IOPScience

Home

Search Collections Journals About Contactus My IOPscience

Attention-level transitory response: a novel hybrid BCI approach

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 J. Neural Eng. 12 056007
(http://iopscience.iop.org/1741-2552/12/5/056007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 190.124.224.31
This content was downloaded on 14/08/2015 at 13:06

Please note that terms and conditions apply.

iopscience.iop.org


iopscience.iop.org/page/terms
http://iopscience.iop.org/1741-2552/12/5
http://iopscience.iop.org/1741-2552
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

10OP Publishing

Journal of Neural Engineering

J. Neural Eng. 12 (2015) 056007 (10pp)

doi:10.1088/1741-2560/12/5/056007

Attention-level transitory response: a novel

hybrid BCI approach

Pablo F Diez', Agustina Garcés Correa', Lorena Orosco', Eric Laciar' and
Vicente Mut’

! Gabinete de Tecnologia Médica (GATEME), Facultad de Ingenierfa, Universidad Nacional de San Juan,
Argentina
2 Instituto de Automdtica (INAUT), Facultad de Ingenieria, Universidad Nacional de San Juan, Argentina

E-mail: pdiez@gateme.unsj.edu.ar and pablofdiez@ gmail.com

Received 29 April 2015, revised 8 July 2015
Accepted for publication 20 July 2015
Published 13 August 2015

CrossMark
Abstract
Objective. People with disabilities may control devices such as a computer or a wheelchair by
means of a brain—computer interface (BCI). BCI based on steady-state visual evoked potentials
(SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from
the ‘Midas touch effect’, i.e., the BCI can detect an SSVEP even when the user is not gazing at
the stimulus. Then, these incorrect detections deteriorate the performance of the system,
especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel
transitory response of the attention-level of the user is reported. It was used to develop a hybrid
BCI (hBCI). Approach. Three methods are proposed to detect the attention-level of the user.
They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented
along with these methods. Hence, the hBCI sends a command only when the user is at a high-
level of attention, or in other words, when the user is really focused on the task being performed.
The hBCI was tested over two different EEG datasets. Main results. The performance of the
hybrid approach is superior to the standard one. Improvements of 20% in accuracy and
10 bits min~" are reported. Moreover, the attention-level is extracted from the same EEG
channels used in SSVEP detection and this way, no extra hardware is needed. Significance. A
transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable
of reducing the Midas touch effect.

Online supplementary data available from stacks.iop.org/JNE/12/056007 /mmedia

Keywords: brain—computer interface (BCI), attention-level transitory response, steady-state
visual evoked potential (SSVEP), false positive, midas touch effect

(Some figures may appear in colour only in the online journal)

1. Introduction

A brain—computer interface (BCI) is a system that helps
handicapped people to control a device or a computer using
only their own brain signals. A BCI usually acquires these
brain signals as electroencephalographic (EEG) signals. Then,
according to the nature of the EEG signal, different BCI
paradigms like motor-imagery, P300 or steady-state visual
evoked potentials (SSVEP) are established. Particularly,
SSVEP are evoked responses, arising mainly in the visual
cortex, induced by flickering visual stimuli. They are

1741-2560/15/056007+10$33.00

periodic, with a stationary distinct spectrum showing char-
acteristic SSVEP peaks, remaining stable over time [1].

The main problem of SSVEP-based BCI is that the visual
stimuli are always within the field of vision of the user. This is
known as the ‘Midas touch effect’ [2]. Consequently, SSVEP
could be detected by the BCI even when the user is not gazing
at the stimulus and therefore, could lead to erroneous detec-
tions. Generally, this problem is faced by designing BCI with
higher detection accuracy. However, this problem is particu-
larly evident in asynchronous BCI approaches because the
EEG is continuously classified. In some research studies,

© 2015 I0OP Publishing Ltd  Printed in the UK
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control and idle states are used to avoid the erroneous
detections [3-5]. In those approaches, SSVEP are detected
when the BCI is in control state; otherwise, in the idle state,
SSVEP detection is not performed. In order to mitigate this
SSVEP-based BCI problem, a hybrid approach could be used
as well.

In order to reduce this SSVEP-based BCI problem, a
hybrid BCI (hBCI) approach based on the attention-level of
the user is proposed in this work. Following the state-of-the-
art of hBCI and attention level are introduced.

1.1. hBCI approaches

A hBCI is composed of two BCIs, or one BCI and another
system [6]. Therefore, BCI paradigms such as motor-imagery,
SSVEP or P300 are used to compose an hBCI. In the motor-
imagery paradigm, the user imagines the movement of a limb,
usually, the right or left hand. The P300 potential is related to
an infrequent stimulus (oddball paradigm). For example, a
hBCI based on motor-imagery and SSVEP was presented in
[7]. Another hBCI based on P300 and motor-imagery was
proposed by [8]. The P300 speller combined with SSVEP
blocking (when P300 is elicited), was implemented in [9]. On
a different speller approach, P300 and SSVEP features were
fused by means of probability estimation [10].

As already mentioned, a different kind of hBCI is
obtained by combining EEG signals with other biomedical
signals. For instance, an hBCI that combines electro-oculo-
graphy with EEG signals is presented in [11]. Moreover,
motor-imagery and electromyography were blended at dif-
ferent levels according to the remaining muscular activity of
the user [12]. A recent review of hBCI systems is presented
in [13].

As a counterpart, hBCI employs EEG signals from dif-
ferent regions of the brain. Therefore, electrodes placed over
the motor cortex (such as C; and C,4 positions) are used for
motor-imagery paradigm, electrodes on the visual-cortex
(such as Oy, O, and O,) are used for SSVEP paradigm and,
P300 is measured over the central zone of the brain (close to
C, position).

In the current work, a novel approach is presented in
order to reduce this SSVEP-based BCI problem (the Midas
touch effect). Therefore, an hBCI based on SSVEP and the
attention-level of the user is proposed. Moreover, this hBCI is
based on EEG signals measured over the same region of the
brain. This hBCI approach, as well as its application, has not
been proposed in the bibliography heretofore, based on
extensive research by authors.

1.2. Attention-level on EEG signals

The attention-level could be measured using the EEG signals.
Consequently, another kind of BCI based on the attention-
level has been proposed. For example, a video game con-
trolled by using mental relaxation and concentration tasks has
been previously reported [14]. Similarly, an archery video
game has also been handled by the attention-level of the user
in [15]. In fact, we have previously shown that the altitude of

a ball in a glass pipe could be controlled by the concentration
level of human subjects [16].

The attention control refers to the capacity of individuals
to choose what they want to pay attention to and what they
want to ignore [17]. Consequently, when a person pays
attention to any stimulus, some changes should appear in the
EEG signal. Individual visual environment is complex and
attentive to some locations while ignoring others, yet it is
crucial for reducing the amount of visual information to a
manageable level. Lauritzen et al evaluate how attention
changes the neural responses in visual areas of the brain [18].
They found that signals in areas V1, hMT+, and IPS were
significantly higher during periods in which subjects detected
the presence of a contrast increment target compared to per-
iods in which contrast increments of the same amplitude were
missed. Thut et al showed that the EEG activity in the alpha
rhythm (8-13Hz) is modulated by sustained voluntary
attention [19]. These modulations typically take 400 ms to
develop after the onset of a spatial cue and are generated by
the brain when people are relaxing and/or having a quiet rest
period [20]. On the other hand, beta rhythm (14-30Hz)
represents the excitement of the brain and theta rhythm
(4-8 Hz) appears in deep relaxation, meditation, etc [21].
Then, the 6/ ratio indicates the attention-level so the smaller
the ratio is, the higher the human alertness level is [22].

The attention-level of the user increases when the subject
is gazing at a stimulus. Hence, the hypothesis of this work
proposes that the attention-level could be measured along
with the SSVEP on the same EEG channels. Interestingly, we
found a transitory response of EEG signal. It appears when
the person gazes at (and pays attention to) any stimulus. Thus,
whether the person gazes at or glimpses the stimulus can be
determined, which is crucial in asynchronous BCI approaches
because the ongoing EEG is classified. These BCI approaches
show more proclivities to misclassification since the user is
paying attention to many things (the task being performed, the
environment, etc) but not to the stimulus itself (but still within
his visual field). The methodology proposed in this paper
diminished the Midas touch effect on SSVEP-based BCI
approaches since those erroneous detections could be
reduced. Furthermore, it can be added to other SSVEP
detection algorithms and consequently, to improve their per-
formances. To the best knowledge of authors to date, this
transitory response of EEG signal has not been reported in the
bibliography.

2. EEG database

The authors previously acquired the EEG database used in
this study [23]. Six volunteers (ages 32 + 3; 1 F and 5M)
provided written consent to participate in the study. Each
volunteer was seated in a comfortable chair in front of a
monitor with four boxes on each side (I0cm x 2.5 cm),
illuminated by high efficiency light-emitting diodes (LEDs)
(figure 1). These LEDs flicker at 37, 38, 39 and 40 Hz for the
box on top, to the right, then down and to the box on the left,
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Figure 1. The interface with the stimuli (left). Timing scheme of each trial in BCI experiment (right), at # = 2 s a stimulus is indicated by an

arrow on the screen.

respectively. The frequency of each LED was precisely
controlled with an FPGA Xilinx Spartan2E.

Each trial lasts 10 s and begins with a beep alerting the
volunteer. Two seconds later, a flickering stimulus is ran-
domly indicated to the volunteer with an arrow on the screen.
Feedback is presented at the end of each trial. All volunteers
participated in four sessions; each session consisted of 20
trials, with only a few minutes between sessions. Addition-
ally, a baseline EEG was acquired, where each volunteer was
instructed to gaze at a point in the centre of the screen for
60 s, but not to focus on any stimulus (the stimuli were on).

The EEG was measured by six channels at O, O,, O,,
Ps, P, and Py, referenced to F and grounded at linked A;—-A,.
For on-line feedback, only O;, O, and O, channels were used.
The EEG signals were sampled at 256 Hz. Analogical pass-
band filters were set at 3 and 100 Hz and a notch filter for
50Hz line interference was used. For each volunteer, a
baseline EEG was acquired before the experiment, where the
volunteers were asked to focus on a point in the centre of the
screen for 60 s, but not to focus on any bar (which were on).
This database is available from the authors free of charge,
upon request.

3. Methods

In this section, the SSVEP detection method is briefly introduced
followed by various methods for estimating the attention-level of
the user. Finally, the proposed hBCI scheme is presented along
with the methods used to validate the SSVEP detection.

3.1. SSVEP detection

The SSVEP were detected using the method proposed by the
authors in [23]. The raw EEG was digitally filtered and the
Fourier transform was applied to obtain the power at each
stimulation frequency. Later, an SSVEP is detected when the
maximum power is maintained for a period of time H.
Threshold H is adjustable to the requirements of the user. In
the current work, three threshold H were evaluated, namely

H = 1s, 1.5s and 2 s respectively. This SSVEP-based BCI
was successfully applied to control a mobile robot [24] and a
robotic wheelchair [25] (achieving up to 72.5 bits min~'
in [25]).

Note that slight modifications from the proposed method
were herein introduced. In [23], the SSVEP power was cal-
culated on a bandwidth around the stimulation frequency and
the classification process began at ¢ = 3s. In the current
work, the SSVEP power was calculated at the same frequency
as the stimulus and the classification process began at the
same moment the stimulus was indicated (+ = 2 s in figure 1).
This last represents an unfavourable situation for classifica-
tion purposes, since the user is not paying attention to any
stimulus until £ = 2's (or maybe later). This condition might
resemble an asynchronous BCI approach and consequently,
other SSVEP could be detected. Thus, there is a greater
probability of misclassification.

3.2. Attention-level detection

In order to detect the attention-level of the user some mea-
sures were proposed in this research. First, a common average
reference filter was applied to the six EEG channels. Addi-
tionally, the EEG was filtered with a Butterworth low-pass
filter with a cut off frequency of 45 Hz. Then, the power
spectral density estimation is performed through the period-
ogram technique. Let S(f) be the value of the periodogram at
frequency f (in Hz):

N 2

sm:% (1)

X [n] e*jz"rﬁlTS
1

n=

where x[n] is the EEG signal of n samples and N is the total
number of samples of the signal. Windows of 512 samples
(2 s) were analysed with equation (1), the window was moved
in steps of 64 samples (0.25s). Then, the power of EEG
rhythms are extracted from each window:

7 13 30
Ppi= 80 o= 280 Bsi= > 8(), (2
=4 =8 f=14
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Figure 2. The SSVEP power elicited by each stimulus (up), the alpha
rhythm power (P,,) at the middle and the theta/beta rate (TBR) at the
bottom. In this trial, the volunteer was gazing at the bottom stimulus.
SSVEP has been elicited in the light blue (incorrect) and red zones
(correct). Green arrows indicate the transitory decrease of P,,

and TBR.

where / is the number of window and, Py , P, and Py are the
power of theta, alpha and beta rhythms, respectively. Then,
theta/beta rate (TBR) is defined as:

TBR; = Py;/Ps.. 3)

According to other authors [19, 22], both TBR and P,
should decrease when the user is concentrated on a particular
task. Therefore, as the user gazes at (and focuses on) a visual
stimulus the TBR and P, should decrease. In figure 2 the
SSVEP power of the four stimuli is depicted, along with the
TBR and P,. In this trial, the volunteer should be con-
centrated on the bottom stimulus. Note that the SSVEP power
corresponding to the bottom stimulus (red line in figure 2) is
higher than other SSVEP powers between t =4.5s and
t = 7.5 s, approximately (2.5 s after cue). Therefore, one can
assume that in this period the volunteer focused on that sti-
mulus. Then, in the same period, the P, decreased slowly
until = 7.5s, approximately. After that point, the P,
increased its value indicating a loss of concentration. On the
other hand, TBR swiftly decreased at the beginning of the
concentration-period and then increased slowly. Despite inter-
trial and inter-volunteer variability, similar behaviour was
observed along the database. In summary, when a volunteer
gazed at a stimulus and truly focused on that stimulus, a
decrease on the TBR and P, was observed.

These measures were used to evaluate the concentration
of the user on the stimulus, as is explained in the following
section.

3.3. Hybrid BCI

In traditional SSVEP-based BCI, when an SSVEP is detected
a command is sent to a device/application. In the scheme
proposed here, when an SSVEP is detected, a validation
process is triggered, and then the attention-level is evaluated

)

Figure 3. Schematic representation of the attention-SSVEP hBCI
approach.

on the same EEG channels where the SSVEP were detected.
Figure 3 shows a scheme of the proposed hBCL

Hence, if the volunteer is concentrated, the command
generated by the SSVEP-based BCI is validated and then,
transferred to the device/application. In this way, the atten-
tion-SSVEP hBCI is more robust against false detections than
traditional SSVEP-based BCI.

Based on the TBR and the P, three different methods
(and a contrast one) were proposed to validate the SSVEP
detection, as follows:

Method A: no validation is performed, thus a traditional
SSVEP-based BCI is implemented. This is used as the
contrast method.

Method B: the SSVEP detection is validated when the next
inequality is accomplished:

H H/2
S TBR; < >.TBR,, )
I=H/2 =1

where H is the time threshold (see section 3.1). In other
words, the detection is validated when within the time
window H, the value of TBR on the second half is minor
than on the first half.

Method C: the TBR decreases when concentration
increases, then the slope of the TBR is negative. A three-
point derivative filter is applied and, the SSVEP detection is
validated when inequality (5) is completed:

TBR;, — TBR(]_Q) < 0. (®)]

This inequality must be accomplished for at least 0.5 s to
validate the SSVEP.

Method D: in this case, the slope of the P,, is evaluated by
means of three-point derivative filter according to the
following equation:

Puri— Para-2) < 0, (6)

where Py is the relative alpha power, which is calculated
at any time as:
P
R= e ™)
S8 S ()

Equation (6) must be fulfilled for a period of 0.5s to
validate the SSVEP.

As was mentioned the TBR and P, should decrease
when the user is concentrated on a particular task. Therefore,
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Figure 4. Detection accuracy for methods A, B, C and D evaluated
for(a) H=1s,(b) H=1.5sand (c) H = 2s.

we proposed different measurements in equations (4)—(7) to
evaluate this descent. Additionally, these parameters do not
need adjustments for each user, such as using thresholds.

4. Results

In order to evaluate the performance of the proposed methods,
each trial could be classified as one of the next options:
correct (the detected SSVEP corresponds to the stimulus
indicated by the arrow on the screen), incorrect (the detected
SSVERP is different from the stimulus indicated by the arrow
on the screen) or no-detection (no SSVEP is detected). This
last situation occurs when the volunteer does not concentrate
enough on the light or the proposed method does not detect an
SSVEP.

The rate between correct classified trials and the total
number of trials is the detection accuracy. Figure 4 shows the

100% -~
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

0% -

Figure 5. Average proportion on the detection of SSVEP. The
relationship among correct, wrong (incorrect) and non-detected trials
is depicted.

detection accuracy of the four proposed methods for every
volunteer in the experiment. The detection accuracy was
evaluated for different H values, namely H = 1s, 1.5s and
2s. The SSVEP are easily detected (whether correct or
incorrect) as the threshold H lowers. Therefore, the lower
threshold (H = 1 s) is less robust against false detections than
H = 1.5s and 2 s. This can be observed in figure 5, where the
proportion among correct, incorrect and non-detected trials is
presented (average results among the volunteers are drawn).
The improvements of the hBCI approach are easy to observe
for lower H values. Detailed results for each volunteer are
presented as supplementary data (stacks.iop.org/jne/12/
056007 /mmedia).

The average values of information transfer rate (ITR),
sensitivity (SEN), specificity (SPE), positive predictive value
(PPV) [26], false positive rate (FPR) [27], and detection time
by trial are presented in table 1. Besides, other values related
to the attention-level detection of the user are also shown in
table 1. Specifically, they include: the average amount of
validations per trial, i.e., the number of times the attention-
level was evaluated until the detected SSVEP was validated;
the number of trials where more than one validation step was
needed; and finally, the average number of non-classified
trials since the attention-level did not validate any detected
SSVEP.

4.1. Statistical tests

Statistical tests were applied to evaluate the differences in the
results. The number of cases is low and the normal distribu-
tion of the data cannot be assessed, consequently, two non-
parametric statistical tests were used, namely the Friedman
and the Wilcoxon test [28-30]. The Friedman test is a tech-
nique that can be applied to data classified by more than two
criteria. Hence, the null hypothesis proposes that all the
results are equivalent through the different methods. The
alternative hypothesis is that at least two results are different.

For example, evaluating the accuracy results obtained
with the four methods using H = 1s, the Friedman test
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Table 1. The average performance of the proposed methods.

ITR (bits min ") Attention
Trial with
two or
Elapsed Validation =~ more vali- Trial

H (s) Method SEN (%) SPE (%) PPV (%) Mean Max time (s) per trial dations rejected FPR
A 50.6 63.4 50.6 8.35 19.3 212 + 1 — — — 0.37
B 66.5 73.6 66.8 14.97 314 279 £ 1.1 25+ 15 40 0.3 0.26

1 C 65.6 73.2 66.0 14.86 32.9 28412 22+14 415 05 027
D 59.4 69.6 59.9 10.70 24.2 289+ 14 3+£21 41 0.8 0.30
A 71.9 80.4 74.8 18.1 33.9 325 £ 1.1 — — 0.20
B 75.6 87 82.9 20.5 35.2 358+12 29+21 31 4 0.13

1.5 C 76.5 86.2 822 20.3 36.5 3613 21+13 32.2 2.5 0.14
D 75.4 87 82.4 19.6 34.1 377+£13 2942 44.7 4 0.13
A 71.5 92.4 89.2 21.9 38.4 396 £ 1.2 — — 0.08
B 72.3 95.1 91.3 20.6 354  419+12 34+£25 26.3 67  0.05

2 C 74.2 94 90 20.2 343 419 + 1.3 24+ 18 30.2 4.2 0.06
D 75.2 95 91.8 20.1 34.8 448 +£12 29+2 38.2 4.2 0.05

reports a p-value of 0.001 (x2 = 16.8; N = 6; d.o.f. = 3). o5

Hence, at least two of the four methods achieved results with mA =B uC mD

statistically significant differences. Then, the Wilcoxon _

paired-test was applied to evaluate the differences between §20

the four methods (three proposed methods and the contrast o

one). In this case, a minor p-value than 0.05 indicates sta- & 15

tistically significant differences between both evaluated &

methods. For the same previous example, the Wilcoxon test 8- 10

reports a p-value of 0.027 between methods A and B, a ﬁ

p-value of 0.02 between methods A and C and finally, § 5 |

a p-value of 0.027 between methods A and D. On the other I I .

hand, the Friedman test applied over the accuracy results o/ HINIENEE EEENENEE SN

H=1s

obtained with H = 2 s reports a p-value of 0.197 (x2 = 4.7;
N = 6; d.o.f. = 3). Thus, the null hypothesis cannot be
rejected in favour of the alternative hypothesis, i.e. the four
methods attained similar results.

The ITR values presented a similar behaviour when the
statistical tests were applied, that is, statistically significant
differences were reported for H = 1s and 1.5s whereas
H = 25 did not. Considering the PPV, the statistical tests
always reported p-values lower than 0.05, which means that
the improvements on the classification are statistically sig-
nificant. The error rate was analysed as well, and the reduc-
tion of errors for methods B, C and D against method A was
statistically verified. The SPE was analysed obtaining differ-
ent results; sometimes the observed results presented statis-
tical significance whereas others did not. Detailed results of
the statistical tests for each volunteer are presented as sup-
plementary data (stacks.iop.org/jne/12/056007 /mmedia).

4.2. Idle state evaluation

This test was performed over the baseline EEG (see
section 2). It is possible to consider this 60 s EEG segment as
an idle state because the volunteer was gazing at the screen
but definitely not concentrating on any stimuli. Theoretically,
the BCI should not detect any SSVEP but the stimuli were

H=1,5s H=2s

Figure 6. Average percentage of false postive evaluated as an
asynchronous approach on the baseline EEG (idle state).

still on the visual field of the user. Hence, any detection is a
false positive.

The processing signal method was applied as an asyn-
chronous BCI paradigm every 0.25s. Hence, discarding the
initial 2s window, 233 points were analysed, i.e.,
(60s — 25)/0.25s + 1 = 233. Figure 6 shows the average
percentage of false positives for the three H thresholds.
Detailed results on each volunteer are presented as supple-
mentary data (stacks.iop.org/jne/12/056007 /mmedia).

4.3. Evaluation on another database

The transitory response was extracted, analysed and evaluated
over the same database, then in order to avoid some kind of
over-fitting, the proposed methods were applied to another
database. The database was previously acquired in a different
research project [31]. In that work, the stimuli were presented
at 13, 14, 15 and 16 Hz; the EEG was measured with two
bipolar channels (O,—P5 and O,-P,) and, simultaneously with
six monopolar channels at O, O,, P3, P4, T5 and T¢ refer-
enced to F, and grounded at linked A;—A,. Each trial was
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Figure 7. The error rate evaluated on the second database. The SVEEP were detected using (a) monopolar channels and (b) bipolar channels.

In this case method A is the one implemented on [31].

similar to the current work but lasting 7s. The stimulus to
gaze at was indicated by an arrow on the screen at t = 2.

The same algorithm used in [31] was applied to detect the
SSVEP and the proposed attention-level methods were used
to validate those detections. Once again, the classification
process began at t = 2 s because it represents an unfavourable
situation.

The error rate obtained from the classification process of
SSVEP on this second database was depicted in figure 7. In
figure 7(a) the monopolar channels were used for SSVEP
detection and in figure 7(b), the bipolar channels were used
for detection. In both cases the attention-level was evaluated
over the six monopolar channels as was previously described.

5. Discussion

This section was divided into three parts. The first one is
devoted to discussing the performance of the proposed
methods. Meanwhile, the second part analyses the behaviour
of the P, and TBR rate in the experiments. Finally, the hBCI
approach is evaluated.

5.1. Evaluation of the results

Figure 4(a) presented the accuracy results evaluated for
threshold H = 1 s. In this case, the threshold is low and thus,
less robust against false positives. The accuracy on the clas-
sification was improved using the hBCI approach (with any
method); moreover, it was statistically significant. On the
average, method A (the contrast one) achieved 50% mean-
while, the hBCI achieved 66%, 65% and 59% for methods B,
C and D, respectively. Therefore, the proposed hBCI
improved the classification accuracy because erroneous
detections were reduced (see figure 5). Hence, the wrong
detections or false positives were diminished because when
the user was not concentrating on the stimulus, the SSVEP
was not validated (similarly to figure 2). This reduction on the
error rate was verified by the statistical tests.

When threshold H was 1.5 s (figure 4(b)), the detection
accuracy was improved for all methods from the results
achieved for H = 1s. Although the hBCI reached higher

results, volunteer six presented some lower values. There is a
possibility that volunteer six experienced some problems in
maintaining his focus on the stimuli or perhaps the fre-
quencies used in the experiment were personally unsuitable
for him. Once again, the false positives were reduced but the
no-detections were increased, as can be seen in figure 5.

Finally, for H = 2, different accuracies were found
through the four methods for each volunteer. Although,
method A looks superior, the average accuracy in figure 4(c)
is similar for the four methods (between 72% and 77%).
Moreover, those differences were not statistically significant,
whereby it may be concluded that similar accuracies were
achieved. On the other hand, the number of incorrect classi-
fied trials is lower for hBCI methods, as depicted in figure 5.
This reduction was statistically significant.

The relationship among correct, wrong and non-detected
trials (figure 5) is different for each method. As increasing H
from 1 s up to 2 s, the correct detection rate is higher. How-
ever, method A obtains the highest wrong detection rate on
any threshold H. The three proposed methods (B, C and D)
increase the correct detection rate at the same time that wrong
detections are diminished, sometimes at the cost of increasing
the non-detected trials. The current hBCI has the capability of
reducing the false positives (wrong detections), which are a
problem in SSVEP-based BCI due to ‘Midas touch effect’.
Therefore, the proposed hBCI could diminish the false posi-
tives because the SSVEP is not validated if the user lacks
concentration on the stimulus. Finally, the erroneously clas-
sified trials are reallocated as either correct or non-detected
(figure 5). Depending on the application, it is generally pre-
ferable not to send a command (no detection) than to send the
wrong one. For instance, if the BCI is used for commanding
a wheelchair, a wrong command could cause an accident
and/or injuries to the user.

The SEN measures the ability of the BCI to detect
SSVEP, in table 1 this value is higher for the three proposed
methods when H = 1s and H = 1.5s. The hBCI achieved
similar SEN when H = 2 s, only volunteer six reported lower
results for hBCI. On the other hand, the SPE refers to the
ability of the BCI to correctly undetected SSVEP. Then, the
SPE value is higher for methods B, C and D in all cases, that
is, the hBCI is more robust against false positives. Generally,
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these SPE differences were statistically significant. The PPV
represents the proportion of detections that are correct
detections; the reported values show the superiority of the
hBCI approach, which was statistically corroborated. The
improvements on the SPE and PPV represent the advantages
of the proposed hBCI. The FPR is as well presented in
table 1, it constantly decreased from H = 1 s up to H = 2.
Furthermore, FPR showed lower values for methods B, C and
D than for method A. Hence, the three proposed methods are
more robust against false detections.

The idle state was evaluated over the baseline EEG
where any detection is a false positive. The three proposed
methods reduced 50% the false positives of method A, as it
was depicted in figure 6. Note that this evaluation was per-
formed as an asynchronous paradigm and therefore, the fea-
sibility of the proposed hBCI approach was confirmed.

Different approaches have been proposed to detect idle
state. For example, Pan et al proposed a graphical user
interface with pseudo-keys [4]. That system determines the
control/idle state by comparison between the power of the
target button and the pseudo-keys achieving a FPR of 4.17%
and in asynchronous mode, 1 false positive by minute. In the
current work, FPR of 5% was achieved (table 1) and 1.6% in
asynchronous mode (baseline EEG). Ren e al determined the
idle state with accuracy of 90% [3] and Wang et al achieved
similar accuracy based on a strategy of excluding alpha wave
interference [5]. In the current work, the idle state in the
baseline was detected with average accuracy of 90% for
H=1s, 95% for H=15s and 98% for H = 2s (these
values were calculated as 1-FPR on figure 6).

Note that method A is suitable for commanding devices
since it has been successfully used to command a wheelchair
[25] and a mobile robot [24]. Depending on each subject,
method A achieved close to 40 bits min ™" in the current work
(see the supplementary data stacks.iop.org/jne/12/056007/
mmedia) or up to even 72.5 bits min~! in [25]. The hBCI
approaches overcame method A, and then it may improve the
performance of the user in commanding mobile devices such
as a wheelchair.

Conversely, the hBCI needed more time to detect an
SSVEP. On average, the detection time rise is 0.77 s for
H=1s and 0.52s for other H values. Similarly, other
researchers reported modulations of a-rhythm 400 ms after
the onset of a spatial cue [20] and average latencies of around
500 ms [19]. Providing real-time feedback the hBCI approach
may reduce the delay on detection time, however, it might be
difficult to reduce it beyond of that average 400-500 ms limit.
It depends on the application whether this delay might
represent a problem or not. For example, generally, spellers
focus on fast communication (spelling) but a wheelchair
commanding focuses on safety navigation. Nonetheless, this
delay affects the ITR by reducing it, although, the average
ITR of the hBCI approach was higher than standard one.
When H = 2s the average ITR is a little bit higher for
method A (21.9 bits minfl) than for method B, C and D
(20.6, 20.2, and 20.1, respectively); however these differences
did not present statistical significance (p = 0.073). Thus, the
increase on the detection accuracy is enough to counter the

delay on the detection and, indeed increasing the ITR in some
cases. In summary, the hBCI provides a higher rate of true
positive and true negatives, which represents a more reliable
BCI system. This is very important when transferring the BCI
from the Lab to the home of the patient because each detected
SSVEP is very likely to be the correct one.

A minimum of two or three validation steps per trial were
required before the validation of an SSVEP. The processing
signal method was performed in 0.25 s steps, thus, the vali-
dation process takes 0.5s or 0.75s on average. This is in
accordance with the increase on the elapsed times shown in
table 1 as well. Note that less than 50% of the trials (between
26.3 and 40 trials) needed two or more validations steps. In
some cases, SSVEP were detected but the trial could not be
classified because the detected SSVEP was not validated.
This was expressed in the last column of table 1. In general,
the average number of rejected trials was low; however,
volunteer siox had some problems staying focused on the
stimuli. Thus, his SSVEP were not validated in every trial and
the number of rejected trials increased. Discarding volunteer
six from this analysis, the average number of rejected trials
did not exceed more than three or four per volunteer.

5.2. Analysis of the attention-level: the transitory response

Changes of the attention-level are reflected as changes in EEG
signals. The EEG activity in the alpha, beta and theta rhythms
[19-21] and 6/0 ratio [22] is modulated by the attention-
level. Then, when a person pays attention to any stimulus,
some changes should appear in the EEG signal. We hypo-
thesized that the attention-level can be measured along with
the SSVEP on the same EEG channels. This hypothesis was
verified in the current work. Moreover, it found a transitory
response lasting a few seconds when the person starts to pay
attention to any stimulus. In this transitory response, the alpha
rhythm power and the 6/0 ratio decreased. This behaviour of
EEG signal is related to the attention change when the person
gazes at a certain stimulus, instead of representing the whole
attention-level of the volunteer (which is related with slow
changes in brain rhythms).

SSVEP could be elicited in the same range of alpha, beta
or theta rhythms, and then some interference may exist
between attention-level and SSVEP detection. In this study
SSVEP was elicited in the high-frequency range (>30Hz)
[23]. Nevertheless, note that SSVEP is just one specific fre-
quency value and the attention-level is obtained from a wider
frequency range. Moreover, some BCI approaches used
SSVEP in the same range of spontaneous alpha rhythm
despite this interference. Those BCI achieved high perfor-
mances, indicating that interference is not necessarily a pro-
blem and it should be analysed in further research. In the
current work, stimulation at high-frequency range was used
because visual fatigue is reduced [23, 32]. Additionally, the
hBCI was evaluated on medium-frequency range SSVEP (13,
14, 15 and 16 Hz) achieving high results.

The relative alpha power (P,z) was computed using the
power of 3—45 Hz band as shown in equation (7). The SSVEP
stimulation is within this band and therefore, it slightly
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modifies the P,z value. In the current work, the behaviour of
the P is analysed instead of the Pz value itself, that is, P,r
descends when the user focuses on the stimulus. Hence, this
normalization did not affect the evaluation of P_.

5.3. Evaluation of the hBCI approach

In SSVEP-based BCI, the stimuli are always found within the
visual field of the user and consequently, false positives are
reported (the ‘Midas touch effect’ [2]). For instance, in
figure 2 the SSVEP corresponding to the left stimulus could
be detected between r = 3 s and r = 4.5s. Supposedly, the
user was gazing at the bottom stimulus, even though an
SSVEP of 1.5s duration was elicited by the left stimulus
(which is still within the visual field of the user). Other
SSVEP detection methods such as canonical correlation
analysis (CCA) [33] or minimum energy combination [34]
should detect this SSVEP, however, it is still a false positive.
For example, a recent improvement of a CCA method called
CCA-RV (RV is reducing variation) [35] achieved very high
performances in a spelling application, although it could still
suffer from the Midas touch effect. Therefore, false detections
must be reduced because wrong commands are produced.
Moreover, the false detections are expected to appear more
frequently in asynchronous BCI approaches and should be
reduced as well. In the proposed hBCI the left-SSVEP was
not validated because the criteria proposed in equations (4),
(5) or (6) were not accomplished.

The proposed scheme, based on the detection of the
attention-level, could be assembled with other SSVEP
detection algorithms; thus more reliable systems could be
obtained. Even those SSVEP detections algorithms that
achieved perfect accuracies and/or highest rates, were gen-
erally evaluated over sessions of a few hours (in the best
case). Nevertheless, using the system the entire day (as the
case of people with disabilities), the effects of fatigue and user
distraction becomes much more evident. Therefore, the pro-
posed hBCI may mitigate them. Moreover, the proposed
methods are simple and easy to calculate and consequently,
they can be implemented in real-time applications.

Another advantage of the proposed approach is that it
does not require the acquisition of other EEG channels
beyond the ones used to detect the SSVEP. This differs from
other hBCI approaches where more EEG channels are mea-
sured on different areas of the brain [7—10]. This results in a
striking experiment because the attention information under-
lying in these EEG channels could be added to other SSVEP-
based BCI. Moreover, the attention level of the user could
quite possibly be easily detected using EEG measured from
other parts of the head (e.g., frontal regions); however, this
will require more hardware and more electrodes placed on the
head of the user. Of course, this is more expensive and
uncomfortable for the user. Therefore, this represents a pro-
minent advantage of the proposed hBCI over other systems.

The proposed methods were evaluated on a different
database. The EEG was acquired in a similar but different
setup and the SSVEP were elicited at medium-frequency
range (13, 14, 15 and 16 Hz). The obtained results verified our

hypothesis, the proposed methods could be added to other
BCI approaches and more important, an over-fitting hypoth-
esis was avoided. In other words, the transitory response was
detected in EEG signals from different people in a different
BCI experiment. The error rate was reduced in all cases.
When SSVEP were detected in O; and O,, the error rate was
decreased from 35% down to 20% on the average. Similarly,
when bipolar channels were used, the error rate was dimin-
ished from 30% to 17%. In other words, an improvement of
15% is achieved, which is similar to the performance obtained
on the high-frequency database when H = 1.

Particular comparisons with other hBCI approaches are
not possible because there are no similar systems. Never-
theless, the current hBCI approach was implemented without
any extra hardware and with simpler EEG signal processing
methods, which represent advantages over other hBCls.

The three proposed hBCI approaches obtained different
performances on each volunteer, one approach sometimes
resulted to be better than another; which made it difficult to
choose the best method. A possible combination of the three
approaches could improve the performances. However,
developing the higher performance algorithm is not the pur-
pose of this research. Instead, the aim was to show that extra
information is encoded in the EEG along with the SSVEP,
which indeed was verified in this work. It represents a novel
approach and furthermore, this extra information has not been
used in any current BCI approach.

6. Conclusions

This work proposes a different approach to SSVEP-based
BCI, which relies on the estimation of the attention-level of
the user. This information was used to validate the SSVEP
detected by the BCI and thus, the performance of the hBCI
was improved, mainly due to false positives rejected by the
proposed algorithm.

Three measures were proposed to identify the attention-
level based on the alpha power and TBR. A transitory
response of EEG signal when the person gaze at (and pay
attention to) any stimulus was found. Then, it is possible to
determine whether the person is really focused on the sti-
mulus being detected.

This approach shows some advantages. First, the atten-
tion-level variables were extracted from the same EEG chan-
nels used in the SSVEP detection. Hence, no extra electrodes
or hardware were needed. Second, the proposed methods can
be implemented in real-time applications because they are
simple and easy to compute. Third, the current approach could
be easily added to other SSVEP-based BCI algorithms, and
consequently improve their performances.

Therefore, the performance of the hybrid approach is
superior to the standard SSVEP-based approach. The pro-
posed system is more reliable and robust against false
detections because it reduces the error rate. This is very
important on asynchronous BCI approaches. Thus, it could
help in transferring the BCI systems to the home of the user.
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