2.1. Kinematic model of the mobile robot

A simple nonlinear kinematic model for a mobile robot shown
in Fig. 1, represented by (1), will be used
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where, V: linear velocity of the mobile robot, W: angular ve-
locity of the mobile robot, x y,( ): Cartesian position, θ: mobile
robot orientation. This model has been used in several recent
papers such as Blažič (2011), Rosales et al., (2011), Rossomando,
Soria & Carelli (2011) and Resende, Carelli & Sarcinelli-Filho (2013).
Note that the dynamics of the mobile as well as those from the
actuators are not initially considered. They will be taken into ac-
count later on as uncertainties in the model (1).

2.2. Controller design

The goal is to find the values of V and W so that the mobile
robot may follow a pre-established trajectory (xref , yref) with a
minimum error. The values of x t( ), y t( ), tθ ( ), V t( ) and W t( ) at
discrete time t nTs= , where Ts is the sampling time, and
n 0, 1, 2,∈ { ⋯} will be denoted as xn, yn, nθ , Vn and Wn, respectively.

From (1), it follows,
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where the control actions V and W remain constant in the in-
terval nT t n T1s s≤ < ( + ) and equal to Vn and Wn. Then, for
nT t n T1s s≤ < ( + ) ,
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Then, from (2) and (3), it follows
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Denote by zn the state vector and znΔ its increment, that is
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are the input matrix and the control action, respectively. Then
(4) can be rewritten

z z B W u, , 7n n n n n n n1 1θ θ= + ( ) ( )+ +

From (4), the control to move from (x y,n n) to (x y,n n1 1+ + ) can be
derived:

1. From the last row in (4), the control input to go from zn to zn 1+
will require

W
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1. Note that the first two rows in (4) involve a unique variable Vn.
So, in order to follow an exact trajectory, zn to zn 1+ , and being
(xn 1+ , yn 1+ ) given, the direction n 1θ + must be (Scaglia et al., 2010)
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The orientation ref n, 1θ + will be taken as the reference value for θ
in the next period, and the ratio between the control actions is
given by
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The value of θ that satisfies (9) will be called ref n, 1θ + (this is the
necessary orientation to force the tracking error to zero). This or-
ientation ensures that the robot tends to the required trajectory
and it will be used as the reference for the orientation. Now, let us
assume that the goal is to track a trajectory given by zref , where
( x y,ref ref ) is known for any time instant in the future and, as al-
ready mentioned, refθ will be given by (9), to solve the control law.
At time n, the mobile being at zn, in order to match the required
trajectory, the control actions should be computed by (8), (10),
leading to a sharp reply with strong control actions.

2.2.1. Ideal (hard) controller

1. Given (xref n i, + ,yref n i, + ) for i¼1,2,…, and some initial conditions zn.
2. Compute the position increments x x xn ref n n, 1Δ = −+ ;

y y yn ref n n, 1Δ = −+ .
3. Compute the control actions rate, W V/n n , by (10).
4. Derive the next orientation angle ref n, 1θ + by (9).
5. According to the selected sampling period, Ts, compute the
required angular speed (8)

W
T

n
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s
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6. Compute the required linear speed Vn from (10).

This control will force to follow the required trajectory since
the first control action, leading to unacceptable control magni-
tudes and involving some discrete approximation errors in the
model (2) if there are step changes in the reference path.

2.2.2. Proportional controller
To get a smooth trajectory, the desirable next state, zd n, 1+ , is not

assumed to be the new reference state value. This state vector
(zd n, 1+ ), assuming an approaching proportional to the error, is gi-
ven by
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where k is a design positive parameter (0oko1). Note that:

1. if k¼0, (z zd n ref n, 1 , 1=+ + ), the goal is to reach the reference tra-
jectory in one step.

2. if k¼1, the error will remain constant, ( z zd n n, 1 − =+
z zref n ref n, 1 ,−+ ).

Replacing zn 1+ by zd n, 1+ in the first two components, the pro-
posed controller will be

1. Given (xref n i, + ,yref n i, + ) for i¼1,2,…, and some initial conditions zn.
2. Compute the new targeted point, (11)

x x k x x y y k y y;d n ref n ref n n d n ref n ref n n, 1 , 1 , , 1 , 1 ,= − ( − ) = − ( − )+ + + +
3. Compute the position increments x x xn d n n, 1Δ = −+ ;

y y yn d n n, 1Δ = −+ .
4. Compute the control actions rate, W V/n n , by (10).
5. Derive the next reference for the orientation angle ref n, 1θ + by (9).
6. The desired orientation angle will be:

kd n ref n ref n n, 1 , 1 ,θ θ θ θ= − ( − )+ + .
7. According to the selected sampling period, Ts, compute the re-

quired angular speed (8)

W
T 12n

d n n

s
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8. Compute the required linear speed Vn from (10).

Remark 1. In order to calculate the control actions, xn 1+ , yn 1+ and

n 1θ + are replaced by xd n, 1+ , yd n, 1+ and d n, 1θ + according to (11) in xnΔ ,
ynΔ and nθΔ .

Remark 2. The selection of the sampling period, Ts, will determine
the magnitude of the control actions (last two steps of the control
algorithm), as well as the validity of the discrete time model
approximation.

Theorem 1. The mobile robot described by (1), assuming an ap-
propriate sampling period Ts, controlled by the proportional controller
described above, leads to an asymptotically stable system.

Proof. The state evolution, from (4) to (12), can be expressed by
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as a function of the control actions (12),
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By using the Taylor interpolation rule, the functions
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Applying the same reasoning to the y-coordinate, and taking
into account that from (4), (11), (12) and Remark 1,

it yields, in compact form:
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is another intermediate point for g(⋅).
Taking account (14), h h n, 0,n n1, 2,( ) → → ∞. Thus, for k 1< , the

error (17) tends to zero, and without oscillations, if k40.

2.3. Algorithm for controller implementation

Based on the theoretical results in the previous sections, as-
suming a sampling period Ts at each sampling time the following
operations to calculate the control actions are performed.

Step 1: Get the state variables ( xn, yn, nθ )
Step 2: Calculate x x x x k x x xn d n n ref n ref n n n, 1 , 1 ,Δ = − = − ( − ) −+ +

y y y y k y y yn d n n ref n ref n n n, 1 , 1 ,Δ = − = − ( − ) −+ +

Step 3: Calculate W
V

y x

x y

2 cos sinn

n

n n n n

n n
2 2= θ θ(Δ − Δ )

Δ + Δ

Step 4: Calculate x yatan2 sin , cosref n
Wn
Vn

n n
Wn
Vn n n, 1 ( )θ θ θ= Δ + − Δ ++

Step 5: Calculate kn ref n ref n n n, 1 ,θ θ θ θ θΔ = − ( − ) −+
Step 6: Calculate the control actions.

W

V W

n T

n
x y

y x n2 cos sin

n

s

n n

n n n n

2 2

=

=

θ

θ θ

Δ

Δ + Δ
(Δ − Δ )
If there is saturation in the control actions, the sampling period
should be reduced.
3. Controller design under uncertainty

Now, an additive uncertainty is incorporated into the model of
the system and an approach to eliminate its influence on the
tracking error is proposed. Then, considering (7), the following
mobile robot model is assumed

z z B W u E, , 18n n n n n n n n1 1θ θ= + ( ) + ( )+ +

where En is the additive uncertainty. Notice that the additive
uncertainty can be used to model perturbed systems as well as a
wide class of model mismatches.

Taking into account that the mismatch might depend on the
state and on the input of the system, consider a real plant
z f z u,n n n1 = ( )+ , the additive uncertainty can be expressed by

E f z u f z u, ,n n n n n
^= ( ) − ( ), where f z u,n n

^( ) is the discrete-time non-
linear model of the system. Note that if, as it will be assumed, z
and u are bounded and f is Lipschitz, then En can be modeled as a
bounded uncertainty (Michalska & Mayne 1993, and Mayne,
Rawlings, Rao & Scokaert, 2000).

Replacing the control actions given in Step 6 Section 2.3 into
the model (18), the tracking error evolution will be
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Now, looking at (19), a direct effect of the additive uncertainty
on the tracking error can be seen.

3.1. Integral action

In order to reduce the effect of En, some integrators of the
tracking errors in the system state variables will be introduced,
depending on the time variation hypothesis of En. It is assumed
that Enis unknown and each component is an m-order polynomial.

Remark 3. The first order difference of En is defined as Enδ =
E En n1 −+ , the second order difference as E En n

2δ δ δ= ( )=
E E E E E2n n n1 n 2 1 nδ ( − ) = − ++ + + , and as a rule, the q-th order

difference is defined as E Eq
n

q
n

1δ δ δ= ( )− .

Remark 4. The q-th difference of a q-1 order polynomial is zero.

Let us consider a constant uncertainty constE .n = that means:
E E E 0n n n1δ = − =+ . In this case, an integrator for each state vari-
able will force the error to converge to zero.

Denoting by te( ) the continuous time error in the state vector,
define

t dt TU U e U e
20n n

nT

n T

n s n1, 1 1,

1

1,
s

s∫= + ( ) ≅ +
( )+

( + )

as the integral of the error, the control action (12) will be
computed assuming a new term in (11), such as,

  
k Kz z z z U

21

d n ref n ref n n n

e
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n
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( )
+ + +

where k, K1 are, respectively, the proportional and integral
control actions.

Replacing (21) in (12), and altogether in (18), after some simple
operations, it yields
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Therefore, k K, 1 are chosen in order to ensure the stability of the
linear system represented in the left part of (22), that is, the zeros
of this polynomial (ri) should be inside the unit circle. Then

e e 0,x n y n,
2

,
2+ → as n → ∞. That is, the tracking error tends to zero

despite of uncertainties, if they are constant.

3.2. Multiple integral actions

Let us now consider that the uncertainty can be modeled by a
function where the second order difference is zero, such that

E E E E E E E 02n n n n n
2

1 n 2 1 nδ δ δ δ= ( ) = ( − ) = − + =+ + + . Then, a dou-
ble integrator should be introduced in a similar way to (20), de-
fining the integrating variables U U,1 2.

t dt TU U U U Un n
nT

n T

n s n2 1 2

1

1 2 1 1
s

s∫= + ( ) ≅ +( + ) ( )
( + )

( ) ( + )

In this case, the control action (12) will be computed assuming
an additional term in (20), such as
  
k K Kz z z z U U

23
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where k, K K,1 2 are, respectively, the proportional, integral and
double integral control actions. Operating as before, and taking
into account that E 0n

2δ = , the error dynamics can be expressed by
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Now, as can be seen in (24), under the assumption of constant
or linear varying uncertainty, E 0n

2δ = , and the uncertainty has no
influence on the error dynamics. The controller parameters,
k K K, ,1 2 are chosen in order to ensure the stability of the linear
system represented in the left part of (24), as shown in the pre-
vious case.

Following a similar reasoning, if the uncertainties can be ap-
proximated with a q-1 order polynomial, the influence of En on en

will be eliminated by introducing q integrators.

Remark 5. The controller parameters can be chosen differently for
each state variable, as pointed out in (11) for k, but not relevant
benefit is obtained in the examples developed later on. The same
could be done with all the controller parameters k K K, ,1 2
4. Simulations results

The simulation results for the performance evaluation of the
trajectory tracking controller proposed in the previous section are
presented in this section. Thus, our approach is applied to the
dynamical model. As already discussed, the controlled system
behavior depends on the parameters k, K1, K2,… Kp, where p is the
number of integrators. Thus, in this work, and in order to de-
termine values for the parameters of the controller for p¼0,1,2, the
MC method used in Auat Cheein and Carelli (2012), is applied. In
addition, this experience allows measuring the controller behavior
with p¼0 (driver developed in Scaglia et al., 2010), with p¼1
(controller proposed in this work with an integrator), and finally
with p¼2 (proposed in this paper by the use of two integrators) in
order to compare the results.

4.1. Determination of the controller parameters by Monte Carlo
method

In this section the controller's performance is analyzed by simu-
lation when the controller parameters vary according to the MC ex-
periment. An additional objective of the MC experiment is to find the
parameter values optimizing a defined cost function. An idea widely
used in the literature is to consider the cost incurred by the error. Let
Φ be a desired trajectory, where #Φ is the number of points of such
trajectory. Let C x xx i i ref i0

1
2

2= ∑ ( − )Φ Φ
=

#
( ) ( ) the quadratic error in the x-

coordinate; and C y yy i i ref i0
1
2

2= ∑ ( − )Φ Φ
=

#
( ) ( ) the quadratic error in the y-

coordinate, as proposed in Batavia & Singh (2002). Then, the cost
function can be represented by the combination of both, the quadratic
error in x-coordinate and the y-coordinate as shown in (25)

⎜ ⎟⎛
⎝

⎞
⎠C C C x x y y

1
2 25x y i i ref i i ref i0

2 2( )∑= + = ( − ) + −
( )

Φ Φ Φ Φ

=

#
( ) ( ) ( ) ( )

Thus, the objective is to find k, K1, K2,… Kp, in such way that CΦ
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is minimized. In order to do so, in this work a MC based sampling
experiment (Auat Cheein & Carelli, 2012) is carried out, with p¼0,
1, 2. The MC experiment allows finding empirically the parameter
values minimizing the cost function.

The MC experiment's considerations:

� The model mismatch between (1) and the Pioneer actual
behavior is represented by the uncertainty En, with high
(unknown) order difference.

� The simulations are performed using MatLab software platform
and Mobile Sim program provided by the manufacturer Pioneer
Mobile Robot. The simulations are performed with p¼ 0, 1, 2.
For each controller 1000 simulations are run.

� All simulations are implemented with the same desired trajec-
tory Φ. In this section, a sinusoidal trajectory is considered. The
sampling time used is Ts¼ 0.1 s.

� For each simulation, the controller parameters are chosen in a
random way, such that the roots ( ri) of the linear systems de-
fined in the right hand side of (19) and the left hand of (22) and
(24) are r a b,i ∈ ( ), where b should be o1 to ensure system
stability (error convergence) and a 4 0 and not too low for
proper robot response. In our case, a¼0.88 and b¼0.99 were
empirically chosen considering a trade off between the speed of
convergence to zero of tracking errors and a "soft" robot
response. That is, all the roots are r rand 0.88, 0.99i = ( ).

� For p¼0 , 1000 simulations are performed and the controller
parameter is chosen as k r1= , where r1 is the root of the linear
system in (19).

� For p¼1, 1000 simulations are performed again, and the con-
troller parameters are chosen according to (26):

k r r

K
r r r r

T
1

26s

1 2

1
1 2 1 2

=

= − − + +
( )

where, r1 and r2 are the roots of the linear system in (22).
� For p¼2, 1000 simulations are performed and the controller

parameters are chosen considering (27):
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Where r1, r2 and r3 are the roots of the linear system in (24).
� The cost CΦ for each controller is calculated when the robot

reaches the desired trajectory. Due to the unknown character of
the uncertainty, the steady state error will be affected by the
higher order uncertainty differences, not canceled by the re-
duced number of integrators.

Fig. 2a shows the results of the 1000 simulations when the
original controller developed by the authors in Scaglia et al. (2010)
is used, (p¼0 in the expression of controller proposed in this pa-
per). The results show the values taken by the cost function for
each simulation; scattered values are obtained due to the ran-
domness with which the parameters were chosen in each simu-
lation. The Fig. 2a shows that the lowest cost obtained with p¼0
corresponds to C 0.0439=Φ . The Fig. 2b shows the results of the
cost function CΦ for 1000 iterations when using the controller
proposed in this work when p¼1, which corresponds to using one
integrator. For this controller the lowest cost obtained is
C 0.0210=Φ . In addition, all the cost obtained with p¼1 are under
C 0.0439=Φ , minimum value obtained when p¼0. Finally Fig. 2c
shows the results obtained when applying the proposed controller
in this work with p¼2. In this case the lowest cost obtained
corresponds toC 0.0058=Φ . The minimum cost obtained for each
controller is shown in Fig. 2d.

The analysis of the results shows that the performance of the
controller improves as p increases. Thus, the results obtained by
the MC experiment to choose the controller parameters verify the
theoretical results obtained in the previous section. Table 1 shows
the summary of the results obtained with each controller.
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Table 1
Simulations summary of the Monte Carlo experiment.

Controller/
results

Minimum tra-

jectory's cost:CΦ
Controller's parameters

Controller with
p¼0

C 0.0439=Φ k 0.96=

Controller with
p¼1

C 0.0210=Φ k K0.883 0.0271= =

Controller with
p¼2

C 0.0058=Φ k K K0.8827 0.0269 0.00111 2= = =
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5. Experimentation results

To support our claims, several experiments were performed by
using a PIONEER 3AT (P3-AT) mobile robot. The P3-AT mobile
robot, Fig. 3, includes an estimation system based on odometric-
based positioning system. This system uses 100 tick encoders with
inertial correction recommended for dead reckoning to compen-
sate for skid steering. Updating through external sensors is ne-
cessary. This problem is separated from the strategy of trajectory
tracking and it is not considered in this paper, (Rico, Gomez-Or-
tega & Camacho, 1999; Rico, Alcala, Gomez-Ortega & Camacho,
2001). The P3-AT has a PID velocity controller used to maintain the
velocities of the mobile robot at the desired value. In this section,
various experiments are shown to evaluate the performance of the
proposed controller in different scenarios. First the controller be-
havior when the reference trajectory corresponds to a square
trajectory is shown. The aim of this experiment is to evaluate the
controller performance when the trajectory changes abruptly, in
direction. Then, in a second experiment the behavior of the con-
troller is shown with the presence of disturbances in the control
actions. Finally, an experiment is performed in order to compare
the controller proposed in this work with a controller recently
developed by other authors in the literature.

Remark 6. The experimental results shown in Section 5 are car-
ried out only using the internal odometers. In addition, it is as-
sumed that the robot does not slip and odometer errors are
practically zero.

5.1. Square trajectory

The application field of mobile robots has increased recently. In
different applications the trajectory to be followed by the robot is
usually re-planned. This strategy can be used in applications such
as obstacle avoidance and contour-following. So if the danger of
collision is large, the trajectory to be followed by the robot is
modified abruptly and the robot must follow that path to avoid
collision. Thus, the controller performance when the trajectory
changes abruptly will be analyzed. In addition, in order to test the
limits of our formulation, and as recommended by (Roth & Batavia,
Fig. 3. The pionner 3AT mobile robot and the laboratory facilities.
2002), a square trajectory was chosen. Specifically, the robot has to
track a square trajectory. The square reference trajectory is gen-
erated with constant linear velocity of V¼0.3 m/s. The initial po-
sition of the robot is at the system origin and the trajectory begins
in the position (xref(0), yref(0))¼(1m,1m).

In order to compare the performance of the controller pro-
posed in this paper with the original controller (Scaglia et al.,
2010), three experiments in the mobile robot Pioneer 3AT with
three different controllers were performed. First, the original
controller proposed by the authors in Scaglia et al. (2010) (called
C1 in the sequel), which corresponds to p¼0 in the approach
proposed here. Then, an experiment with the controller proposed
in this paper considering p¼1 is addressed (C2 in the sequel).
Finally, the performance of the controller proposed in this paper
with two integrators, p¼2 (C3 in the sequel) is shown. The con-
troller parameters used for the experimentation are obtained from
Table 1, and they were obtained by the MC experiment.

Fig. 4 shows the results of the implementation. By inspection,
Fig. 4a shows that all controllers reach and follow the desired
trajectory. However, for the square trajectory test, C3 shows the
lowest error cost when compared to the rest of the controllers,
Fig. 4b. This shows that if the number of integrators increases then
the tracking error decreases. This result can also be observed in
Fig. 4c and d, which shows the values taken tracking errors in the
x-and y-coordinate coordinate. Note that due to the high order of
the uncertainty difference, the tracking error is not fully canceled.

5.2. Disturbances in the control actions

In order to observe the behavior of the controller in the pre-
sence of additional uncertainty, disturbances are added to the
control actions. The disturbance in the linear velocity at time n is
represented by Vn¼VnþδVVn, where Vn is the linear velocity to be
applied at the n instant and δV is represented by δV¼rand
(�0.2,0.2); i.e., rand(�0.2,0.2) is a random noise with a magnitude
of 0.2 and �0.2 lower bound. The disturbance in the angular ve-
locity at time n is represented byWn¼WnþδWWn, whereWn is the
angular velocity to be applied in the n instant and δW is re-
presented by δW¼rand(�0.2,0.2); i.e., rand(�0.2,0.2) is a random
noise with a magnitude of 0.2 and �0.2 lower bound. The test
performed herein, is aimed at showing the controller performance
under disturbance in the control actions and sinusoidal trajec-
tories, the desired trajectory is generated with a Vref¼0.3 m/s. The
controller parameters are obtained from Table 1.

Fig. 5a shows the trajectory and the results obtained by im-
plementing the controller proposed in this paper with p¼0, 1, 2.
As can be seen, the controllers reach and follow the desired tra-
jectory without unexpected oscillations. Fig. 5b shows that C3 in
the sequel has the lowest cost error when compared with the rest
of the controller. Fig. 5c and d shows the absolute values of the
tracking errors for the x-coordinate and y-coordinate respectively.
By inspection, the tracking error when the controller has two in-
tegrators (C3) is the lowest and present a better performance
against unwanted disturbances compared with C1 and C2.

5.3. Controller comparison

To test the advantages and drawbacks of our proposal, an ex-
perimental evaluation was carried out. In order to do so, two
controllers previously published in the scientific literature were
implemented for comparison on the mobile robot Pioneer 3AT. The
controllers implemented for comparison are the following:

� Controller developed in Scaglia et al. (2010), C1 in the sequel
(p¼0 in our proposal).

� The controller proposed in this paper with p¼1, C2 in the
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sequel.
� Our approach with p¼2, C3 in the sequel.
� A non-linear trajectory tracking strategy for unicycle vehicles

developed by Michalek & Kozlowski (2012), C4 in the sequel.

The design details of the drivers can be found in their re-
spective references, and only the experimental results without a
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theoretical analysis of the controller’s properties are shown here.
For such, (Michalek & Kozlowski, 2012; Scaglia et al., 2010) offer a
deep insight into the controller design.

The final test carried out is a curvature test, in which the
controller's performance using different circle-sharped trajec-
tories, as recommended in (Roth & Batavia, 2002) are evaluated.
Three circle-trajectories were used in this work, whit different
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Fig. 6. a- Tracking trajectory of the mobile robot; b- cost of the trajectory tracking; c- absolute value of the tracking error in x; d- absolute value of the tracking error in y.
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radius, as shown in Fig. 6a. The inner trajectory has a radius of
r¼1.5 m, the medium one r¼2.5 m and the last one r¼3.5 m. The
initial position of the robot is at the system origin and the tra-
jectory begins in the position (xref(0), yref(0)) ¼ (1.5 m, 0 m).

The reference trajectory and the results of the controllers are
shown in Fig. 6a. As can be seen, all controllers reach and follow
the desired trajectory. Fig. 6c and d shows the plots of the absolute
value of the tracking error in the x-coordinate and y-coordinate
according to each controller used in the test for the three curva-
tures shown in Fig. 6a. The controller proposed by Michalek &
Kozlowski (2012), named C4 presents a similar performance that
C2 (our approach whit p¼1), but the lowest cost is obtained by C3
as can be seen in Fig. 6b.

The above results show the good performance of the controller
presented against other controllers proposed in the literature.
Furthermore, analyzing Fig. 6b it can be seen that the performance
of the controller can be improved when the number of integrators
is increased although the complexity of the control is also
increased.
6. Conclusions

A methodology based on numerical methods and linear algebra
to design control algorithms for a mobile robot when the system is
represented by a multivariable non linear model with additive
uncertainty, has been presented. New integrators have been ad-
ded, which are chosen based on the variation hypothesis of En. If
En can be approximated by a q-grade polynomial, then qþ1 in-
tegrators will be added in order to avoid the influence of the
modeling error (En) to tracking error (en).

Different tests were carried out to demonstrate the effective-
ness of the proposed methodologies. The controller is tuned by
simulation using MC method. These experiments show that the
tracking error decreases when the number of integrators increases.
The decrease of tracking error also is observable during
experimental tests with disturbances in the control actions and in
front of trajectories with sudden changes in their orientation. The
performance of the proposed system is good, and the complexity
of control algorithm does not increase in an excessive way.

In comparison with others previous published control laws
Blažič (2011), Rossomando et al. (2011), Resende et al. (2013), Lee
et al. (2009), Farooq et al. (2014) and Wang (2012) the proposed
controller presents the advantages of being easy to design and to
implement. Thus, the algorithm can be implemented directly on
the robot’s microcontroller without the need to implement it on
an external computer, because the calculations are simple to per-
form. In addition, the method proposed here, does not need a
model transformation compared with Blažič (2011). Furthermore,
our controller does not present the disadvantage of Blažič (2011)
where the reference velocities must meet the condition of per-
sistent excitation.
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