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h i g h l i g h t s

• We use ordinal patterns probabilities for estimating Hurst exponents.
• Numerical and experimental results are included.
• Robustness to observational noise is confirmed.
• The spurious effect of low resolution data is carefully analysed.
• Results are contrasted with those obtained from DFA.
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a b s t r a c t

In this paper we use the ordinal patterns probabilities associated with fractional Brownian
motions for estimating the Hurst exponent of artificially generated and experimentally
measured data. Numerical analysis show a reliable estimation of this scaling parameter,
even when data with low resolution are analysed. Robustness to observational noise is
also obtained. Several experimental applications allow us to confirm the practical utility
of the proposed approach. We contrast results obtained by implementing this multiscale
symbolic tool with those obtained from the classical detrended fluctuation analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Long-range correlations in data sequences have beenobserved in different andheterogeneous scientific fields, like human
gait [1], heart rate dynamics [2,3], ocean wave dynamics [4], financial time series [5,6], DNA code sequences [7,8], etc. This
kind of natural phenomena has an empirical power-law spectra 1/f α , where f stands for frequency and α ∈ (1, 3), with
α = 2H+1 (0 < H < 1). The parameterH is called Hurst exponent [9], and quantifies the degree of long-range correlations
in the time series. Given a record of equidistantmeasurements xi with i = 1, . . . ,N it is relevant to characterize the temporal
correlations over different time scales s. On the one hand, short-range correlated data are described by an autocorrelation
function that decays exponentially (C(s) ∝ e(s/sx) with sx the decay time). On the other hand, if data are long-range correlated
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the autocorrelation function declines as a power-law (C(s) ∝ s−γ with an exponent 0 < γ < 1). The direct estimation
of C(s) is usually problematic and inappropriate. The Hurst exponent provides an indirect way to obtain the correlation
exponent γ [10]. Therefore, it is of great interest the study of the processes that are parametrized by the Hurst exponent H
and, of course, its adequate estimation for a suitable modelling of the associated phenomenon [11,12]. Many methods can
be found in the literature for that purpose. Without being exhaustive we can mention: the method introduced by Hurst in
his original paper using rescaled range statistical analysis (RS analysis) [9], the modified RS analysis proposed by Lo [13],
detrended fluctuation analysis (DFA) [7], the wavelet maximum likelihood method [14], the periodogram method [15],
the Whittle’s estimator [16], and the linear regression of the FFT-estimated power spectrum after log transformation of
frequency [11].

In the last decade, ordinal patterns analysis has constituted a significant advance in the treatment of time series orig-
inated from regular, chaotic and stochastic dynamics [17–19]. Particularly, a detailed theoretical analysis of the ordinal
patterns relative frequencies for Gaussian and autoregressive moving average (ARMA) processes was developed by Bandt
and Shiha [20]. We put especial attention to the link between the Hurst exponent and the ordinal pattern probabilities for
fractional Brownian motion (fBm), which turns out to be a widely accepted theoretical framework to model fractal phe-
nomena which have a power spectrum. In a later work, Sinn and Keller [21], analysed the statistical properties of estimators
of ordinal patterns probabilities in discrete time Gaussian processes with stationary increments. They introduced the Zero
Crossing estimator for the Hurst exponent in fBms. In addition, an empirical data application (Nile river data) was reported.

In this paper, we propose to apply the ordinal patterns analysis developed by Bandt and Shiha [20] to estimate the Hurst
exponent for several real data sequences. In order to move forwards in their original proposal, and as a first step, we study
numerical simulations of fBms in a noisy environment and with artificial low resolution. As a second step, in a real data
scenario, we propose a multiscale symbolic approach by the estimation of the Hurst exponent for different time scales.
When dealing with empirical data recorded at discrete frequency sampling (digitization), the range of temporal scales at
which a reliable estimation ofH can be obtained is unknown. If one is restricted to the finer temporal scales,H could be over
or underestimated, as will be discussed in detail below. This multiscale analysis will provide an optimum range of temporal
scales for the estimation of the Hurst exponent. Our results are compared with those obtained from the widely accepted
DFA methodology [7].

The paper is organized as follows: in Section 2, we briefly describe the ordinal analysis in time series and the ordinal
patterns probabilities for fractional Brownianmotions. In Sections 3 and 4 numerical results and experimental applications,
respectively, are presented and discussed. Finally, some concluding remarks are given in Section 5.

2. Theoretical background

Bandt and Pompe (BP) introduced a simple and robust symbolic method that takes notice of time causality in dealing
with a given system dynamics [17]. This symbolization arises naturally from a given data sequence without any model
assumptions. ‘‘Partitions’’ are devised by appropriately ranking the series’ values rather than by apportioning amplitudes
according to different levels. Even though this procedure entails losing some details of the original time series’ amplitude
information, by just referring to the series’ intrinsic structure, a meaningful difficulty reduction is indeed achieved by BP
recipe with regard to the description of complex systems. Its use has been shown to yield a clear improvement in the
estimation quality of information theory-based quantifiers (please see Refs. [18,22–24] and references therein).

To build ordinal patterns from a given time series, first one has to choose two parameters, the embedding dimension
D ≥ 2 (D ∈ N, the pattern length) and the embedding delay τ (τ ∈ N, the time separation between the values). After
that, the time series is partitioned into subsets of length D of consecutive (τ = 1) or non-consecutive (τ > 1) values
which allows for an accurate empirical reconstruction of the underlying phase-space. The elements of the embedded data
are replaced by their ranks in the subset generating an ordinal pattern. Let us consider the following data sequence as
an example: xi = {2, 5, 11, 18, 9, 7, 4}. By setting D = 3 and τ = 1 the first two triplets (x0, x1, x2) = (2, 5, 11)
and (x0, x1, x2) = (5, 11, 18) are mapped to the pattern {012} since the values are originally placed in ascending order.
The third triplet (x0, x1, x2) = (11, 18, 9) gives {201} since x2 < x0 < x1. Finally the last two 3-dimensional vectors
(x0, x1, x2) = (18, 9, 7) and (x0, x1, x2) = (9, 7, 4) are mapped to the pattern {210} since x2 < x1 < x0. Then, a probability
distribution P = {p(πi), i = 1, . . . ,D!} can be obtained by counting the relative frequencies of the D! possible permutations
πi. For the present example: p(π012) = p(π210) = 2/5, p(π201) = 1/5, and p(π021) = p(π102) = p(π120) = 0. In order
to get a unique result BP suggest that if two consecutive values are equal, one must rank them according to their order of
emergence. This is justified by assuming that the values xi have a continuous distribution, so that equal values are unusual.
Otherwise it is possible to break these equalities by adding small random perturbations [17].

The probability distribution P is obtained once we choose the embedding dimension D and the embedding delay τ . The
value of D determines the number of accessible states, given by D!. Moreover, it has been established that the length N of
the time series must satisfy the condition N ≫ D! in order to achieve a reliable statistics in the estimation of P . With respect
to the selection of the parameters, BP suggest in their cornerstone paper to work with 3 ≤ D ≤ 7 and a time lag τ = 1.
Nevertheless, other values of τ might provide additional information. It has been showed that this parameter is strongly
related, when it is relevant, to the intrinsic time scales of the system under analysis [19,25–28]. By changing the value of the
embedding delay τ different time scales are being considered since τ physically corresponds to multiples of the sampling
time of the signal under analysis.



F. Olivares et al. / Physica A 445 (2016) 283–294 285

Fig. 1. (a) Probabilities of the six ordinal patterns (with τ = 1) as a function of the Hurst exponent for fBm processes; (b) The probability p(π012) for
different noise-to-signal ratio (NSR) conditions. Numerical results are plotted. Mean and standard deviation from 1000 independent fBm simulations of
lengthN = 10, 000 data point each are depicted (H ∈ {0.05, 0.1, . . . , 0.95}). Analytical curves (continuous line) are also included for comparison purposes.

Fractional Brownian motion (fBm) is a family of non-stationary stochastic processes which is Gaussian, self-similar, and
endowed with stationary increments [fractional Gaussian noise (fGn)], widely used for modelling fractal phenomena that
have empirical spectra of power-law type 1/f α and α = 2H + 1 with 1 < α < 3 [29]. Its temporal correlations are
characterized by the Hurst exponent H ∈ (0, 1). These processes exhibit temporal memory for any Hurst parameter except
forH = 1/2,which corresponds to classical Brownianmotion (randomwalk). Thus, theHurst parameter defines twodistinct
regions in the interval (0, 1). When H > 1/2, consecutive increments tend to have the same sign so that these processes
are persistent. For H < 1/2, on the other hand, consecutive increments are more likely to have opposite signs, and the
underlying temporal dynamics are anti-persistent [30].

The ordinal patterns probabilities associated with different stochastic processes have been analysed by Bandt and Shiha
(BS) [20]. They provide us with theoretical expressions for the relative frequencies p(πi) for fractional Brownian motion
with arbitrary time delay τ , and D = 3 and D = 4. Particularly for D = 3, BS have shown that

p(π012)(τ ) =
1
π

arcsin

2H−1

∀ τ , (1)

with H the Hurst exponent. Moreover, the ordinal patterns probabilities exhibit a particular symmetry: p(π012) = p(π210)
and p(π021) = p(π102) = p(π120) = p(π201) = (1/2−p(π012))/2. Thus, for a given value ofH one can compute analytically,
all the theoretical components of the ordinal patterns probability distribution, and vice versa. On the other hand, for the
case D = 4, the theoretical expressions are more complicated and for a given probability distribution the value of H can
be obtained only numerically. For that reason, in the present study, the embedding dimension used was D = 3 and, for the
sake of simplicity from hereafter it will not be explicitly stated. For a detailed study of these analytical results applied to
permutations quantifiers in fBm and its stationary increments (fGn) please see Ref. [31].

3. Numerical analysis

In order to study the behaviour of the ordinal patterns probabilities as a function of the Hurst exponent, we compare the
analytical values with numerical simulations for fBm processes. These results are depicted in Fig. 1(a). More specifically,
mean and standard deviation of the estimated ordinal patterns probabilities (with τ = 1) for 1000 independent fBm
realizations of length N = 10, 000 data points each, with Hurst exponent H ∈ {0.05, 0.1, . . . , 0.95}, are shown. The
simulated fBm time series were generated by implementing themethod ofWood and Chan [32].We find that the agreement
between theoretical curves and numerical simulations is excellent, except for the simulated fBm with H close to 1. Taking
into account that artificial series generators are obviously not exact, it is not surprising to find differences between numerical
and theoretical results. Similar results were obtained using the function wfbm of MATLAB for simulating fBms, that follows
the algorithm proposed by Abry and Sellan [33].

Since our purpose is to analyse temporal sequences of measurements (or observations), which always have a noise
component,we have tested the effect that an additive observational noise has on the proposed approach. Taking into account
the low sensitivity to noise of the symbolic BPmethodology, robustness in a noisy environment is expected in the estimation
of the probability distribution of the ordinal patterns. To perform this analysis, Gaussian white noises with different noise-
to-signal ratio (NSR) conditions were added to the increments of the original simulations of the fBm processes. The NSR is
defined as the standard deviation of the added noise over the standard deviation of the stationary increments of the original
signal (process). Fig. 1(b) shows the influence of this additive noise on the estimation of the ordinal pattern probability
p(π012) as a function ofH . Same quantitative results for the pattern probability p(π210), and similar qualitative results for the
rest of the probabilities are found, not shown for the sake of a better visualization. It can be concluded that reliable estimation
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a b

Fig. 2. Probabilities of the six ordinal patterns (with τ = 1) as a function of the percentage of equalities in a fBm process with H = 0.7. Probabilities
were estimated by (a) using the crude time series. (b) Adding a random perturbation. Average probabilities u and v are included in (a). Theoretical values
of the probabilities for H = 0.7 are also included for comparison purposes (solid black lines). Note the superposition of the ordinal patterns probabilities
(p(π021) = p(π102) and p(π120) = p(π201) in (a), p(π012) = p(π210) and p(π021) = p(π102) = p(π120) = p(π201) in (b)). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

of the ordinal probabilities is performedup to a 20%of observational noise. It isworth noting that the influence of the additive
noise is less significant for intermediate H values, since those processes are already close to a random walk (H = 0.5).

Other important issue in dealing with experimental sequences, is a possible low resolution in the data acquisition. When
an observed time series is digitized with low resolution, a greater number of equal values in the sequence is generated. This
could entail possible wrong interpretations when an ordinal analysis is used, since the pattern π012 will be overestimated,
generating spurious temporal correlations [17,34]. In that frame, we have tested how the ordinal approach responds to
simulated fBm processes with artificial low resolutions. To perform this analysis, a percentage of null values was generated
in the simulations of the stationary increments (fGn) by substitution of the original values in arbitrary temporal positions,
which leads to an amount of equalities in the process (fBm) after the integration of the time series. In Fig. 2(a), mean and
standard deviation of the estimated ordinal pattern probabilities (with τ = 1) for 100 independent fBm realizations with
H = 0.7, of length N = 10,000 data points each, as a function of the percentage of equalities in the sequence are shown.
Similar qualitative results are obtained for other values of H , not displayed here because of space saving reasons. It is
observed that the presence of equalities leads to a spurious symmetry in the ordinal patterns, since their probabilities break
the original clustering. On the one hand, p(π012) and p(π210) are no longer equal because they are over and underestimated,
respectively. On the other hand, we observe two new clusters, i.e. p(π021) = p(π102) and p(π120) = p(π201) (please see
Fig. 2(a)).

To solve this artificial symmetry, the BP proposal, i.e. adding a very small random perturbations, indeed recovers
approximately the symmetry of the original process as can be seen in Fig. 2(b). Here, we propose a second option. To average
over the probabilities patterns which have to be equal by theoretical definition, and numerically proved above, that is

u(τ ) =
1
2
(p(π012) + p(π210)), (2)

v(τ) =
1
4
(p(π021) + p(π102) + p(π120) + p(π201)). (3)

The averaged probability u(τ ) quantifies the degree of persistence in the series [20]. It can be seen in Fig. 2(a) (please see
grey and brown stars) that by reducing the six probabilities to the two averaged probabilities, u(τ ) and v(τ), it is possible to
avoid the effect of a low resolution in a fBmprocess. Besides, these averaged probabilities are located closer to the theoretical
values as the number of equalities grows, in comparison with the BP proposal. From this analysis, we conclude that an
improved estimation of the Hurst exponent by using an ordinal analysis of a real measured data associated with a fBm
behaviour can be achieved by the estimation of the averaged probability u(τ ) in the process. Thus, we propose a Hurst
exponent estimator,Hp(τ ), using Eqs. (1) and (2), as follows

Hp(τ ) =
ln(sin[πu(τ )])

ln(2)
+ 1. (4)

This last expression permits us an estimation of theHurst exponent for different temporal scales by varying τ , i.e. amultiscale
estimation ofH , which results necessarily in real data as will be discussed in detail in the next section. It should be remarked
that for a ‘‘pure’’ fBm the estimator Ĥp is independent of the time delay τ because of the self-similarity property of this
process. For further details, please see Appendix A.

Although a small embedding dimension is used, a multiscale approach has been proposed, therefore finite-size effects
might be seen. In order to illustrate finite-size effects on the present approach, we studied theHp estimator for a Brownian
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Fig. 3. Mean and standard deviation from 1000 independent randomwalks of theHp(τ = 1) estimator values versus the time series length. Two arbitrary
realizations are also included (red and blue squares). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

motion (H = 0.5) for different series length N ∈ {200; 400; 600; . . . ; 10, 000} data points. Mean and standard deviation
of the Hp(τ = 1) estimator values for 1000 independent realizations for each length are depicted in Fig. 3. The particular
behaviour for two arbitrary realizations are also depicted. Huge fluctuations are observed for small lengths. These fluctua-
tions tend to die out to converge to the expected value of H for longer time series. The behaviour depicted is representative
for other values of H . Thus, for finite time series’ length an over or underestimated value of H could be obtained. For com-
pleteness sake, we have included a detailed study of the root mean square error associated with the estimator Ĥp(τ = 1)
for different Hurst exponent H and for different time series length N in Appendix B.

We have compared the computational efficiency of the present symbolic approach with the DFA methodology. The
running times in the estimation of H from 10 independent realizations of a fBm with H = 0.5 were estimated. For the
ordinal symbolic technique we have implemented an estimator ⟨Hp⟩ with τ = 1 and also with τ ∈ [1, 50]. A detrending
polynomial of second order and one hundred time scales between [10,N/4] were employed in the DFA implementation
following the algorithm proposed by Ihlen in Ref. [35]. The linear fit for estimating H was performed in the whole range of
scales. We have found a difference of two orders of magnitude in the running times for time series length N ∈ [103, 106

],
being our symbolic technique, the faster. We have confirmed that this result is independent of the Hurst exponent value.
For more details of this analysis please see Appendix C.

4. Experimental applications

Here, experimental time series will be analysed and the usual course of action is assuming that they can be suitably
modelled as a ‘‘pure’’ fBm. Thus, an estimation of H from Ĥp would be invariant with τ (please see Appendix A). However,
in practical contexts, the expected invariance is realizable only in a limited range of temporal scales. Consequently, a
multiscale estimation of the Hurst exponent is needed for searching this scale range at which a τ -invariance of Ĥp is
observed. Otherwise, erroneous estimation of H may occur. It is also well-known that in some cases there exist crossover
time scales separating regimes with different scaling exponents, e.g. long-range correlations on small scales and another
type of correlations or uncorrelated dynamics on larger scales [10]. Therefore, a multiscale estimation for different values
of τ is of vital importance when dealing with this kind of behaviours.

For comparison purposes we have estimated the Hurst exponents, for all the experimental examples included in
this section, using the traditional DFA methodology [7,10], which has been widely proved to be robust in the analysis
of experimental data. For its implementation in MATLAB we recommend Ref. [35]. Hurst exponent estimations with a
detrending polynomial of second order are reported.

4.1. Human gait

As a first experimental application we have studied the fractal dynamics of human gait. In 1996 Hausdorff et al. analysed
data obtained from tenhealthy subjectswhowalked onehour at their usual pace. They found that Stride Interval Fluctuations
(SIF) exhibited long-range correlations [1]. The data consist of 10 time series of SIF of lengths in a range between 2902 and
3397 data points (available under http://physionet.org/physiobank/database/umwdb/). Participants had no history of any
neuromuscular, respiratory or cardiovascular disorders, and were taking no medications. Subjects walked continuously on
level ground around an obstacle free path, and the stride interval was measured using ultra-thin, force sensitive switches
taped inside one shoe. The recorded gait signalwas digitized, and the time between foot strikeswas automatically computed.
For more details, please see Ref. [1].

http://physionet.org/physiobank/database/umwdb/
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Fig. 4. Average of the ordinal patterns probabilities of the 10 subjects as a function of the embedding delay τ .

Fig. 5. (a) Mean and standard deviation of the multiscale Hp estimator for the 10 subjects, as a function of τ . (b) Mean and standard deviation of theHp estimator for τ ∈ [4, 20] versus Hurst exponents estimated by DFA. Mean and standard deviation of the 10 values of H estimated with the two
methodologies are also included (red cross). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

As it was mentioned previously, a priori, the optimal range of time scales to estimate a Hurst exponent H from an
experimental time series is unknown. Thus, we implement a multiscale strategy by analysing the behaviour of the ordinal
patterns probabilities as a function of τ . In Fig. 4, the average of the ordinal patterns probabilities of the 10 subjects versus τ
is depicted.We observe that the values of the probabilities tend to stabilize after τ = 4. They exhibit the patterns’ symmetry
expected for a fBm process. The variations in the probabilities with τ will influence, of course, the estimation of the Hurst
exponent, as can be seen in Fig. 5(a), where mean and standard deviation of the multiscale Hp(τ ) estimator for the 10
subjects are shown. It can be seen that Hp stabilizes for all the scales larger than τ = 4. From these results we conclude
that a Hurst exponent can be estimated by averaging over the time scales τ ∈ [4, 20]. Mean and standard deviations of Hp
over the selected range of τ for each subject compared with the exponents estimated by DFA are depicted in Fig. 5(b). Our
methodology quantifies a strong persistent behaviour characterized by ⟨Hp⟩ = 0.88 ± 0.04, meanwhile DFA estimates an
exponent ⟨HDFA⟩ = 0.91 ± 0.05. It is important to note that the mean ⟨⟩ is the average over the 10 subjects.

4.2. Heartbeat

As a second practical application, we have analysed normal physiological data [36]. More precisely, sequential time
intervals between consecutive beats of long-term ECG recordings of subjects in normal sinus rhythm are considered. The
original ECG recordings were digitized at 128 samples per second, and the beat annotations were obtained by automated
analysis with manual review and correction. The data consist of 18 time series of length in a range between 75,106 and
115,911 data points, of subjects who did not have significant arrhythmias (they include 5 men, aged 26–45, and 13 women,
aged 20–50). Data are available at http://physionet.org/physiobank/database/nsrdb.

We have applied a multiscale approach by analysing the behaviour of the probabilities of the patterns as a function of τ .
Results are shown in Fig. 6(a) for low time scales (τ ≤ 14). We observe that there exists, for τ = 1, a spurious symmetry
due to a possible low resolution in the data because of the digitization of the original ECG recordings. This result illustrates

http://physionet.org/physiobank/database/nsrdb
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Fig. 6. (a) Probabilities of the six ordinal patterns of the time intervals between consecutive beats of an arbitrary subject as a function of the embedding
delay τ . (b) A portion of sequential time intervals between consecutive beats of an arbitrary subject.

Fig. 7. Probabilities of the six ordinal patterns of the time intervals between consecutive beats of an arbitrary subject (a) using the crude signal and the
averaged probability u(τ ), (b) using the signal with a small random perturbations.

the expected spurious symmetry in the ordinal patterns probabilities seen in the simulated data (please see Fig. 2(a)). The
artificial symmetry disappears as τ grows, but the pattern {012} tends to keep overestimated even for larger values of τ , due
to the presence of a considerable number of equalities in the data, as can be seen in Fig. 6(b), where a portion of measured
data is depicted. In Fig. 7(a) the behaviour of the pattern’s probabilities estimated from the crude data for larger values of
τ is shown. It can be seen that after τ ∼ 30, stability is reached, but the pattern {012} is still overestimated. To break the
equalities, we canwork either, on the averaged probability u(τ ) (please see Fig. 7(a) grey squares), or following the proposal
of BP (please see Fig. 7(b)). In both cases we obtain the expected symmetry in the patterns of a fBm. These results associated
with a particular subject are representative for the whole dataset.

From this analysis we conclude that we are able to estimate a reliable Hurst exponent for these experimental data from
the averaged probability u(τ ). Mean and standard deviation of the multiscale Hp estimator are shown in Fig. 8(a). After an
oscillation, stability of theHp for τ ≥ 100 is observed. We chose the interval [100, 150] to estimate a value for H . Mean and
standard deviation of the Hp versus the HDFA are shown in Fig. 8(b). An anti-persistent dynamics is found, characterized by
⟨Hp⟩ = 0.09 ± 0.03. On the other hand, DFA methodology estimates ⟨HDFA⟩ = 0.05 ± 0.03.

4.3. Significant wave height

The dynamic of the ocean waves is a complex system mainly driven by a combination or interaction of wind and
swell waves. The significant wave height (SWH) is generally used to represent this interaction [4]. SWH is approximately
equal to the average of the highest one-third of the waves, as measured from the trough to the crest of the waves.
Specifically, it is calculated as SWH = 4 ∗

√
m0 where m0 is the variance of the wave displacement time series acquired

during the wave acquisition period. We analysed a SWH data previously investigated by Ozger in Ref. [4], available at
http://www.ndbc.noaa.gov/wavecalc.shtml. Ozger found that there are two distinct scaling regions corresponding to finer
and coarser scales, characterized by Brownian motion and persistent fluctuations, respectively [4]. The data originates from
25 buoys, located off the west coast of the US. The resolution is hourly. The range of data length is between 16,319 and
61,368 data points.

http://www.ndbc.noaa.gov/wavecalc.shtml
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Fig. 8. (a) Mean and standard deviation of the multiscale Hp estimator for the 18 subjects as a function of τ . (b) Mean and standard deviation of theHp estimator for τ ∈ [100, 150] versus Hurst exponents estimated by DFA. Mean and standard deviation of the 18 values of H estimated with the two
methodologies are also depicted (red cross). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 9. Mean and standard deviation of the multiscaleHp estimator for the 25 buoys as a function of τ ; (a) From the integrated SWH-fluctuations, (b) From
the original SWH-data.

As a first step, we analysed the behaviour of the multiscaleHp estimator for the 25 integrated time series (processes). In
Fig. 9(a),mean and standarddeviation of theHp are shown.We report τ ∈ {1, 5, 10, 15, . . . , 200} for better visualization.We
observe that for τ = 1,Hp saturates to itsmaximumpossible value (unity) and after τ ≥ 100, it stabilizes to a constant value.
In real time, τ = 100 corresponds to 4.16 days, which coincides with the crossover time reported by Ozger [4]. The maxi-
mumvalue ofHp(τ = 1)may be due to the fact that for small time scales the dynamic of the data sequences is affected by the
integration of the series. Therefore, as a second step, we study the multiscaleHp estimator for the 25 series without integra-
tion. Fig. 9(b) showsmean and standard deviation of theHp versus τ for small scales. Now, theHp estimator reaches a plateau
for τ ∈ [3, 15]. From this analysis, we conclude that for small scales the data sequences measured can be associated with a
stochastic process, and for long scales they behave as stochastic fluctuations. Then, the integration of the data is needed to
estimate a Hurst exponent for long scales. We have estimated H for the 25 data sequences with and without integration as
the average ofHp for τ ∈ [100, 300] and τ ∈ [3, 15], respectively. In Fig. 10 the estimated Hurst exponents compared with
those obtained by using DFA methodology are depicted. We found a good agreement between both methodologies.

From this multiscale analysis we conclude that for small time scales, a slightly persistent stochastic process with
⟨Hp⟩ = 0.54 ± 0.06 is observed from the SWH-data without integration. This dynamic is originated by the sea waves,
specifically they are surface waves as a result from the wind blowing over the surface, with limited predictability. On the
other hand, for long time scales, we estimated ⟨Hp⟩ = 0.84 ± 0.07 for the integrated SWH-fluctuations, corresponding to a
very persistent stochastic behaviour that describes the dynamics of swell waves, which consists of wind-generated waves
that are not significantly affected by the local wind at that time and are travelled into the measurement area.

4.4. Financial time series

As a last practical example, we study the Dow–Jones Industrial Average (DJIA) closing values from 1900 to 1951. This
time series was previously widely investigated using different methodologies reporting the presence of an uncorrelated
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Fig. 10. Mean and standard deviation of theHp estimator versusHDFA for the SWH-datawithout integration (τ ∈ [3, 15], blue circles) and for the integrated
SWH-fluctuations (τ ∈ [100, 300], red squares). Mean and standard deviation of the 25 values estimated with the two methodologies for both cases are
also depicted (green crosses). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Mean and standard deviation from the dynamical Hp estimator as a function of τ for windows of size (a) 1 year, (b) 2, (c) 3, (d) 4, (e) 5, and (f)
6 years (each year is approximately 274 data points). The black dashed line indicates H = 0.5.

dynamics (H ≃ 0.5 in Ref. [11] and H = 0.51 in Ref. [12]). Thus it is a good example to test the performance of
the proposed ordinal approach. The closing values were recorded approximately 311 times a year and are available at
http://lib.stat.cmu.edu/datasets/djdc0093. After removing several spikes (possibly due to transcription errors [11]) the
length of the series is 15,309 data points and a year is reduced to approximately 274 data points. Particularly, following
the work of Pilgram et al. [11], we are interested in a dynamical analysis of the data by sliding time windows. Besides, this
analysis will illustrate finite-size effects on theHp estimator.

Taking into account that a dynamical analysis could entail some finite-size effects (please see Fig. 3), we propose to
do different dynamic multiscale estimations of the Hurst exponent by sliding windows. Specifically, windows of size
L ∈ {1, 2, . . . , 6} years, with a shift equal to 1 data point were used. In Fig. 11, mean and standard deviation from the
dynamicalHp estimator for the different window sizes as a function of τ are shown. Clearly, the finite-size effects disappear
as the window size grows by reducing the dispersion and the underestimation of the Hurst exponent. A more stable
behaviour of Ĥp with τ is found for the larger window sizes (three to six years). Therefore, as illustrated here, we confirm
that the sequence of DJIA closing values can be associated with a random walk process when using sliding windows of size
greater than 3 years (822 data points approximately).

5. Conclusions

In this work, we present an extended study of the estimation of the Hurst exponent of real data sequences from a
multiscale ordinal patterns probability analysis. The proposed approach is a generalization of a theoretical result, originally
introduced by Bandt and Shiha [20], for multiple time scales. We perform numerical studies to illustrate robustness in a
noisy environment, and the effects of low resolution in the data acquisition and finite-size series length.

http://lib.stat.cmu.edu/datasets/djdc0093
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Fig. 12. Mean and standard deviation of the multiscale Ĥp estimator for 100 independent realizations of a fBm with length N = 10, 000 as a function of
τ , for (a) H = 0.1, (b) H = 0.2, (c) H = 0.3, (d) H = 0.4, (e) H = 0.5, (f) H = 0.6, (g) H = 0.7, (h) H = 0.8, (i) H = 0.9.

Empirical evidences of the last two situations mentioned above were illustrated by the heart rate dynamics and financial
time series analysis, respectively. We exemplify the performance of the method in a time series with a crossover between
twodifferent stochastic behaviours by studying the dynamics of the significantwave height. In the analysis of real data, there
exists an optimum range of time scales at which stability of the estimated Hurst exponents is observed, i.e. Hp is invariant
with τ . Finally, all the results reported were contrasted with those obtained with the widely accepted DFA methodology,
confirming the reliability of the proposed multiscale ordinal pattern approach.
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Appendix A

Self-similar stochastic processes are invariant in distribution under suitable scaling of time. Therefore, the estimator Ĥp

for a perfect, theoretical fBm is independent of the parameter τ . Fig. 12 shows the mean and standard deviation of Ĥp for
100 independent realizations of a fBm with length N = 10,000 as a function of τ for different values of H . Clearly, the
estimation of the Hurst exponent results invariant over τ . In addition we have studied how this invariance changes with the
time series length. Fig. 13 depicts the mean and standard deviation of Ĥp for τ ∈ [1, 30] in one arbitrary realization for each
H ∈ {0.1, 0.2, . . . , 0.9}. As expected, the dispersion in the estimation decreases as the time series length grows.

Appendix B

We have estimated the root mean square error (RMSE) associated with the proposed estimator Ĥp(τ = 1) for 100
independent realizations of fBmswithH ∈ {0.1, . . . , 0.9} and time series lengthsN ∈ {103, 104, 105, 106

}. Results obtained
are shown in Fig. 14. The pronounced bias observed forH = 0.9 is partially attributed to limitations of the simulationmethod
for generating highly persistent fBms.

Appendix C

Fig. 15 shows the running times in the estimation of the Hurst exponent H from 10 independent realizations of a fBm
with H = 0.5 using the Ĥp estimator (for τ = 1 and τ ∈ [1, 50]) and DFAmethodology. These results are representative for
all the values of H .
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Fig. 13. Mean and standard deviation of the multiscale estimator Ĥp for τ ∈ [1, 30] as a function of H for different time series lengths (a) N = 103 , (b)
N = 104 , (c) N = 105 , (d) N = 106 .

Fig. 14. Root mean square error of the estimator Ĥp with τ = 1 for 100 independent realizations of fBmwith different Hurst exponents and different time
series length.

Fig. 15. Running times in the estimation of the Hurst exponent H from DFA methodology (blue circles) and the estimator Ĥp , for τ = 1 (green triangles)
and τ ∈ [1, 50] (red squares), as a function of the time series length. Mean and standard deviation from 10 independent realizations of a fBmwith H = 0.5
are reported. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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